I Corsi di Laurea Magistrale in Ingegneria e Modellistica Matematica a L'Aquila

PER UNA CARRIERA NEL SETTORE RICERCA E SVILUPPO

ALL'INSEGNA DELL'INNOVAZIONE

IN UN CONTESTO INTERNAZIONALE

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Università degli Studi dell'Aquila

L'OFFERTA UNIVAQ NELLA CLASSE LM44: MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA A.A. 2020-2021

1) Laurea Magistrale in Ingegneria Matematica

- Offerta integralmente in lingua inglese
- > Attiva fin dall'Anno Accademico 2006-2007
- > Tre percorsi nell'ambito del calcolo scientifico avanzato ed applicazioni
- > Dal 2020-2021: nuovo percorso con applicazioni alla biologia e alla medicina

2) Laurea Magistrale in Modellistica Matematica

- Laurea Interateneo. Prevede soggiorni obbligatori nelle sedi partner:
 - Università di Amburgo (Germania)
 - Università Politecnica di Vienna (Austria)
 - Università della Costa Azzurra, Nizza (Francia)
- Laurea di nuova istituzione: attiva dall'Anno Accademico 2019-2020
- Cinque percorsi nell'ambito di modellistica e simulazione dei sistemi complessi

LE PAROLE CHIAVE DEI DUE CORSI DI STUDIO:

- CALCOLO SCIENTIFICO AVANZATO - MODELLISTICA MATEMATICA - OTTIMIZZAZIONE - SISTEMI COMPLESSI

CALCOLO SCIENTIFICO AVANZATO

Si occupa di

- ☐ Progettazione
- ☐ Sviluppo
- Analisi
- ☐ Implementazione

di algoritmi per la risoluzione di problemi e modelli matematici, nel «discreto» e nel «continuo»

(Sfondo: la macchina di calcolo parallelo ad alte prestazioni CALIBAN, presso il DISIM)

CALCOLO SCIENTIFICO AVANZATO

Si applica

- ☐ nell'ingegneria industriale:
 - √ Stabilità di strutture
 - √ Simulazioni aero-dinamiche
 - ✓ Ottimizzazione di reattori chimici

CALCOLO SCIENTIFICO AVANZATO

Si applica

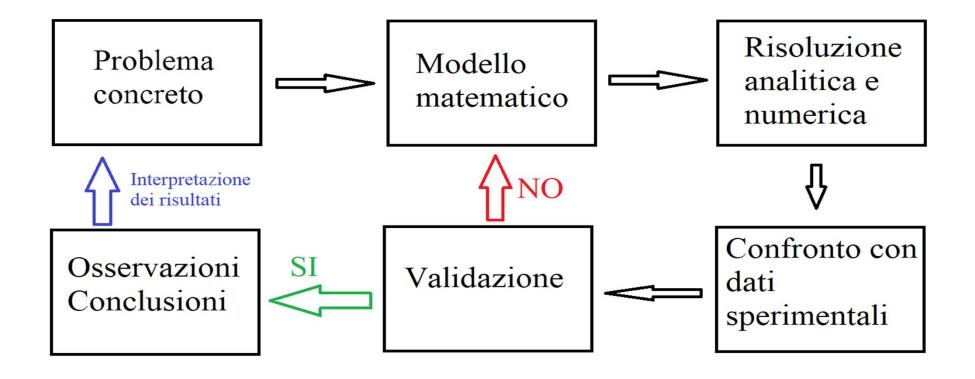
- nello studio dei sistemi complessi:
 - ✓ Dinamiche dei mercati finanziari
 - ✓ Modelli comportamentali nelle scienze sociali
 - ✓ Dinamiche del traffico stradale
 - ✓ Modellistica sulle reti

