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Abstract. We review some results in the literature which attempted (only partly successfully) at linking the

theory of scalar conservation laws with the Wasserstein gradient flow theory. In particular, we consider the problem
of writing a scalar conservation law within the Wasserstein gradient flow theory. As a related problem, we also

review results on contraction properties of scalar conservation laws in the p-Wasserstein distances. Moreover, we

provide a particle-based approach to view a scalar conservation law as a gradient flow in a nonlinear-mobility sense.
Finally, we propose a semi-implicit particle method based on the standard 2-Wasserstein distance.

1. Introduction

In 2000, a preprint by Felix Otto (published in 2001 in [52]) laid the basis for a theory which was going to
catch the interest of a wide community of fine applied mathematicians in the later 15 years. By improving and
extending an approach previously developed in [45], and possibly inspired by old results by De Giorgi [34], Otto
proposed a new way to look at linear and nonlinear diffusion equations as gradient flows. The novelty of Otto’s
approach was mostly in the use of the Wasserstein space of probability measures as the chosen metric framework
in which the new gradient flow approach was going to be set. Such approach has become a well established and
structured theory in the later years mostly thanks to the monograph [2]. In short, the theory works as follows: let
F be a ‘good-mannered’ functional defined on the space P2(Rd) of probability measures with finite second moment.
Consider its ‘sub-differential’ ∂F [ρ], which is interpreted as an element in the tangent space of P2(Rd) around ρ.
Then, the continuity equation

∂ρ

∂t
− div (ρ∂F [ρ]) = 0 (1)

can be interpreted as the gradient flow of F with respect to the
(
P2(Rd), d2

)
metric structure, where d2 is the

2-Wasserstein metric, see [56]. With the results in [2], which were partly anticipated in [26], the following class of
functionals turned out to be feasible for this theory, namely

F [ρ] =

∫
φ(ρ)dx+

∫
ρV (x)dx+

1

2

∫∫
W (x− y)ρ(x)ρ(y)dxdy, (2)

with

• φ an increasing function with certain additional properties, having in mind φ(ρ) = 1
m−1ρ

m for m > 1− 1/d

and φ(ρ) = ρ log ρ as prototype examples,
• V and W two continuous external potentials which are convex up to a quadratic perturbation.

With the choice (2) for the functional F , the equation (1) becomes

ρt = div (ρ∇ (φ′(ρ) +W ∗ ρ+ V )) . (3)

We remark the important role played by [49] to establish a suitable notion of convexity for this theory. The gradient
flow approach of [45] was also used in chemotaxis modelling, see [6], and in nonlocal interaction equations with non
smooth kernels, see [20, 8].

Already in their review paper [28], Carrillo and Toscani started investigating the role of the Lagrangian formu-
lation for a continuity equation of the form (1), with the aim of proving simple ‘quasi-contraction inequalities’ of
the form

d2(ρ1(t), ρ2(t)) ≤ d2(ρ1(0), ρ2(0))eCt , C ∈ R.
Their approach is restricted to the one dimensional case, in which the 2-Wasserstein space is isomorphic to the
space L2([0, 1]) via the bijection

P2(R) 3 µ 7→ Xµ(z) = inf {x ∈ R : µ((−∞, x]) > z} ∈ L2([0, 1]).

If one assumes that ρ(·, t) is a solution to the gradient flow equation (1), then the pseudo-inverse variable X = Xρ

satisfies another partial differential equation which, despite being often seemingly hard to handle, turns out to
1
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provide such contraction estimates almost for free. The simplest example considered in [28] concerns with the
Porous Medium equation (PME) ρt = (ρm)xx, with m > 1.

Inspired by the results of [4] in probability theory, the gradient flow structure of (3) led to several results on the
large time asymptotic behaviour of solutions. A first result by Toscani [55] on the heat equation was the basis of
a systematic theory developed in [3] for linear Fokker-Planck type equations, in which exponential convergence to
equilibrium was proven. A few months later, Carrillo and Toscani [27], Otto [52], and Del Pino and Dolbeault [35]
(independently) found the optimal rate of convergence to Barenblatt solutions of the Porous Medium equation for
solutions with finite second moment. The techniques in [27] and [52] were both (more or less directly) exploiting
the Wasserstein gradient flow structure of the PME. Connections with functional inequalities arising in probability
theory, such as the Log-Sobolev inequality, the Talagrad inequality, and the Csiszar-Kullback inequality, were
established in [3, 52, 27, 53, 23] to mention a few. The two papers [25, 26] extended the theory to the full class
of equations (3) including also nonlocal potentials W . In the meantime, the book [56] by Cedric Villani collected
the most relevant facts on optimal transportation theory related with PDEs, and became a fundamental reference
to this subject. In 2005, Ambrosio, Gigli, and Savaré [2] provided an extensive theory of gradient flows on metric
spaces and in the Wasserstein space, which contained the previous results as special cases, and made the Riemannian
structure of the Wasserstein space developed by Otto in [52] rigorous.

Already at this stage, some researchers started wondering on whether or not a nonlinear local convection term
could be inserted in (3) in a way to make the whole theory still work, or even more ambitiously, whether a nonlinear
conservation law

ρt + f(ρ)x = 0 (4)

could be seen as a Wasserstein gradient flow. This was mainly due to three reasons:

• Scalar conservation laws have basically the structure of a continuity equation with a nonlinear flux. Very
naively, if one chooses

W (x) = H(x) =

{
1 if x > 0

0 if x < 0 ,

then H ′ ∗ ρ = ρ (formally), and one may be tempted to view the Burgers equation

ρt + (ρ2)x = 0

as a gradient flow of

ρ 7→
∫∫

ρ(x)ρ(y)H(x− y)dydx.

Unfortunately (apart from H being too singular for the theory to work), only the symmetric part of the
interaction potential W survives in the functional F in (2), and therefore this functional would reduce to a
constant. So this interpretation is clearly false.

• Scalar conservation laws with f(ρ) = ρq, q > 1, exhibit a very similar large time behaviour to that of
the Porous Medium Equation, in that they decay to zero for large times with a polynomial rate, and
most importantly they are well approximated by a compactly supported self-similar profile t−αU(xt−α) as
t→ +∞. Such profiles are called N -waves. Their occurrence as intermediate states for scalar conservation
laws was well known since the pioneering works by Lax [47] and Di Perna [40] for strictly convex fluxes.
These results were extended to more general power law cases in [48].

• Of course, the heat equation can be interpreted as L2 gradient flow of ρ 7→
∫
|∇ρ|2dx, as well as many other

PDEs which can be written as gradient flows in the classical theory on Hilbert spaces started by Brezis
[12]. Gradient flows on a Hilbert spaces are a special case of the theory of maximal monotone operators,
a branch of semigroup theory which (among other achievements) unified the mathematical theories of
nonlinear diffusion equations and nonlinear scalar conservation laws, see e. g. [31]. As a byproduct, the
semigroup generated by the transport operator of a scalar conservation law (in the entropy solution sense
of [46]) is non-expansive in L1, as it happens for nonlinear diffusion equations.

The first results in the direction of linking conservation laws with Wasserstein gradient flows go back to the early
2000 years. Since then, some interesting achievements have been carried out, but the theory is still incomplete.

The goal of this note is twofold. We shall first review the existing literature on this subject, trying to identify an
overall advancement toward the current state of the art. As a second goal we shall propose some open problems and
new possible directions (see in particular sections 7 and 8), mostly based on a microscopic (deterministic) particle
formulation for a scalar conservation law.
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Due to the fact the structure of a scalar conservation law changes drastically when passing from one space
dimension to many space variables, all the results (as well as the coverage of this note) are restricted to the one
dimensional case.1

As for the deterministic particle formulation mentioned above, we stress that several results have been achieved
in the case of stochastic particles, see e. g. [54, 30]. We will not deal with such approach here, and send the reader
to the proposed references.

This note is structured as follows. We will follow a partly chronological order, and collect the results under
review according to the following scheme:

• We shall first introduce some basic facts about scalar conservation laws in section 2. We shall then recall
the isomorphism of the 2-Wasserstein space with L2([0, 1]), and introduce (in short) the technique of [28]
on the study of the pseudo-inverse equation. In particular, we establish a technical result which allows to
formulate a scalar conservation laws via a pseudo-inverse equation, see Theorem 3.1. We shall also introduce
another possible pseudo-inverse-based approach which deals with increasing solutions.

