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Abstract. We study a system of two continuity equations with nonlocal velocity fields using
interaction potentials of both attractive and repulsive Morse type. Such a system is of interest in
many contexts in multi-population modelling. We prove existence, uniqueness and stability in the
2-Wasserstein spaces of probability measures via Jordan-Kinderlehrer-Otto scheme and gradient
flow solutions in the spirit of the Ambrosio-Gigli-Savaré theory. We then formulate a deterministic
particle scheme for this model and prove that gradient flow solutions are obtained in the many
particle limit by discrete densities constructed out of moving particles satisfying a suitable system
of ODEs. The ODE system is formulated in a non standard way in order to bypass the Lipschitz
singularity of the kernel, with difference quotients of the kernel replacing its derivative.

1. Introduction

Nonlocal aggregation-diffusion equations of the form

∂tρ = div(ρ∇(a(ρ) +W ∗ ρ)) (1)

arise as a natural modelling tool in many contexts of science and technology in which local and
nonlocal interactions among many particles or agents is considered. Examples of their application
may be found in the modelling of swarms [28], in cellular biology [23], in the modelling of crowd
dynamics [12], in the physics of granular media [24], in material sciences [20], in population biology
[26], and in ecology [6]. In some of the above mentioned applications, the use of aggregation-diffusion
equations is directly justified to describe a given phenomenon. In other cases, equations of the form
(1) may be obtained as suitable scaling limits of more complex models (for example of fluid dynamic
type models). Very often these models are recovered via a micro-to-macro limit procedure which is
not always rigorously justified, thus motivating a deeper analysis of such a limit.

The mathematical literature on nonlocal aggregation-diffusion equations is extremely rich, and an
exhaustive list of references would make this introductory chapter unnecessarily long. We mention
here some of the main references for the existence theory, both in a classical functional analytical
approach [3, 4] and in the context of Wasserstein gradient flows [1, 9, 10]. The formulation and
solution of these models without diffusion (that is, with a = 0 in (1)) is often very helpful to
understand the mathematical properties of the nonlocal aggregation part, especially in those cases
in which the aggregation kernel W features some singularities. This is quite often the case especially
in biological aggregation modelling and in population dynamics. Those singularities often result in
the formation of concentrations in finite times [21]. This makes the analysis of these models more
challenging and motivates their study in the framework of measure solutions. We mention here the
results in [7, 9] as examples of well-posedness theories obtained in presence of aggregation kernels
featuring various sorts of singularities.
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Among the various aggregation kernels W used in (1) featuring a (mild) singularity, we mention
the Morse kernel

W (x) = ±1

2
e−|x|, (2)

which is particularly interesting in some applications in swarms dynamics and population biology,
see [26]. The plus sign in W models repulsive interaction whereas the minus sign models attractive
interaction. The attractive case is particularly challenging since it yields finite time blow-up of
solutions, see [3, 9]. The repulsive case is part of the theory in [3] in case of Lp initial data. For
the one-dimensional repulsive case in the case of initial data in the space of probability measures
we refer to the recent [16].

An argument in favour of the use of nonlocal aggregation-diffusion equations is the fact that
(at least formally) they feature a discrete formulation in the spirit of multi agent systems. More
precisely, solutions to equations or systems of the form (1) may often be approximated by time-
depending measures or densities constructed out of moving agents, or moving particles, solving a
system of ODEs or SDEs. In the case a = 0, a natural candidate as discrete counterpart of (1) is
the ODE system

ẋi(t) = − 1

N

N∑
j=1

∇W (xi(t)− xj(t)) , i = 1, . . . , N , (3)

which describes the movement of N agents with positions xi(t), i = 1, . . . , N . To see this, we
observe that (3) may be formally written as

ẋi(t) = −(∇W ∗ µN (t))(xi(t)) , µN =
1

N

N∑
k=1

δxk(t)

and the above is a natural Lagrangian formulation of the continuity equation (1) in the case a = 0,
with the continuum density ρ replaced by the empirical measure µN .

Extensions to many species for these kind of systems have been introduced in various contexts,
justified by concrete instances occurring in crowd dynamics [2], chemotaxis modelling [19], multi-
species populations [11], and opinion formation [18]. We refer to [13] for a general mathematical
theory of two-species models of the form{

∂tρ = div(ρ∇(a(ρ, η) +W11 ∗ ρ+W12 ∗ η)),
∂tη = div(η∇(b(ρ, η) +W21 ∗ ρ+W22 ∗ η)),

under suitable degenerate parabolicity conditions, see also the earlier [15] for the case without
diffusion. A case which was not included in the above theories is the one in which (some of) the
kernels Wij feature a repulsive Lipschitz singularity, i.e., they behave like −|x| near zero. Partly
inspired by a previous result in the one species case in [5], the papers [8, 14] dealt with this case in
one space dimension, both for the existence with measure initial condition and with respect to the
many particle approximation.