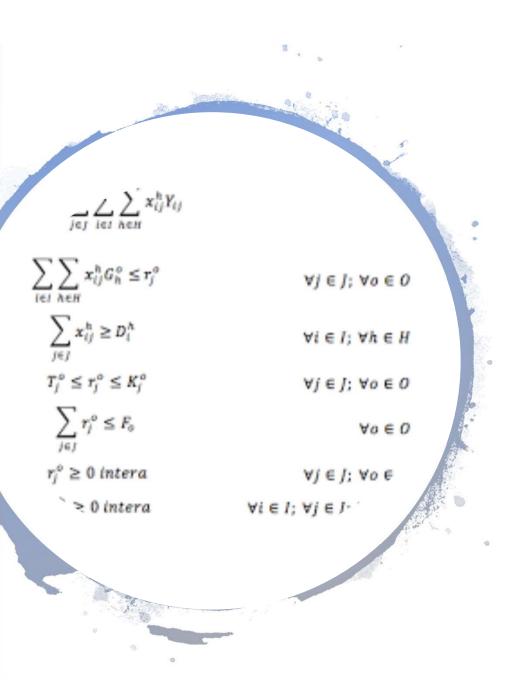
Modellistica Matematica

Utilizza complessi sistemi di equazioni differenziali per risolvere problemi dinamici in vari contesti.

Tali equazioni vengono risolte mediante

- Approccio analitico
- Approccio numerico

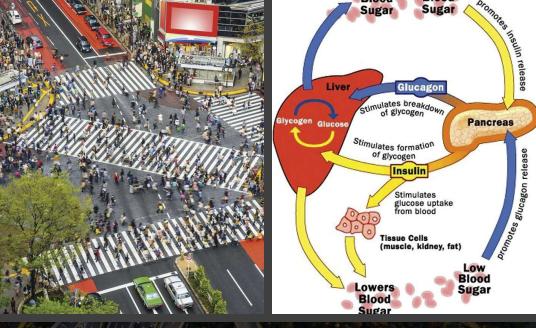

$$\left(\frac{dx_i}{dt} = v_i, \quad i = 1, \dots, N, \right)$$


$$\frac{dv_i}{dt} = \frac{1}{N} \sum_{j=1}^{N} \psi(x_i - x_j) (v_i)$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P \mathbf{I}) = 0$$

 $\frac{\partial E^t}{\partial t} + \nabla \cdot \left[\mathbf{u} \left(E^t + P \right) \right] = 0$

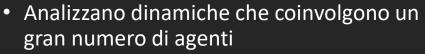
Modello matematico



OTTIMIZZAZIONE DISCRETA

Si applica a problemi decisionali e di pianificazione a vari livelli di complessità mediante

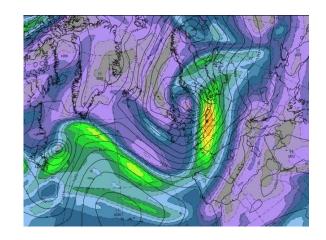
- Ottimizzazione combinatoria
- Scheduling delle operazioni
- Ottimizzazione su networks

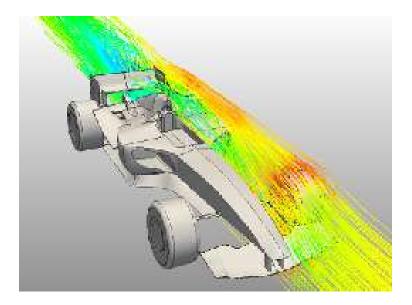


SISTEMI COMPLESSI

- Sono sistemi dinamici multi-componente
- Sono presenti in contesti interdisciplinari (scienze sociali, medicina, trasporti)
- Vengono studiati con tecniche di simulazione e controllo

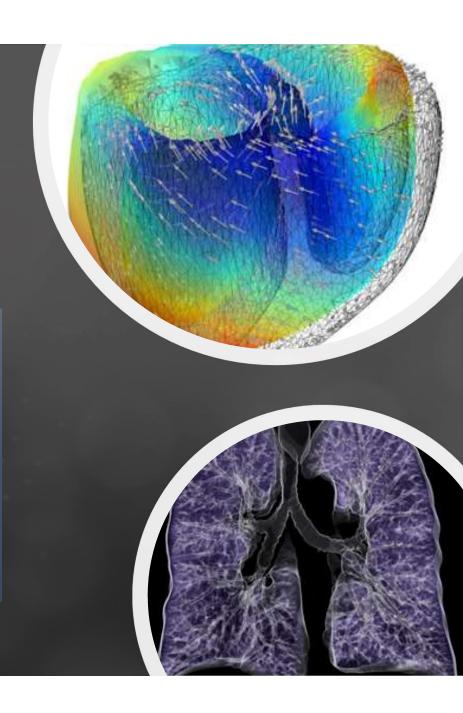
Modelli multi-agente




- Prevedono l'utilizzo di modelli "discreti" e "continui", studiando la loro interconnessione
- Permettono di comprendere e prevedere fenomeni di "emergence" o di "comportamento collettivo"