• Although less natural and less intuitive, the afore-mentioned approach for increasing solutions was the first
one to see some developments in this theory. Therefore, we shall explain the main ideas and the main results
in sections 4 (based on the result of [7]) and 5. The latter shows a link between the Burgers equation and
a class of nonlocal interaction equations. It was developed in [8].

• The problem of establishing a contraction in the Wasserstein space for a scalar conservation laws, this time
for nonnegative integrable solutions, will be the main goal of the remaining part of the note. In section 6 we
shall review an encouraging result proven in [17], namely an ∞-Wasserstein contraction result. As a minor
original contribution of this note, we prove with a simple example that such result cannot be extended to
p-distances with finite p. This fact suggests that the classical Wasserstein distance approach is not the best
one to define a notion of gradient flow for conservation laws.

• To bypass such a problem, in section 7 we introduce a new approach of a gradient flow in the generalised
Wasserstein space with a nonlinear mobility, see [42]. We show a rigorous gradient flow structure at a
microscopic Lagrangian particle level, and we conjecture a variational structure based on results in [39].
The content of this section is completely new, though mostly formal.

• In section 8 we propose an alternative semi-implicit approach which is rigorous at a microscopic level, but
totally open at the macroscopic one.

• Finally, in section 9 we quickly review some results in which nonlinear convection has been coupled with
linear and nonlinear diffusion terms in a Wasserstein gradient flow approach.

2. Preliminaries on scalar conservation laws on the real line

We shall assume that the reader is familiar with the basic theory of scalar conservation laws in one space
dimension. We refer to the book [11] and to the theory in Chapter 6 of [33] for further details and references. Here
we only recall the most important concepts.

It is well known that the equation (4) produces discontinuous solutions even for some smooth initial data. A
notion of weak solution is not enough to provide a well posed semigroup. The seminal work by Oleinik [50] and
Kruzkov [46] established the correct (and physically relevant) notion of solution for (4) called entropy solution.

Definition 2.1. Let ρ0 ∈ L∞(R). A function ρ ∈ L∞([0,+∞)×R) is called an entropy solution to (4) with initial
condition ρ0 if it satisfies the entropy inequality∫ +∞

0

∫
R

[|ρ(t, x)− k|ϕt(t, x) + sgn(ρ(t, x)− k)[f(ρ(t, x))− f(k)]ϕx(t, x)] dtdx

+

∫
R
|ρ0(x)− k|ϕ(0, x) dx ≥ 0

for all ϕ ∈ C∞c ([0,+∞)× R), ϕ ≥ 0, and for all constants k ∈ R.

The existence and uniqueness of entropy solutions in the sense of Definition 2.1 for a locally Lipschitz flux f and
for a fixed initial condition ρ0 ∈ L∞(R) is well known since [46]. A later result [29] states that uniqueness can be
obtained also by assuming a weaker condition at the initial time provided that f is not affine on sets of positive
measure: more precisely, under that assumption on f , ϕ in definition 2.1 can be taken in C∞c ((0,+∞) × R) and
ρ(t, ·) can be supposed to converge to ρ0 narrowly as t↘ 0, in order to still get a unique solution.

For the purpose of this note, and in all the results presented here, a key feature that is assumed is that solutions
to (4) are nonnegative. The role of this extra assumption is well explained in the paper [48]. Here we want to

1A major exception to this rule is a paper by Yann Brenier [10], with results valid on a multi-dimensional torus.
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stress the following aspect: if one wants to replace the L∞ assumption for the initial condition by ρ0 ∈ L1
+(R), the

uniqueness result for entropy solutions is still true for fluxes of the form

f(ρ) = ρq , q > 1,

provided we require additionally

• ρ ≥ 0,
• ρ ∈ L∞([0,+∞) ; L1(R)) ∩ L∞([τ,+∞)× R) for all τ > 0.

We refer to [48, Theorem 1.1] for the details. The importance of attaining an L1 initial condition in a narrow sense
is that we are allowed to consider source-type solutions, i. e. solutions with a single Dirac mass as initial condition.
Such solutions are self-similar in the case f(u) = uq with q > 1, and they are called generalised N -waves, see [48].

3. Preliminaries on one dimensional Wasserstein distances

Throughout the whole note, P(R) denotes the space of probability measures on R. Let p ∈ [1,+∞). We set

Pp(R) =

{
µ ∈ P(R) :

∫
|x|pdµ(x) < +∞

}
.

We also set

P∞(R) = {µ ∈ P(R) : µ has compact support} .
For p ∈ [1,+∞], the p-Wasserstein distance between µ, ν ∈ Pp(R) is usually defined via an optimal transportation
problem, see e. g. [56, 2]. However, the definition is much simpler in the one dimensional case. Let

K =
{
X ∈ L2([0, 1]) : X is non decreasing

}
.

We define the map P(R) 3 µ 7→ Xµ ∈ K via

Xµ(z) = inf {x ∈ R : µ((−∞, x]) ≥ z} , (5)

i. e. Xµ is the inverse cumulative distribution function corresponding to the probability measure µ. Then (see
[56]), let p ∈ [1,+∞] and let µ, ν ∈ Pp(R). The p-Wasserstein distance between µ and ν is recovered as

dp(µ, ν) = ‖Xµ −Xν‖Lp([0,1]). (6)

Let us note in particular that

• When p = 1, this distance coincides with the L1(R) difference

d1(µ, ν) =

∫
R
|Fµ(x)− Fν(x)| dx , Fµ(x) = µ((−∞, x]) , Fν(x) = ν((−∞, x]) .

• When p = +∞, this distance controls the set distance between the two supports of µ and ν, namely

dist(supp(µ), supp(ν)) ≤ d∞(µ, ν).

We recall that an atomic measure µ = δx, x ∈ R yields

Xµ(z) ≡ x , for all z ∈ [0, 1].

On the other hand, if µ ∈ P(R) has no atoms, this implies that Xµ is strictly increasing on [0, 1].

3.1. Contraction properties in Wasserstein spaces. The main advantage of working in one space dimension
and using the identification (6) is explained as follows. Consider an evolutionary partial differential equation of the
form

ρt + (ρv(ρ, ρx))x = 0 (7)

with initial datum in P∞(R). Assume for simplicity that the solution ρ to (7) is smooth and bounded for all times
in such a way that the pseudo-inverse Xρ (in which, by abuse of notation, we identify a measure with its absolutely
continuous part) is the actual inverse of F (t, x) =

∫ x
−∞ ρ(t, y)dy. We then have

X(t, F (t, x)) = x . (8)

Due to the regularity we have assumed, we can differentiate (8) once with respect to x,

Xz(t, F (t, x))ρ(t, x) = 1,

and obtain

ρ(t, x) =
1

Xz(t, F (t, x))
. (9)
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Note that ρ being bounded is equivalent to have Xz uniformly bounded from below by a positive constant. By
differentiating (8) twice with respect to x we obtain

Xzz(t, F (t, x))ρ(t, x)2 +Xz(t, F (t, x))ρx(t, x) = 0 ,

which gives

ρx(t, x) = −Xzz(t, F (t, x))

X3
z (t, F (t, x))

=

(
1

2X2
z

)
z

(t, F (t, x)). (10)

Now, by integrating (7) on (−∞, x], we formally get the equation for F (t, x) =
∫ x
−∞ ρ(t, y)dy

Ft + ρv(ρ, ρx) = 0, (11)

and by differentiating (8) with respect to t we get

Xz(t, F (t, x))Ft(t, x) +Xt(t, F (t, x)) = 0 ,

which gives, after changing variable X(t, z) = x,

Xt(t, z) = −Ft(t,X(t, z))

ρ(t,X(t, z))
,

and (11), (9), and (10) imply the following PDE for X = X(t, z):

Xt = v

(
X−1z ,

(
1

2
X−2z

)
z

)
. (12)

The form (12) for the original PDE (7) is often called pseudo-inverse equation. Roughly speaking, estimating the
p-Wasserstein distance between two solutions ρ1 and ρ2 to (7) is equivalent to computing the Lp distance between
the two corresponding pseudo-inverse variables Xρ1 and Xρ2 upon a direct use of the PDE (12).

The most striking example of application of the pseudo-inverse form for an evolutionary PDE is provided in
[28, 22] for the Porous Medium Equation (PME) (see also [44])

ρt = (ρm)xx.

In the X = Xρ variable, the PME can be formally rewritten as

∂tX(t, z) = −∂z
(
(∂zX(t, z))−m

)
.

Let ρ1, ρ2 ∈ P2(R) be two (bounded) solutions to the PME. A direct application of the above strategy in [28, 22]
leads to the contraction property

d2(ρ1(t), ρ2(t)) ≤ d2(ρ1(0), ρ2(0)).

The examples considered in [28, 22] showed that the pseudo-inverse form is a very powerful tool to investigate
contraction properties of a semigroup in one-dimensional Wasserstein spaces. In the special case of a gradient flow
(1) on P2, in which v = ∂F [ρ], one can formally see that the pseudo-inverse form of (1) becomes

Xt = −∂F̃ [X] , (13)

where

F̃ [X] = F [X−1z (F (·))] , F (x) =

∫ x

−∞
ρ(y)dy .

While the gradient of the functional F in (1) has to interpreted as a sub-differential on the P2 Riemannian structure,

the expression ∂F̃ [X] in (13) denotes the classical L2 sub-differential, see [12]. The identification between these two
structures is not always immediate, and we shall return to it later on in this note, see section 5.

We now prove that the pseudo inverse equation (12) is well justified in the case of a scalar conservation law with
a reasonable flux. In order to point out this property, we rely on some existing results on the SBV regularity of
scalar conservation laws. For simplicity we shall work under the assumption of compactly supported initial data.

Theorem 3.1. Let f : [0,+∞) → [0,+∞) be such that f ∈ C2 with f ′′ > 0 on [0,+∞). Let ρ ∈ P(R) ∩ L∞(R)
be compactly supported, and let ρ be the corresponding unique entropy solution to (4). Then, the pseudo-inverse
variable X = Xρ satisfies

Xt(t, z) = v(Xz(t, z)
−1) , almost everywhere on (t, z) ∈ [0,+∞)× [0, 1], (14)

with v(ρ) = f(ρ)/ρ.

Proof. The proof is provided in the Appendix A. �
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3.2. Contraction properties of space-derivatives. An advantage of the approach in subsection 3.1 is that it
describes a contraction property of the semigroup in its Lagrangian formulation, i. e. the pseudo-inverse equation
(12) can be seen as the equation for the Lagrangian position of particles (e. g. in a fluid) computed as a function
of the mass variable and the time variable. On the other hand, this approach provides a contraction estimate in
a Wasserstein distance, which induces a topology only slightly stronger than the weak convergence in the sense of
measures.

There is an alternative way to still use the Wasserstein distance but at the same time describe the semigroup
in a stronger topology. Unfortunately, it only applies to non decreasing solutions on the real line (hence, solutions
with infinite mass). Let F0 ∈ L∞(R), F0(x) ∈ [0, 1], F0 monotone non-decreasing with

lim
x→−∞

F0(x) = 0 , lim
x→+∞

F0(x) = 1. (15)

Consider an evolutionary PDE of the form

Ft + f(F, Fx)x = 0, (16)

and assume that (16) preserves the monotonicity property, i. e. F (t, ·) is a non-decreasing function, the property
F (x, t) ∈ [0, 1], and the limiting properties (15) for all t ≥ 0. Hence, the distributional space derivative µ(t) = Fx(t, ·)
of F is a probability measure, and it makes sense to compute the evolution of the quantity dp(Fx(t, ·), Gx(t, ·)) for
two solutions F and G to (16) with the above properties. Here p ∈ [1,+∞].

With the choice p = 1, we remark that

d1(Fx(t, ·), Gx(t, ·)) = ‖F (t, ·)−G(t, ·)‖L1(R) ,

which suggests that this approach provides a description of the semigroup in stronger topologies.

4. Increasing solutions of scalar conservation laws

A first class of interesting results trying to link scalar conservation laws and Wasserstein gradient flows concerns
with increasing solutions.

Consider the one dimensional scalar conservation law

∂F

∂t
+

∂

∂x
f(F ) = 0 , f locally Lipschitz , (17)

with initial datum F (0, x) = F0(x), F0 ∈ U with

U := {F : R→ R : F non decreasing, right-continuous, with limits 0 at −∞ and 1 at +∞} .

The first result in this direction goes back to 2005 in [7], where the authors consider Lipschitz fluxes f and entropy
solutions to (17). By a simple maximum principle, the unique entropy solution F to (17) satisfies F (t, ·) ∈ U for
all t ≥ 0. So we are in the context of subsection 3.2. The idea of [7] is to consider the formal PDE for the pseudo
inverse of F

X(t, w) = inf{x ∈ R : F (x) > w}.
Assuming for simplicity that F is strictly increasing and smooth enough on a given nontrivial interval x ∈ [a, b],
similar to the computation in subsection 3.1 one can use (17) directly to get

Xt(t, w) = − Ft(t,X(t, w))

Fx(t,X(t, w))
= f ′(F (t,X(t, w))) = f ′(w). (18)

The equation in (18) is just an ordinary differential equation with a parameter w ∈ [0, 1]. Its solution is easily
computed as

X(t, w) = X(0, w) + tf ′(w), (19)

which is very reminiscent of the expression for characteristic lines of (17). Now, with the notation of subsection 3.1,

X(t, w) = Xµ(t)(w) µ(t) = ∂xF (t, ·) , F solution to (17).

Therefore, given two non decreasing initial conditions F0,1, F0,2 ∈ U , given F1 and F2 the two corresponding entropy
solutions with initial data F0,1 and F0,2 respectively, we clearly have that the two distributional derivatives (F1)x
and (F2)x belong to P(R). Therefore, we can use (19) and compute for p ∈ [1,+∞],

dp((F1)x(t, ·), (F2)x(t·)) = ‖X(F1)x(t, ·)−X(F2)x(t, ·)‖Lp([0,1])

= ‖X(F1)x(0, ·)−X(F2)x(0, ·) + tf ′(·)− tf ′(·)‖Lp([0,1])

= ‖X(F1,0)x −X(F2,0)x‖Lp([0,1]) = dp((F1,0)x, (F2,0)x). (20)
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The above computation is only formal, in that it only holds if F is strictly increasing and smooth. Due to possible
shocks and rarefaction waves, F may exhibit angular points and intervals in which it is constant in x. It turns out
that the equality (20) becomes an inequality in the general case.

Theorem 4.1 ([7]). Given a locally Lipschitz f : R → R and two initial data F1,0, F2,0 ∈ U , let F1 and F2 be the
two corresponding entropy solutions to (17). Then, for all t ≥ 0 and p ≥ 1, we have (with possibly infinite values)

dp((F1)x(t, ·), (F2)x(t·)) ≤ dp((F1,0)x, (F2,0)x). (21)

The results in [7] provide a contraction property in the dp distances for scalar conservation laws. Although
comparing derivatives of solutions (and not the solutions themselves), this result has the merit of being the first
one to link the theory of scalar conservation laws with Wasserstein spaces. In particular, (21) in the case p = 1 is
the classical L1 contraction property for scalar conservation laws, see [33]. However, no relation with gradient flows
came out until Yann Brenier beautifully extended the approach of [7] to the multidimensional case in 2009 in [10].
In his paper, the author expresses the solution to the conservation laws by a combination of level-set, kinetic, and
transport-collapse approximation. The connection with maximal monotone operator theory appears here for the
first time, though only indirectly.

A clear connection of a scalar conservation law with Wasserstein gradient flows in one space dimension was
established years later in [8]. We shall briefly review this result in the next section.

5. The gradient flow of the one-dimensional Newton energy

Consider the nonlocal interaction equation

∂tµ = ∂x (µ ∂xW ∗ µ) , x ∈ R, t > 0, (22)

where W is either the repulsive or the attractive Newton potential in one space dimension

W (x) = −|x| or W (x) = |x|. (23)

Then (22) can be interpreted as the 2-Wasserstein gradient flow of the functional

W[µ] =
1

2

∫
R×R

W (x− y)dµ(x)dµ(y),

defined on the space P2(R).