FLUIDO-DINAMICA COMPUTAZIONALE

- Utilizza equazioni differenziali alle derivate parziali
- Le equazioni vengono risolte mediante complessi metodi numerici
- I risultati si applicano a vari settori dell'ingegneria e della fisica



La matematica nelle scienze biomediche

- Sviluppo di strumenti diagnostici mediante elaborazione di immagini con modelli matematici
- Comprensione della genesi e della evoluzione di tumori
- Analisi della diffusione di epidemie
- Studio delle patologie neurologiche mediante modelli differenziali e cinetici
- Studio quantitativo delle dinamiche dell'apparato cardiocircolatorio

L'OFFERTA DI INGEGNERIA MATEMATICA E MODELLISTICA MATEMATICA A L'AQUILA: UNA STORIA EUROPEA DI SUCCESSO

Il programma di eccellenza «MathMods»

Mathematical modeling in engineering: theory, numerics, applications

- ☐ Percorso di eccellenza Europeo di Ingegneria Matematica, coordinato da UnivAq
- ☐ Marchio «Erasmus Mundus» rilasciato dalla Commissione Europea dal 2008
- ☐ Circa 400 laureati dal 2008 in poi
- ☐ Studenti provenienti da oltre 40 paesi diversi nel mondo
- ☐ Percorso di studi in comune con altre università europee:
 - ✓ Università di Amburgo
 - ✓ Politecnico di Vienna
 - √ Università Autonoma di Barcellona
 - ✓ Università di Nizza e Sophia-Antipolis
- Coordinato dal DISIM UnivAq

Il Consorzio «InterMaths»

A joint Master Programme in Applied and Interdisciplinary Mathematics

- Coordinato da UnivAq
- ☐ Comprende:
 - Università di Karlstad (Svezia)
 - Politecnico di Brno (Rep. Ceca)
 - Università della Silesia a Katowice (Polonia)
 - Politecnico di Danzica (Polonia)
 - Università statale Ivan Franko di Leopoli (Ucraina)
 - Università statale V. N. Kharazin di Kharkiv (Ucraina)
 - Università statale Taras Schevchenko di Kiev (Ucraina)
 - Università statale I.I. Mechnikov di Odessa (Ucraina)
- ☐ Prevede un anno a L'Aquila e un anno in una università partner
- ☐ Prevede rilascio del «doppio titolo»

Trend immatricolazioni e laureati per Ingegneria Matematica

Dati estratti il 4 settembre 2019

Classe di laurea	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19
Numero iscritti 1° anno	45	50	48	53	55	79	63
Numero laureati	31	35	41	40	49	50	32 (Dati parziali)
Numero totale degli iscritti	90	101	102	108	117	139	144
Numero medio annuo CFU/studente	49,8	46,5	52,8	55,0	53,8	56,8	44,7 (Dati parziali)
% iscritti al 2° anno (tasso di permanenza fra I e II anno)	86,7%	82,0%	93,8%	96,2%	90,9%	92,4%	
% laureati con voto superiore a 105	54,8%	51,4%	46,3%	22,5%	40,8%	40,0%	31,3% (Dati parziali)
% iscritti al 2° anno con almeno 40 CFU	75,6%	76,0%	91,7%	96,2%	89,1%	88,6%	111,1% (Dati parziali)
Quota % di studenti in corso	84,4%	89,1%	88,2%	91,7%	90,6%	92,8%	95,1%
Quota % di studenti attivi (con almeno un CFU acquisito)	93,3%	78,2%	83,3%	86,1%	86,3%	66,9%	53,5% (Dati parziali)
Quota % studenti attivi iscritti al 1° anno	91,1%	86,0%	100,0%	86,8%	94,5%	68,4%	93,7% (Dati parziali)