Remark 5.1 (Particle solutions). The equation (22) is the PDE counterpart of the system of interacting particles

ẋi(t) = − 1

N

∑
k 6=i

W ′(xi(t)− xk(t)) , i = 1, . . . , N . (24)

In the attractive case W (x) = |x|, the results in [20] guarantee that a moving particle solution

µ(t) =
1

N

N∑
i=1

δxi(t) , x1(t), . . . , xN (t) solutions to (24),

is a rigorous solution to (22) in the 2-Wasserstein gradient flow sense. We omit the details for simplicity. We only
remark that the main reason behind this fact is that the functional W is displacement convex in the Wasserstein
sense, and this allows uniqueness of gradient flow solutions. At the microscopic level (i. e. at the particle ODE
level (24)), the functional W is replaced by

Ŵ(X) =
1

2N2

∑
i

∑
j

W (xi − xj) , X = (x1, . . . , xN ) ∈ RN ,

which is convex on RN , and therefore the system (24) can be rephrased as

Ẋ(t) ∈ −∇Ŵ(X(t)) ,

where the gradient above should be interpreted as a classical sub-differential on the finite dimensional Hilbert space

(RN , ‖ · ‖N ), where ‖X‖2N = 1
N

∑N
i=1 x

2
i . Once again, convexity implies uniqueness of particle solutions.

Now, for a given solution µ(t) of (22), set

F (t, x) = µ(t)((−∞, x]).
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By integrating (22) on (−∞, x] we obtain

∂tF (t, x) = Fx(t, x) (∂xW ∗ µ) (t, x) = ±Fx(t, x) (sgn ∗ µ) (t, x)

= ±Fx(t, x)

∫ +∞

−∞
sgn(x− y)dµ(y) = ±Fx(t, x)

[∫ x

−∞
dµ(y)−

∫ +∞

x

dµ(y)

]
= ±Fx(t, x) [2µ(t)((−∞, x])− 1] = ±Fx(t, x)(2F (t, x)− 1) = ±∂x(F 2 − F )(t, x).

Therefore, F is formally a solution to the Burgers’ type equation

Ft ± (F − F 2)x = 0. (25)

We remark that F (t, ·) belongs to the set U considered in section 4.
The natural question arises on whether F is an entropy solution for (25) provided µ is a Wasserstein gradient

flow for (22) and viceversa. This task has been addressed in [8].

5.1. Identification with L2 gradient flows. Let us consider the pseudo-inverse equation for (22). Let µ be a
gradient flow solution to (22) and let X : [0,+∞]× [0, 1]→ R be the pseudo inverse variable X = Xµ(t). Formally,
X satisfies

Xt(t, z) = −
∫ 1

0

W ′(X(t, z)−X(t, ζ))dζ = ∓
∫ 1

0

sign(X(t, z)−X(t, ζ))dζ. (26)

We observe that the above right hand side is the L2 gradient of the functional W̃[X] : L2([0, 1])→ R

W̃[X] =
1

2

∫ 1

0

∫ 1

0

W (X(z)− Z(ζ)) dz dζ.

In the attractive case W (x) = |x|, we compute for X ∈ K

W̃[X] =
1

2

∫ 1

0

∫ 1

0

|X(z)−X(ζ)|dz dζ

=
1

2

∫∫
X(z)≥X(ζ)

(X(z)−X(ζ)) dz dζ − 1

2

∫∫
X(z)≤X(ζ)

(X(z)−X(ζ)) dz dζ

=

∫∫
X(z)≥X(ζ)

(X(z)−X(ζ)) dz dζ.

Since X is non decreasing, we clearly have

W̃[X] =

∫∫
z≥ζ

(X(z)−X(ζ)) dz dζ =

∫ 1

0

∫ z

0

X(z)dζ dz −
∫ 1

0

∫ 1

ζ

X(ζ) dz dζ

=

∫ 1

0

zX(z) dz −
∫ 1

0

(1− ζ)X(ζ) dζ =

∫ 1

0

(2z − 1)X(z) dz ,

and since the above is the expression for a linear functional, the L2 gradient is easily computed as

∂W̃[X](z) = 2z − 1

and the equation (26) becomes in this case
Xt(t, z) = 1− 2z.

Therefore, it is immediately seen that a bounded strictly increasing initial datum X(0, z) will evolve to a constant
state at a finite time t = t∗. At t = t∗ the dynamical system (26) reaches the boundary of the convex cone
K ⊂ L2([0, 1]), and it could possibly exit K after t∗. To bypass this problem, we consider the new functional
W : L2([0, 1])→ R

W[X] = W̃[X] + IK[X] ,

where IK is the indicator function of the convex cone K,

IK =

{
1 if X ∈ K
0 otherwise .

Clearly, W is convex on L2([0, 1]), and therefore it generates a unique solution for the gradient flow inclusion

Xt ∈ −∂W[X]

in which ∂ denotes the L2 subdifferential, see [12] for more details. For a given initial condition µ0 ∈ P2(R), one has
X0 = Xµ0

∈ K. The presence of the indicator function IK in the functional W avoids the solution X with initial
datum X0 to escape from the convex cone K when two (or more) particles concentrate to one point. In particular,



CONSERVATION LAWS AS GRADIENT FLOWS 9

it is easily seen that all particles collapse to a unique Dirac’s delta at a finite time. We also notice that particles
cannot split once they have collided.

A different situation arises in the repulsive case. There the driving functional has the expression

W̃[X] =

∫ 1

0

(1− 2z)X(z) dz

and (26) is written as

Xt(t, z) = (2z − 1) , (27)

for non-decreasing solutions. It is immediately seen that (27) preserves the strict monotonicity for all times. Roughly
speaking,

Xz(t, z) = X0,z(z) + 2t ≥ X0,z(z)

which implies indeed that any non increasing initial datum X0 ∈ K turns into a strictly increasing one for positive
times. Therefore, no indicator function needs to be considered here to keep the L2 dynamical system (26) within
the convex cone K. We observe that in this case the driving functional of the L2 gradient flow

Xt ∈ −∂W̃[X]

is linear, and therefore convex.

Remark 5.2 (Piecewise constant pseudo-inverses in the attractive case). Consider a piecewise constant initial con-
dition X0 ∈ K

X0(z) =

N∑
i=1

x0,i1[i/N,(i+1)/N) , x0,1 < . . . < x0,N .

Then, it is immediately seen that the solution to the attractive gradient flow

Xt ∈ −∂W[X]

is given by

X(t, z) =

N∑
i=1

xi(t)1[i/N,(i+1)/N) ,

where x1(t), . . . , xN (t) is the solution to the particle system

ẋi(t) = − 1

N

∑
xk(t)6=xi(t)

sign(xi(t)− xk(t)) , i = 1, . . . , N . (28)

In both the attractive and the repulsive case, the identification between the L2 gradient flow and the Wasserstein
gradient flow are rigorously recovered in [8].

5.2. Shocks vs. moving particles, rarefaction waves vs. diffused particles. Consider the initial condition

F0(x) =

{
0 if x < 0

1 if x ≥ 0

for the Burgers’ type equation (25). In the attractive case W (x) = |x|, (25) reads

Ft + f(F )x = 0 , f(F ) = F − F 2 ,

a scalar conservation law with uniformly concave flux. Hence, the stationary shock wave

F (t, x) =

{
0 if x < 0

1 if x ≥ 0

is the unique entropy solution to (25). Due to remark 5.1, the distributional spatial derivative of F , i. e. the
stationary Dirac’s delta

µ(t) = ∂xF (t, x) = δ0 ,

is a gradient flow solution to (22).
Consider now the repulsive case W (x) = −|x|. Here, something slightly different happens compared to the

attractive case, in terms of what we explained in remark 5.1. In particular, the situation described in remark 5.2
is no longer valid in this case. Due to the non zero repulsive force acting on particles on the same position, the
self-interaction force cannot be neglected here when considering the particle version of (22). This is also easily
seen in the L2 equation (27), in which all piecewise constant initial data becomes strictly increasing at positive
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times. This simply means that particles do not remain particles in the repulsive case. This fact reflects also in the
behaviour of the solution to the Burgers equation (25), which reads in this case

Ft + f(F )x = 0 , f(F ) = −F + F 2 ,

i. e. the flux f is convex, and initial discontinuities are solved through a rarefaction wave. Indeed, with the initial
condition F0 we can provide the explicit solution

F (t, x) =


0 if x < −t
1
2 + x

2t if −t ≤ x ≤ t
1 if x > t.

The space derivative of F can be computed as

µ(t) = ∂XF (t, ·) =
1

2t
1[−t,t]

Physically speaking, in terms of the nonlocal equation (22), the initial particle set at x = 0 diffuses to a continuum
L1 state for all positive times. Such state decays to zero as t→ +∞.

5.3. A particle method for the repulsive case. The example considered in subsection 5.2 suggests a deeper
link between the repulsive PDE

µt + (µ(| · | ∗ µ)x)x = 0 (29)

and the scalar conservation law

Ft + (F 2 − F )x = 0. (30)

It is well known that the solution semigroup for the equation (30) in the entropy sense can be constructed via the
so-called wave front tracking (WFT) algorithm, see [32, 11]. In the present context, this method works as follows.
Consider an initial condition F0 ∈ U . Suppose for simplicity that

inf{x ∈ R : F (x) > 0} = x > −∞ , inf{x ∈ R : F (x) = 1} = x < +∞.

For N ∈ N large, let us set for i = 0, . . . , N − 1,

x0,i = inf{x ∈ R : F0(x) > i/N}.

Note that x0,0 = x. We then approximate F0 by the piecewise constant function

FN0 =

N−1∑
i=0

i

N
1[x0,i,x0,i+1).

The goal of the WFT algorithm is that of approximating the solution to a conservation law by the superposition
of solutions of Riemann problems at the discontinuity points of F0. The idea is that of having the approximated
solution be piecewise constant too for all times. Clearly, this is not possible in our case if we let the discontinuous
initial condition FN0 evolve via (30), because a convex flux smooths out all increasing discontinuities to rarefaction
waves. To bypass this problem, the WFT algorithm replaces the uniformly convex flux f(F ) = F 2 − F in (30) by
the piecewise linear one

fN (F ) =

N∑
j=1

N

[
f

(
j

N

)
− f

(
j − 1

N

)](
F − j − 1

N

)
1[ j

N ,
j−1
N )(F ).

Then, we set FN as the unique entropy solution to the Cauchy problem

Ft + fN (F )x = 0 , F (0, x) = FN0 (x). (31)

The flux fN is designed on purpose in a way that all discontinuities of FN0 are solved by a contact discontinuity
travelling with constant velocity

λj =
f
(
j
N

)
− f

(
j−1
N

)
1
N

=
j − 1

N
− N − j

N
, j = 1, . . . , N , (32)

obtained via the Rankine-Hugoniot condition (see [33]). This is due to the fact that the flux fN is linearly degenerate
on each interval [(j − 1)/N, j/N ] on which the Riemann problems are solved. We can therefore write an explicit
formula for the discontinuity points

xi(t) = x0,i + tλj ,
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with λj as in (32), and for the solution FN to (31)

FN (t, x) =

N−1∑
j=0

j

N
1[xj(t),xj+1(t)) + 1[xN (t),+∞).

We note that the jumps of FN are all of size 1/N , which is reasonable since in the N � 1 limit they should be able
to approximate rarefaction waves. In view of well known results on the convergence of the WFT algorithm [32, 11]
(which actually sound a bit redundant in this context, since the convergence of the scheme is quite straightforward
in this case), we have (up to possibly extracting a subsequence),

FN → F , strongly in L1
loc([0,+∞)× R), (33)

with F being the unique entropy solution to (30) with initial datum F0.
Let us now interpret this result from the point of view of the nonlocal equation (29). The initial condition for

(29) is µ0 = ∂xF0, an arbitrary probability measure with compact support. The piecewise constant approximation
FN0 for F0 implies an atomization for the initial condition µ0, i. e.

µN0 =
1

N

N−1∑
i=0

δx0,i
,

with µN0 → µ0 narrowly as N → +∞. As for the convergence result (33), this means that the curve of atomic
measures

µN (t) = ∂xF
N (t, ·) =

1

N

N−1∑
i=0

δxi(t)

converges in the 1-Wasserstein distance towards the unique gradient flow solution µ(t) of (29). In short, µN provides
an atomic particle approximation for the gradient flow solution of (29). The formula (32) shows that the correct
discrete counterpart of the repulsive equation (29) is a particle system in which self-interaction is neglected.

Although quite simple to prove, and related to known results in the theory of conservation laws, the above results
are relevant in that

• it allows to atomize a continuum solution (we recall that no particle solutions exist for (29)),
• at least in the one dimensional case, it allows to stretch the particle approximation theory for nonlocal

interaction equations developed in [16] up to the Newtonian potential.

We refer to [8] for further details.

6. Contraction in Wasserstein spaces

The results reviewed in sections 4 and 5 reveal an intriguing connection between scalar conservation laws and
gradient flows, which however turns out to be only partly satisfactory in that it only applies to increasing solutions.
The original question, i. e. whether or not it is possible to write a scalar conservation law

ρt + f(ρ)x = 0 , (34)

as a Wasserstein gradient flow in the space of probability measures, still remains without an answer at this stage. In
2006, the paper [17] provided a promising result on a contraction property for scalar conservation laws with convex
fluxes f such that f(0) = f ′(0) = 0, in the ∞-Wasserstein distance. We briefly review this result.

Assume the flux function f : [0,+∞) → R is uniformly convex and increasing, and let ρ0 ∈ L∞(R) ∩ P(R), ρ0
compactly supported for simplicity. It is well known that the primitive variable

F (t, x) =

∫ x

−∞
ρ(t, y) dy

satisfies the Cauchy problem for the Hamilton-Jacobi equation{
Ft + f(Fx) = 0

F (0, x) =
∫ x
−∞ ρ0(y) dy .

(35)

Due to a simple minimum principle for the scalar conservation law (34), F (t, ·) is an L∞(R) non decreasing function
with

lim
x→−∞

F (t, x) = 0 , lim
x→+∞

F (t, x) = 1 .
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The unique semi-concave solution (see e. g. [14]) to (35) is provided via the famous Hopf-Lax formula

F (t, x) = min
y∈R

{
tf∗

(
x− y
t

)
+ F0(y)

}
, (36)

where f∗ stands for the Legendre transform of f . Then, well known results on the relation between the Hamilton-
Jacobi equation and scalar conservation laws imply that distributional derivative ρ(t, x) = ∂xF (t, x) is the unique
entropy solution to (34) with initial condition ρ0.

Following the ideas described in subsection 3.1, the information (36) on the primitive of the solution ρ to (34)
may turn out to be essential if one wants to investigate contraction properties of the conservation law semigroup
in Wasserstein spaces. In order to achieve this task, we have to use (36) to recover a similar formula for the
pseudo-inverse of F , namely for the function X : [0,+∞)× [0, 1]→ R defined by

X(t, z) = inf{x ∈ R : F (t, x) > z}.

We assume as an extra requirement that

supp(ρ0) is a connected interval,

which implies that F0 is strictly increasing on some interval (a, b), F0(x) = 0 for x ≤ a, and F0(x) = 1 for x ≥ b.
Under this set of assumptions, the following formula holds:

X(t, z) = max
0≤w≤z

{
tg

(
z − w
t

)
+X0(w)

}
, (37)

where X0 is the pseudo-inverse of F0 and g : [0,+∞)→ R is the inverse of the positive branch of f∗, which is well
defined due to the uniform convexity of f . The proof of (37) is performed in [17, Lemma 2.3]. Here we only sketch
the main idea behind it in the appendix B.

Now, consider two compactly supported initial conditions ρ1, ρ2 ∈ P(R). Assume further that the supports of ρ1
and ρ2 are connected intervals. Consider the two corresponding primitive variables F 1 and F 2, and their pseudo
inverses X1, X2 ∈ L∞([0, 1]). From (37) we have

Xi(t, z) = max
0≤w≤z

{
tg

(
z − w
t

)
+Xi(w)

}
, i = 1, 2 .

Now, for fixed (t, z) ∈ [0,+∞)× [0, 1], let w̄1 = w̄1(t, z) be the point in which the maximum above is attained for
X1. We clearly have

X1(t, z)−X2(t, z) ≤ tg
(
z − w1

t

)
+X1(w1)− tg

(
z − w1

t

)
−X2(w1)

= X1(w1)−X2(w1) ≤ ‖X1 −X2‖L∞([0,1])

By interchanging the roles of X1 and X2 and taking the supremum over z ∈ [0, 1], we get

‖X1(t·)−X2(t, ·)‖L∞([0,1]) ≤ ‖X1 −X2‖L∞([0,1]).

An approximation procedure (see the appendix of [17]) allows to extend the above formula to all initial data in
BV (R). Therefore we have the following contraction property.