- Le cifre comprendono anche gli iscritti ai programmi «MathMods» ed «InterMaths»
- La stima degli iscritti al primo anno per l'A.A. 19/20 è di 72 (includendo anche la nuova magistrale)

- ❖ Nel corso del 2019 il MIUR ha approvato l'istituzione della nuova laurea magistrale interateneo «Mathematical Modelling» a L'Aquila
- Essa affianca la già esistente laurea magistrale «Ingegneria Matematica»
- Mathematical Modelling prevede il rilascio di un titolo congiunto con
 - Università di Amburgo
 - Politecnico di Vienna
 - Università della Costa Azzurra
- Mathematical Modelling comprende tutti i percorsi del programma Europeo di eccellenza «MathMods»
- ❖ I percorsi del Consorzio «InterMaths» sono inquadrati all'interno di Ingegneria Matematica

Tre orientamenti:

- Advanced scientific computing and statistical methods
- ☐ Scientific computing and modern applications
- ☐ Mathematical modelling in biology and medicine

TOTALE CFU PER AMBITI FORMATIVI PRIMO ANNO:

B1: Caratterizzanti - Discipline matematiche, fisiche e informatiche	27
B2: Caratterizzanti – Discipline ingegneristiche	15
C: Affini e integrative	9
D: A scelta dello studente	6
E: Prova finale	0
F1: Ulteriori conoscenze linguistiche	6
F3: Tirocini formativi e di orientamento	0
F4: Altre conoscenze utili per l'inserimento nel modo del lavoro	3
TOTALE PRIMO ANNO	66

La tabella è soggetta a cambiamenti a seconda del piano di studi

Orientamento:

ADVANCED SCIENTIFIC COMPUTING AND STATISTICAL METHODS

Primo anno

	Insegnamento	Codice	SSD	CFU	CFU - Ambito	Sem.
	Advanced differential equations (C.I.)	DT0503				
	Modulo: Applied partial differential equations	I0183	MAT/05	6	12 - B1	I
	Modulo: Dynamical systems and bifurcation theory	I0459	MAT/05	6		I
	Control systems	I0062	ING-INF/04	6	6 - B2	I
	Functional analysis in applied mathematics and engineering	10051	MAT/05	9	9 - B1	I
ELTA A	Advanced English listening and speaking [1]	DT0331	L-LIN/12	3	3 - F1	
A SCELTA TRA	Italian language and culture for foreigners (level A1) [1]	10059	L-FIL-LET/12	3	3-11	I
	Advanced Data Science (C.I.)	DT0504				
	Modulo: Data Analytics and Data Mining	DT0279	ING-INF/05	6	12 - B2	II
	Modulo: Big Data Models and Algorithms [5]	DT0317	ING-INF/05	6		II
	Numerical methods for linear algebra and optimisation	DT0312	MAT/08	6	6 - C	II
	Parallel computing [4]	DT0256	MAT/08	3	3 - C	II
	Parallel computing laboratory [3] [4]	DT0506	MAT/08	3	3 - F4	II
LTA	Complex analysis	DT0112	MAT/05	6	6 70	II
A SCELTA TRA	Combinatorics and cryptography	DT0051	MAT/02	6	6 - B1	II
Y.	Stochastic processes	DT0052	MAT/06	6		II
SCELTA TRA	Stochastic Modelling and Simulations	DT0438	MAT/07	6	6 - D	II
AS	Mathematical Models of macroscopic systems	DT0513	MAT/07	6		
A SCELTA TRA	Advanced English reading and writing [2]	DT0330	L-LIN/12	3	3 - F1	II
A SC TI	Italian language and culture for foreigners (level A2) [2]	I0181	L-FIL-LET/12	3	3-14	II

Orientamento:

ADVANCED SCIENTIFIC COMPUTING AND STATISTICAL METHODS

Secondo anno

- Il secondo anno può essere svolto in una delle sedi del Consorzio «InterMaths»
 - ✓ Università della Silesia, Katowice (Polonia)
 - ✓ Università statale Ivan Franko, Leopoli (Ucraina)
- L'intero biennio può essere svolto a L'Aquila
- Il secondo anno a L'Aquila prevede corsi a scelta tra cui:
 - Modeling and control of networked distributed systems
 - High performance computing and applications to differential equations
 - Advanced analysis
 - Time series and prediction
 - Stochastic processes
 - Mathematical models for collective behavior
 - Combinatorics and cryptography
 - Network optimisation

Orientamento:

SCIENTIFIC COMPUTING AND MODERN APPLICATIONS

Primo anno

			Insegnamento	Codice	SSD	CFU	CFU - Ambito	Sem.
		Adv	vanced differential equations (C.I.)	DT0503				
		Modulo:	Applied partial differential equations	I0183	MAT/05	6	12 - B1	I
		Modulo:	Dynamical systems and bifurcation theory	10459	MAT/05	6	12 - 51	Ι
			Control systems	10062	ING-INF/04	6	6 - B2	I
		in ap	Functional analysis plied mathematics and engineering	I0051	MAT/05	9	9 - B1	Ι
LTA	٨	Advan	Advanced English listening and speaking [1] DT0330 -		3	3 - F1	т	
A SCELTA	TRA	Italian language and culture for foreigners (level A1) [1]		10059	-	3	3-11	I
		Disc	rete and continuum mechanics with applications [3]	DT0446	ICAR/08	9	9 - B2	II
			Parallel computing [5]	DT0256	MAT/08	3	3 - C	II
		Pa	arallel computing laboratory [4] [5]	DT0506	-	3	3 - F4	II
_			Complex analysis [6]	DT0112	MAT/05	6	6 - B1	II
LTA	A	Nume	erical methods for linear algebra and optimisation	DT0312	MAT/08	6	6 - C	
A SCELTA	TRA	Stochastic processes		DT0052	MAT/06	6	0-0	II
SCELTA	TRA	Co	ombinatorics and cryptography [7]	DT0051	MAT/02	6	6 - D	II
A SC	A SCI	Stock	nastic Modelling and Simulations [7]	DT0438	MAT/07	6	0 - D	II
SCELTA	TRA	Adva	nced English reading and writing [2]	DT0331	-	3	3 - F1	II
A SC	TF	Italiaı	n language and culture for foreigners (level A2) [2]	I0181	-	3	3-11	II

Orientamento:

SCIENTIFIC COMPUTING AND MODERN APPLICATIONS

Secondo anno

- Il secondo anno può essere svolto in una delle sedi del Consorzio «InterMaths»
 - ✓ Università di Karlstad (Svezia)
 - ✓ Politecnico di Danzica (Polonia)
 - ✓ Politecnico di Brno (Rep. Ceca)
- o L'intero biennio può essere svolto a L'Aquila
- Il secondo anno a L'Aquila prevede corsi a scelta tra cui:
 - Mathematical fluid dynamics
 - Machine learning
 - Data analytics and data mining
 - Advanced analysis
 - Mathematical models for collective behavior
 - Modelling seismic wave propagation
 - Workshop of mathematical modelling
 - Mathematical economics and finance

Orientamento:

MATHEMATICAL MODELLING IN BIOLOGY AND MEDICINE

Primo anno

	Insegnamento	Codice	SSD	CFU	CFU - Ambito	Sem.
	Advanced differential equations (C.I.)	DT0503				
	Modulo: Applied partial differential equations [1]	I0183	MAT/05	6	12 - B1	I
	Modulo: Dynamical systems and bifurcation theory [1]	I0459	MAT/05	6		I
	Control systems	I0062	ING-INF/04	6	6 - B2	I
	Functional analysis in applied mathematics and engineering	I0051	MAT/05	9	9 - B1	I
ELTA A	Advanced English listening and speaking [2]	DT0549	L-LIN/12	3	2 E1	I
A SCELTA TRA	Italian language and culture for foreigners (level A1) [2]	10059	L-FIL- LET/12	3	3 - F1	I
	Numerical methods for differential equations	DT0307	MAT/08	6	6 - C	II
A	Systems biology	DT0067	ING-INF/04	6	6 - B2	II
12 CFU A SCELTA TRA	Bio Informatics [4]	DT0205	ING-INF/05	6	6 – B2	II
SCE	Data Analytics and data mining [4]	DT0279	ING-INF/05	6	6 – B2	II
	Mathematical Models and Simulations in Epidemics	DT0609	MAT/07	6	6 – D	II
	Epidemics modelling laboratory	DT0610	MAT/08	3	3 – F4	II
A SCELTA TRA	Advanced English reading and writing [3]	DT0330	L-LIN/12	3	3 - F1	II
A SC TF	Italian language and culture for foreigners (level A2) [3]	DT0548	L-FIL- LET/12	3	5-11	II