Theorem 6.1 ([17]). Let ρ1, ρ2 ∈ P(R) be compactly supported and with bounded variation. Let ρ1 and ρ2 be the
two corresponding entropy solutions to (34), with f a uniformly convex flux with f(0) = f ′(0) = 0. Then,

d∞(ρ1(t, ·), ρ2(t, ·)) ≤ d∞(ρ1, ρ2)

for all t ≥ 0.

The result in Theorem 6.1 is used in [17] to detect the t → +∞ L1 intermediate asymptotic profile in the d∞
distance under the extra assumption ρ 7→ f(ρ)1−α is convex for some α ∈ (0, 1). Such intermediate profiles coincide
with the classical N -waves considered in [48] recalled in section 2. We omit the details and send the reader to [17,
Section 3]. Moreover, similarly to what proven in [22] for the porous medium equation, the above result provides a
control for the speed of propagation of the support of any compactly solution to the scalar conservation law (34) in
terms of the support of the N -waves.

Already at the time of [17], the authors wondered about the possibility that a scalar conservation law defined a
contraction semigroup in the dp distances for p < +∞. Actually, the answer to this question is negative in general.
We shall prove that in the next (new) result.
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Theorem 6.2. Let f : [0,+∞) → [0,+∞) be a C2 function, with f ′′ > 0 and such that v(ρ) = f(ρ)/ρ is strictly
decreasing. Let p ∈ [1,+∞). Then, there exist ρ1, ρ2 ∈ P(R) ∩ L∞(R) such that the two corresponding entropy
solutions ρ1 and ρ2 to (34) satisfy

d

dt
dp(ρ1(t, ·), ρ2(t, ·))

∣∣
t=0

> 0.

Proof. From the pseudo-inverse equation (14), we have that the pseudo inverse variables X1 = Xρ1 and X2 = Xρ2

satisfy

∂tXi(t, z) = v((∂zXi(t, z))
−1), (38)

with v(ρ) = f(ρ)/ρ. Now, consider

ρ1(x) = 1[0,1](x) , ρ2(x) =
1

2
1[0,2] .

The corresponding pseudo-inverses Xi = Xρi are given by

X1(z) = z , X2(z) = 2z .

Therefore, by using (38) we have

d

dt
dp(ρ1(t, ·), ρ2(t, ·))p

∣∣
t=0

=
d

dt

∫ 1

0

|X1(t, z)−X2(t, z)|pdz
∣∣
t=0

=

∫ 1

0

sgn(X1(z)−X2(z))|X1(z)−X2(t, z)|p−1
(
v(∂zX1(z)−1)− v(∂zX2(z)−1)

)
dz

= −
∫ 1

0

zp−1
(
v (1)− v

(
1

2

))
dz > 0 ,

in view of v being strictly decreasing. �

We remark that the use of Theorem 3.1 is not necessary here, since the two solutions ρ1 and ρ2 in the above
proof are explicitly computable.

The result in Theorem 6.2 reveals that the Wasserstein topology is not the best one to deal with conservation laws
(at least if one wants to prove a contraction property). The result in Theorem 6.1 says that a contraction property
holds in a transport distance which only accounts for global properties of solutions, since d∞(ρ1, ρ2) measures the
largest path needed to transport mass from ρ1 to ρ2. When the cost in the transport distance is local as in the case
of the dp’s with p < +∞, then no contraction property holds.

7. The nonlinear mobility approach: a microscopic viewpoint

The correct way to look at a scalar conservation law as a gradient flow is replacing the classical 2-Wasserstein
distance with an alternative transport distance with a nonlinear mobility, see [42, 24, 15]. We shall describe such
approach here. Already in [43] (see also [51]) the authors realized that this is the correct approach to a scalar
conservation law. However, similarly to what happens in section 4, their approach does not apply to probability
measures, but rather to a special class of solutions with limit zero at −∞ and limit 1 at +∞. We shall propose here
a strategy based on the Lagrangian particle approximation developed in [39], which somehow follows some ideas
proposed in an enlightening note written by Y. Brenier in 2000, see [9]. We shall start with a toy model description,
which is presented in a more general framework in [57], see also clear connections with typical problems of calculus
of variations arising in [14].

7.1. A finite dimensional ‘extended’ gradient flow. Let ` > 0 be fixed, and let n ∈ N. Let v : [0,+∞) → R
be a C1 strictly decreasing function. Consider the convex cone

Kn+1 = {X = (X0, . . . , Xn) ∈ Rn+1 , X0 < · · · < Xn}, .

With the notation P = (P0, . . . , Pn) ∈ Rn+1, consider the Lagrangian function L : Kn+1 × Rn+1 → R defined by

L(X,P ) =
`

2

n−1∑
i=0

1

v(Ri)
P 2
i +

`

2v(0)
P 2
n , Ri =

`

Xi+1 −Xi
. (39)

For X,Y ∈ Kn+1, we consider the action functional

A : C1([0, 1] ,Rn+1)→ R, , A[X] =

∫ 1

0

L(X(t), Ẋ(t)) dt ,
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and the cost functional

C(X,Y ) = inf
{
A[X] , X ∈ C1([0, 1] ,Kn+1) , X(0) = X , X(1) = Y

}
.

As last ingredient, let us consider the linear drift functional F : Kn+1 → R defined by

F (X) = −
n∑
i=0

`Xi.

In the simple case v(R) ≡ v(0) for all R ≥ 0, the cost functional C coincides with the weighted squared Euclidean
distance

C(X,Y ) =
`

v(0)
|X − Y |2.

Hence, for a given time step τ > 0, the optimality condition for the minimising scheme

Kn+1 3 Xk−1 7→ Xk = argmin

{
1

2τ
C(Xk−1, X) + F (X)

}
produces the implicit Euler approximation

Xk −Xk−1

τ
= −v(0)

`
∇F (Xk) = −v(0)

of the gradient flow equation

Ẋ(t) = −v(0). (40)

When v is non constant, the solution to the geodesic equation for A is more involved, and the above time-step
approximation is less obvious to obtain. As noticed in [9], a better way to obtain a generalized notion of gradient
flow in a distance induced by the action A is the following.

For a given T > 0, consider the penalised action

B : C1([0, T ] ,Kn+1)×Kn+1 → R , B[X(·), Y ] =

∫ T

0

L(X(t), Ẋ(t)) dt+ F [Y ] ,

and the value function

VT (X0) = inf
{
B[X(·), Y ] , (X(·), Y ) ∈ C1([0, T ] ,Kn+1)×Kn+1 , X(0) = X0 , X(T ) = Y

}
. (41)

The optimality conditions for the minimisation problem (41) are

d

dt
DpL(X, Ẋ) = DXL(Ẋ,X) , almost everyhere on [0, T ] , (42)

DpL(Y, Ẏ ) = −DY F [Y ] (43)

The set of conditions (42)-(43) and the condition X(0) = X0 can be interpreted as a second order differential
equation for X(t) on [0, T ] with two boundary conditions, i. e.

d
dtDpL(X(t), Ẋ(t)) = DXL(Ẋ(t), X(t)) t ∈ (0, T )

X(0) = X0

Dp(X(T ), Ẋ(T )) = −DF (X(T ))

(44)

In the spirit of the JKO scheme [45], the final time T in the Cauchy problem (44) should be interpreted as a small
time step. Hence, one needs to solve (44) with initial condition X(0) = X0, then repeat the procedure on t ∈ [T, 2T ]
with X(T ) as initial condition and the same final condition as in (44) at time 2T , and so on recursively on time
intervals t ∈ [kT, (k+ 1)T ]. This will define a sequence X0, X(T ), X(2T ), . . . , X(kT ) which is expected to converge
(upon a suitable interpolation) to a curve in Rn as T ↘ 0. Formally, the limit curve should satisfy the generalised
gradient flow equation

Dp(X(t), Ẋ(t)) = −DF (X(t)) . (45)

Before writing (45) explicitly, we point out that there is an alternative way to formally derive such an equation
by interpreting the Lagrangian function L as a Riemannian metric tensor, in the spirit of [52]. Let us write

L(X,P ) = gX(P, P ) , (46)

where, for a given X ∈ Kn+1 we have gX : Rn+1 × Rn+1 → R is the inner tensor product

gX(U, V ) =
1

2

n∑
i=0

ci(X)UiVi , ci(X) =

{
`

v(Ri)
i = 0, . . . , n− 1

`
v(0) i = N .
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We then consider the Riemannian manifold M having as tangent space on the point X ∈ Kn+1 the linear space
TXM given by Rn+1 equipped with the tensor product g above. Hence, the manifold M is naturally equipped with
the metric

d(X,Y ) = inf

{∫ 1

0

gX(t)(Ẋ(t), Ẋ(t))1/2dt , X(·) ∈ C1([0, 1] ,Kn+1) , X(0) = X , X(1) = Y

}
.