Orientamento:

MATHEMATICAL MODELLING IN BIOLOGY AND MEDICINE

Secondo anno

	Insegnamento	Codice	SSD	CFU - Ambito	Sem.
	Advanced Analysis	DT0114	MAT/05	6-B1	I
	Mathematical fluid and biofluid dynamics	DT0611	ING-IND/06	9 – B2	I
	Biomathematics	DT0262	MAT/05	6 – D	I
	Mathematical control methods in life science	DT0612	MAT/05	3 – D	I
	Numerical methods for stochastic modelling	DT0613	MAT/08	3 – C	I
6 CFU A SCELTA TRA	Mathematical Modelling in Cellular Biology	DT0614	MAT/08	3 – C	I
	Computer modelling and simulation of biomolecules	DF0106	CHIM/07	6 – C	II
SC	Time series and prediction	DT0104	SECS-P/05	6 – C	I
	Experimental training and training seminars	I0479		15 - F3	II
	Master's thesis (C.I.): Modulo: DT0327 Master's thesis preparation (14 CFU) Modulo: DT0328 Master's thesis defense (1 CFU)	DT0329		15 - E	II

Laurea Magistrale in Modellistica matematica

Struttura:

- Primo semestre a L'Aquila
- Secondo semestre in una delle due sedi consorziate:
 - Università di Amburgo
 - Politecnico di Vienna
- Secondo anno in una delle tre sedi
- Quarto semester interamente dedicato alla tesi, con possibilità di tesi in azienda

- Cinque indirizzi per il secondo anno:
 - ❖ ADVANCED MODELLING AND NUMERICS FOR APPLIED PARTIAL DIFFERENTIAL EQUATIONS,

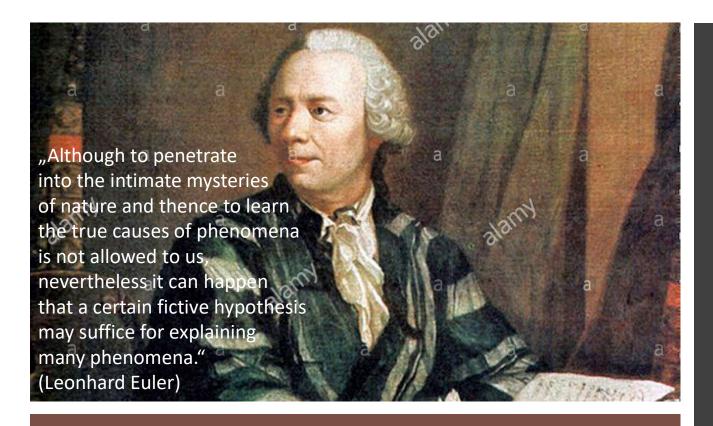
 Politecnico di Vienna
 - MATHEMATICAL MODELLING AND OPTIMISATION,
 Università degli studi dell'Aquila
 - ❖ AGENT-BASED MODELLING AND TRANSPORT PHENOMENA,

Università degli studi dell'Aquila

♦ MODELLING AND SIMULATION OF COMPLEX SYSTEMS,

<u>Università di Amburgo</u>

STOCHASTIC MODELLING WITH APPLICATIONS, Università della Costa Azzurra


Per maggiori informazioni: www.mathmods.eu

Schema riassuntivo di Mathematical Modelling

WHEN	WHAT	WHERE	
Semester 1	Theory	UAQ, Italy	
Semester 2	Numerics	TUW, Austria	
Semester 2	Numerics	UHH, Germany	
	Applications	1 of our partners	
	Mathematical models in social sciences	UAQ - Italy	
Semester 3	Mathematical modelling and optimisation	UAQ, Italy	
Semester 3	Modelling and simulation of complex systems	UHH, Germany	
	Mathematical modelling with applications to finance	UCA, France	
	Advanced modelling and numerics for applied PDEs	TUW, Austria	
Semester 4	Thesis	Same as Semester 3	

Ingegneria Industriale Settore Finanziario e Assicurativo Ambito Biomedico-Farmaceutico Laboratori di Calcolo in vari settori Dottorato di ricerca o Insegnamento

L'ingegnere/modellista matematico: una figura professionale «trasversale»

- ☐ Le competenze dell'ingegnere matematico e del modellista matematico sono spendibili in vari contesti
- ☐ Si tratta di una figura versatile, capace di collaborare con esperti di settore apportando elementi innovativi e di carattere interdisciplinare
- ☐ Sa formulare problemi sotto forma di oggetti matematici e possiede un ampio spettro di conoscenze per la loro risoluzione
- ☐ Conosce più matematica di un normale ingegnere e sa applicarla in ogni contesto
- ☐ Ha sviluppato un gusto per la modelizzazione matematica, sa pensare in termini astratti e al tempo stesso fa i conti con aspetti concreti
- ☐ Sa fornire una soluzione in tempi ragionevoli e con costi computazionali contenuti

Esempi di sbocchi lavorativi per i laureati magistrali in

Ingegneria Matematica

e

Modellistica Matematica

- ✓ Laboratori di calcolo di grande e medie aziende
- ✓ Società di servizi, banche, assicurazioni, finanziarie
- ✓ Aziende impegnate nella realizzazione di progetti industriali innovativi che richiedono competenze computazionali o statistiche
- ✓ Società produttrici di software scientifici per la simulazione e modellazione
- ✓ Società manifatturiere che producono e integrano sistemi complessi

- ✓ Società di produzione di beni industriali
- ✓ Società di consulenza
- ✓ Aziende impegnate in ricerca e sviluppo nei settori farmaceutico e biomedico
- ✓ Enti e laboratori di ricerca pubblici e privati
- ✓ Industrie che operano nel settore della mobilità sostenibile
- ✓ Dottorato di ricerca presso università italiane o estere

ABILITAZIONE ALL'INSEGNAMENTO NELLE SCUOLE

Le due lauree magistrali Ingegneria Matematica e Modellistica matematica permettono l'accesso alle classi:

A-20 (ex A038 A049) - Fisica

A-26 (ex A047 A049) - Matematica

A-27 (ex A038 A047 A049) - Matematica e Fisica

A-28 (ex A059) - Matematica e scienze

A-33 (ex A014 A053 A055) - Scienze e tecnologie aeronautiche

A-41 (ex A042) - Scienze e tecnologie informatiche

A-43 (ex A056) - Scienze e tecnologie nautiche

A-47 (ex A048 A049) - Scienze matematiche applicate

E' possibile adattare il piano di studi all'inserimento dei 24 CFU di indirizzo «didattico» necessari per il conseguimento dell'abilitazione

Consultare il sito www.mathmods.eu per il programma «MathMods»

Per maggiori informazioni:

Consultare il sito
www.intermaths.eu per il
programma «InterMaths»

Contattare il presidente del corso di studi, Prof. Marco Di Francesco marco.difrancesco@univaq.it

Immagini utilizzate dai seguenti siti web:

- Daily.jstor.org
- Miro.medium.com
- Anylogic.com
- Researchgate.org (pubblicazione di A. De Gaetano et al., Advances in Difference Equations, 2017)
- <u>Pbs.twimg.com</u>
- Simscale.com
- Windpowerengineering.com
- ceriumnetworks.com
- https://www.birmingham.ac.uk/university/colleges/eps/outreach/engineering/aerospace.aspx
- https://www.iottechnews.com/news/2017/mar/23/gartner-muses-importance-algorithms-industry-40-projects/
- www.wikipedia.it
- https://sergioperezresearch.wordpress.com
- https://core.ac.uk
- https://eps.leeds.ac.uk/maths-statistics/doc/probability-financial-mathematics