Now, for a given smooth functional F on M , the notion of gradient of F is uniquely defined as the vector field ∇F
on M with the property that ∇F (X) ∈ TXM for all X ∈ Kn+1 and such that

gX(∇F (X), U) = diffFX(t)(U) ,

where diffXF : TXM → R is the differential of F ,

diffXF (U) =

n∑
i=0

Ui ·
∂F

∂xi
, where U =

n∑
i=0

Ui
∂

∂xi
.

Then, the gradient flow t 7→ X(t) of the functional F on M is defined by

gX(t)(Ẋ, U) = gX(t)(−∇F (X(t)), U) , for all U ∈ C1([0,+∞) ; TM) such that U(t) ∈ TX(t)M , (47)

which in view of the above definitions can be rewritten as
n∑
i=0

ci(X)Ẋi(t)Ui = −
n∑
i=0

Ui
∂F

∂xi
(X(t)) , for arbitrary U ∈ C1([0,+∞) ; Rn+1) ,

and this yields

ci(X(t))Ẋi(t) = − ∂F
∂xi

(X(t)) . (48)

We note that

DPL(X(t), Ẋ(t)) = (ci(X)Ẋi(t))
n
i=1 ,

so that (48) is in fact the same as the generalised gradient flow equation (45).
We now compute explicitly

DPiL(X,P ) = `

(
1

v(R1)
P1, . . . ,

1

v(Rn−1)
Pn−1, Pn

)
.

Therefore, (45) can be written as the unique solution to the system of ODEs{
Ẋi(t) = v

(
`

Xi+1(t)−Xi(t)

)
i = 0, . . . , n− 1

Ẋn(t) = v(0),
(49)

which is known in the literature as the Follow-the-leader system, see [39]. Such a system can be interpreted as a
gradient flow on a non-flat metric. The agents tend to minimise F , i. e. they tend to maximise their barycenter
in the positive direction. On a ‘flat’ metric structure, they would simply move with a constant positive speed, see
(40). On the other hand, the presence of an agent Xi+1 before Xi changes the metric perception for the agent Xi,
and the latter is induced to move slower in a way which depends on the distance to Xi+1.

A major result in [39] is that the many particle limit of the system (49) with mass ` = `n = 1/n is given by the
unique entropy solution to the scalar conservation law (4) with f(ρ) = ρv(ρ) under the additional condition that v
is strictly increasing. This fact clearly suggests a gradient flow structure for a scalar conservation law, which should
be inherited as a many particle limit from the structure we described above in this subsection. We explain this
issue in the next subsection.

7.2. A generalised gradient flow structure for scalar conservation laws. The gradient flow structure found
in subsection 7.1 is inherited by its continuum n→ +∞ limit given by the scalar conservation law

ρt + (ρv(ρ))x = 0

in its Lagrangian formulation provided by Theorem 3.1

Xt = v

(
1

Xz

)
.

To see this (at least formally), we introduce the metric tensor

gX(U, V ) =

∫ 1

0

1

v(X−1z (z))
U(z)V (z)dz ,
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defined on the differential manifold

M =
{
X ∈ L2([0, 1]) : X is increasing

}
,

i. e. M is the interior of the convex cone K defined in section 3, with tangent space TXK = L2([0, 1]) for every
X ∈M .

We can therefore define the corresponding induced distance on M , i. e. for X0, X1 ∈M we have

dv(X0, X1) = inf

{∫ 1

0

∫ 1

0

1

v(X−1z (s, z))
U(s, z)2 dz ds , X ∈ C1([0, 1] ;M) , X(0) = X0 , X(1) = X1

}
,

which coincides, in its Eulerian formulation, to the generalised Wasserstein distance with nonlinear mobility

W (ρ0, ρ1) =

∫ {∫ 1

0

∫
R
m(ρ(s, x))w2(s, x) dx ds , ρs + (m(ρ)w)x = 0 , ρ(0, x) = ρ0(x) , ρ(1, x) = ρ1(x)

}
, (50)

with the nonlinear function

[0,+∞) 3 ρ 7→ m(ρ) = ρv(ρ)

called mobility function. Here X = Xρ according to the notation established in section 3. The class of distances
(50) has been studied in [42, 24, 15], together with their relation with certain applied PDEs in which a nonlinear
mobility effect is relevant in the dynamics, see e. g. [13] for chemotaxis movements.

Let us now consider the functional F : M → R

F [X] = −
∫
X(z)dz .

In order to define the generalised gradient flow of F with respect to the distance induced on M by the metric tensor
gX(U, V ) defined above, we use an argument similar to the one in subsection 7.1, i. e. the gradient flow t 7→ X(t)
of the functional F is defined by the ‘weak’ formulation

gX(t)(Xt, U) =

∫ 1

0

1

v (Xz(t, z)−1)
Xt(t, z)U(t, z) dz =

∫ 1

0

(∂F)[X(t)](z)U(t, z) dz , (51)

for all

U ∈
{
C1([0, 1], L2([0, 1])) , gX(t)(Xt, U) < +∞

}
.

the symbol ∂F ∈ L2([0, 1]) in (51) denotes the Frechét subdifferential of F , easily computed as

(∂F)[X](z) = 1 , for all z ∈ [0, 1] .

Due to the arbitrariness of U in (51), we have that the generalised gradient flow X(t, z) satisfies

Xt = v
(
Xz(t, z)

−1) ,
which is the Lagrangian formulation of the scalar conservation law ρt + (ρv(ρ))x = 0 according to Theorem 3.1.

Remark 7.1. The result in this section is, to a certain extent, formal. More precisely, one would like to construct
the solution to a scalar conservation law in a variational way in the spirit of [45]. This task could be performed by
taking the variational formulation in the discrete follow-the-leader case described in subsection 7.1, let the number
of particles n tend to infinity, use somehow the results in [39] and at the same time prove that the discrete metric
structure constructed in subsection 7.1 converges to the continuum one proposed in this subsection. This task will
be tackled in the future.

8. A semi-implicit approach

The approach proposed in section 7 shows that, in the language of gradient flows, the nonlinearity effects in a
scalar conservation laws are due to the metric structure, not to the driving functional. On the other hand, we show
here that the follow-the-leader system can also be expressed via a semi-implicit time discretisation which uses the
discrete version of the standard 2-Wasserstein distance.

Consider once again the n + 1-particle follow-the-leader system with fixed mass ` = 1/n > 0 of each particle, i.
e. Ẋi(t) = v

(
`

Xi+1(t)−Xi(t)

)
i = 0, . . . , n− 1

Ẋn(t) = v(0) .
(52)

Let x, y ∈ R. We set

V(x; y) =

∫ y

x

v

(
`

y − z

)
dz .
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We define the relative energy of the state X = (X0, . . . , Xn) ∈ Kn+1 with respect to the state Y = (Y0, . . . , Yn) ∈
Kn+1 as

R[X;Y ] =

n−1∑
i=0

`V(Xi;Yi+1)− v(0)`Xn . (53)

In the constant velocity case v(r) = c ∈ R, one simply has

R[X;Y ] =

n−1∑
i=0

`(Yi+1 −Xi)− v(0)`Xn ,

i. e. minimising R[X;Y ] means aiming at a shorter possible distance for a particle Xi, i < n, with respect to the
i + 1-th particle of a given reference distribution, whereas the n-th particle travels with speed v(0). We therefore
use the relative energy R to describe system (52) by a variational splitting method.

Let τ > 0 be a given time step. For a given initial state X0 = (x̄0, . . . , x̄n) ∈ Rn and a given state Xk−1 =
(xk−1,0, . . . , xk−1,n) at time (k − 1)τ , we define recursively Xk = (xk,0, . . . , xk,n) as

Xk = argmin

{
1

2τ
d(X,Xk−1)2 +R[X;Xk−1] , X ∈ Rn+1

}
, (54)

where we are using the notation

d(X,Y )2 =

n∑
i=0

`|Xi − Yi|2 .

The scheme (54) is defined in the spirit of a semi-implicit version of the JKO scheme which was used for the first
time in [36] for a system of nonlocal interaction equations. This strategy allows to use a JKO type strategy for a
system without a neat gradient flow structure, for which a non autonomous version of a gradient flow is possible
for short times by ‘freezing’ some terms in the system. A simple computation yields the following Euler-Lagrange
equations for the scheme (54)

Xk,i −Xk−1,i

τ
= v

(
`

Xk−1,i+1 −Xk,i

)
, i = 0, . . . , n− 1 , (55)

Xk,n −Xk−1,n

τ
= v(0) (56)

for all k ∈ N. It is immediately seen that (55)-(56) is a semi-implicity Euler discretisation of the system (52). By
definition of minimum in (54), we get

1

2τ
d(Xk, Xk−1)2 ≤ R(Xk−1, Xk−1)−R(Xk, Xk−1)

= `

n−1∑
i=0

[V(Xk−1,i;Xk−1,i+1)− V(Xk,i;Xk−1,i+1)]− `v(0)(Xk−1,n −Xk,n)

= `

n−1∑
i=0

∫ Xk,i

Xk−1,i

v

(
`

Xk−1,i+1 − z

)
dz − `v(0)(Xk−1,n −Xk,n)

≤ 1

4τ
d(Xk, Xk−1)2 τ‖v‖L∞ ,

which yields, in the spirit of [2, Chapter 3],

d(Xk, Xh)2 ≤ 2(k − h)2τ2‖v‖2L∞ ,

and, given T > 0 and the piecewise interpolation

Xτ : [0, T ] 7→ L2([0, 1]) , Xτ (t) =

n−1∑
i=0

Xk,i1[i`,(i+1)`) , for t ∈ [(k − 1)τ, kτ) , k = 1, . . . , [T/τ ] ,

we have

‖Xτ (t)−Xτ (s)‖L2([0,1]) ≤ ‖v‖L∞(|t− s|+ o(1)) , as τ ↘ 0 ,

which, by a suitable generalisation of Arzelá-Ascoli (see [2, Chapter 3]) implies that the family Xτ has a strong
limit (up to a subsequence) X ∈ C([0, T ];L2([0, 1])).

An important feature in the computations above is that the compactness estimates are independent of the number
of particles n, which suggests the possibility that this result could be stretched to the n→ +∞ case. However, the
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n→ +∞ is quite tricky here, since the formal n→ +∞ behaviour of the scheme would be described by the formal
equation

Xt = v

(
1

Xz − τ
`Xt

)
,

in which τ/` stands for the n→ +∞ limit of this ratio. Hence, a tricky CFL condition may arise in the limit. We
leave the identification of the n→ +∞ limit of this semi-implicit scheme as an open problem for future work.

9. Coupling with diffusion terms and other results

As we said in the introduction, one of the first questions posed by the experts in Wasserstein gradient flows
concerned with the possibility of considering a nonlinear convection term coupled with a diffusion operator in such
a way to obtain a contraction property in some Wasserstein space, at least in one space dimension with the help
of the pseudo-inverse approach recalled in section 3. The first result in this direction was proven in [21], and it is
about an equation of the form

ρt = (ρm)xx + (ρq)x

under the assumption q > m+ 1, which implies that the diffusion term is dominant in the large time asymptotics,
and therefore the convection term only plays a role of a small perturbation (for large times) of the diffusion operator.
The first Lipschitz continuity property in a Wasserstein space of the semigroup generated by a convection-diffusion
operator in a regime in which both effects are relevant in the time-asymptotics is that of [37] on the viscous Burgers’
equation

ρt = ρxx + ρρx ,

in which a quasi contraction estimate is obtained by means of the Hopf-Cole transformation. Hinted by the results
in [17], in [18] the authors provide a contraction result in the∞-Wasserstein distance for a large class of convection-
diffusion equations using a splitting method. We also mention the result in [41], which found an algebraic rate of
convergence toward N -waves by means of the same time dependent scaling strategy considered in [27].

This subject was not considered for some years, until it was partly revived in [38]. In that paper the authors
consider a special class of convection diffusion equation of the form

ρt = (ρ(a(x)ρm−1)x)x, (57)

which is the formal gradient flow of the functional

F[ρ] =
1

m

∫
a(x)ρm dx .

The main result of [38] proves that entropy solutions to (57) can be obtained as solutions to the JKO scheme of the
functional F. This results links for the first time the notion of entropy solution in the sense of Kruzkov with the
notion of gradient flow in the Wasserstein sense.

We finally mention that the use of the pseudo-inverse equation to study the well-posedness (in a measure sense)
of a heterogeneous conservation law arising in the context of Bose-Einstein condensates was performed recently in
[19].
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Appendix A. Proof of Theorem 3.1

It is well known (cf. e.g. [33, Chapter 11]) that the primitive variable

F (t, x) =

∫ x

−∞
ρ(t, y)dy

of ρ entropy solution to (4) is a viscosity solution to the Hamilton-Jacobi equation

Ft + f(Fx) = 0. (58)

Now, standard results on the SBV regularity of scalar conservation laws with genuinely nonlinear flux, cf. [1, 5],
imply that ρ has jumps on countably many Lipschitz curves of the form γi : [0,+∞) → R, i ∈ N, and features
SBV regularity elsewhere, i.e. ρx has no Cantor part between two consecutive curves γi and γi+1. On each region
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Figure 1. The idea behind the proof of (59). The bold curve is the initial condition F0 on the (x, z) plane. The
solution F = F (t, x) to (35), computed via (36), is the convex envelop of a set of ‘parabolas’. It is plotted ‘locally’

near a point x0 ∈ R. For a given z0 ∈ [0, 1], the value of X(t, z0) is clearly seen as the supremum over a set of

‘inverse parabolas’ centered at (y, F0(y)), with y ∈ R. Only the parabolas with F0(y) ≤ z are affected.

Ii between γi and γi+1, the primitive variable is W 1,∞ with respect to x, the Hamilton-Jacobi equation (58) is
satisfied almost everywhere, and Ft is well defined almost everywhere. This implies that the pseudo-inverse

X(t, z) = inf{x ∈ R : F (t, x) > z}
is piecewise smooth with respect to z for a fixed t on each interval z ∈ Ji(t) = (F (t, γi(t)), F (t, γi+1(t))), with (at
most) countably many increasing jumps on Ji due to the possible vacuum regions of ρ(t, ·) in Ii. Summing up,
the set [0,+∞) × [0, L] (with L being the total mass of ρ) can be split in a sequence {Kj}j of pair-wise disjoint
sets of the form Kj =

⋃
t≥0Hj(t), with Hj(t) being a subinterval of [0, L] moving continuously in time. On the

interior of each set Kj , ρ is strictly positive, which implies F is strictly increasing with respect to x, and therefore
the pseudo-inverse X(t, z) satisfies

Xt = v(X−1z )

as explained in subsection 3.1. The proof is complete, since the set on which the above equation is possibly not
satisfied has zero Lebesgue measure.

Appendix B. A dual expression of Lax-Hopf formula

We provide here a sketch of the proof of the formula (37), and refer to [17, Lemma 2.3] for the details.
The first step in the proof is

X(t, z) = sup
{y∈R : F0(y)≤z}

{
x : tf∗

(
x− y
t

)
+ F0(y) = z

}
. (59)

We outline the main ideas behind (59) in figure 1. The graph of z = F (t, x) in the (x, z) plane is obtained as an
infimum of a set of parabolas centered at (y, F0(y)) with y ranging on the real line. The width of the parabolas
gets larger with time. Since F0 is increasing, only the positive branches of the parabolas contribute to the value of
F (t, x). Now, if we fix a z0 ∈ [0, 1], the value of X(t, z0) is obtained as the supremum as in the formula (59).

Once (59) is proven, we can invert the formula tf∗
(
x−y
t

)
+ F0(y) = z with respect to x and get

x = y + tg

(
z − F0(y)

t

)
, (60)

due to the fact that f∗ is invertible on [0,+∞). Hence, for a given z ∈ [0, 1], the value X(t, z) is determined by
taking the supremum of all x in (60), where only the y such that F0(y) ≤ z are involved. This is still easily seen
from figure 1.



20 MARCO DI FRANCESCO

References

[1] L. Ambrosio and C. De Lellis. A note on admissible solutions of 1d scalar conservation laws and 2d hamilton-jacobi equations. J.
Hyperbolic Diff. Equ., 1(4):813–826, 2004.
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