In this paper we contribute to this line of research by considering the case of two species, with the
interaction kernels Wij being of Morse type (2), with a repulsive drift for agents of the same species
(repulsive self-interaction) and an attractive one for opposite species (attractive cross-interaction).
Hence, we consider the one-dimensional model{

∂tρ = ∂x(ρ(W
′ ∗ ρ−W ′ ∗ η)),

∂tη = ∂x(η(W
′ ∗ η −W ′ ∗ ρ)),

(4)
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for (t, x) ∈ (0,+∞)× R, with W given by the Morse interaction potential

W (x) =
1

2
e−|x| , (5)

equipped with the initial datum {
ρ(0, x) = ρ0(x),

η(0, x) = η0(x),

for x ∈ R. The unknown is a pair of densities (ρ(t, x), η(t, x)), modelling two interacting species.
We require ρ0, η0 to be probability measures on R. Additionally, we impose ρ0, η0 ∈ Lp(R) for some
p ∈ (1,+∞]. We recall that W ≥ 0, W is even, and

´
RW (x) dx = 1. Moreover, W satisfies the

elliptic law

W ′′(x) =W (x)− δ0 in D′(R), (6)

where δ0 is the Dirac delta measure centered at 0. Following the strategy adopted in [8], we
prove existence and uniqueness of gradient flow solutions in the 2-Wasserstein space. As usual in
this framework, these solutions are constructed by means of the Jordan-Kinderlehrer-Otto (JKO)
scheme [22], which is based on a variational formulation of the problem (4) which uses the functional

E[(ρ, η)] =
1

2

¨
R2

W (x− y) dρ(x) dρ(y) +
1

2

¨
R2

W (x− y) dη(x) dη(y)

−
¨

R2

W (x− y) dρ(x) dη(y)

and the 2-Wasserstein metric structure of the space of probability measures with finite second
moment. Such a structure results into a gradient flow formulation in the spirit of [1]. The novel
part with respect to the general result of [15] is that the functional E does not result from potentials
which are all convex up to a quadratic perturbation. Indeed, the repulsive cross-interaction terms
in the functional result from the repulsive potential W which is not convex up to a quadratic
perturbation in view of the decreasing jump of its gradient at the origin. A similar cases was
considered in [8], but with the Newtonian potential, the analysis of which is made very specific
by the fact that the drift of each agent is determined by computing cumulative masses of each
species at the agent’s position. The case of the Morse potential brings some additional difficulties
which motivate a study of its own. We will perform this task and obtain existence, uniqueness, and
stability of gradient flow solutions for (4).

Then, we analyse the problem of approximating the solutions to (4) via deterministic interacting
particles in the spirit of (3). In the one species case and with a smooth interaction potential the
main reference to this problem is a classical paper by Dobrušin [17]. For mildly singular and λ-
convex potentials we refer to [1, 9]. The case of the one-dimensional Newtonian potential (both
repulsive and attractive) was treated in [5]. We refer to the first part of the recent [16] for the one
species case with the repulsive Morse potential. For the two species case, the result with smooth
and mildly singular potentials is part of the results in [15]. The case of singular potentials was
treated in [7]. The recent [14] studies this problem for a two species system of the form (4) with
W (x) = −|x|.

Following the approach of the aforementioned papers, assuming that both species are made up
by N +1 particles (but only N of them carry some mass), whose locations are labeled by xi for the
first species and yj for the second one, as i, j = 0, . . . , N , the (perhaps) most natural deterministic
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particle approximation of (4) would be
ẋi = −

∑
k ̸=i

mkW
′(xi − xk) +

∑
k

nkW
′(xi − yk),

ẏj = −
∑
k ̸=j

nkW
′(yj − yk) +

∑
k

mkW
′(yj − xk).

(7)

In the system above, mk > 0 are the masses of the particles of the first species and nk > 0 are the
masses of the particles of the second species. However, in our particle approximation scheme all
masses will be required to be equal to 1/N . In this framework, both species have the same total
mass for simplicity.

In (7) the derivative W is not defined at zero and this brings additional difficulties in case one
has to deal with particles colliding in a finite time. Therefore, inspired by the recent [16] for
the one-species case (see also the previous [27]), we will instead consider the alternative particle
approximation scheme

ẋi =
1

N

N−1∑
k=0

W (xk+1 − xi)−W (xk − xi)

xk+1 − xk
− 1

N

N−1∑
k=0

W (yk+1 − xi)−W (yk − xi)

yk+1 − yk
,

ẏj =
1

N

N−1∑
k=0

W (yk+1 − yj)−W (yk − yj)

yk+1 − yk
− 1

N

N−1∑
k=0

W (xk+1 − yj)−W (xk − yj)

xk+1 − xk
,

(8)

in which the derivatives of W are replaced by suitably chosen difference quotients. This formulation
of the particle scheme has the advantage of simplifying the proof of the consistency of the scheme in
the many particle N → +∞ limit. We remark that the discontinuity of the potential W requires at
least some weak Lp estimates on the discrete density in order to prove consistency. We also observe
that, unlike other cases (e.g. when W is smooth) the many particle limit is not a consequence of
the stability in the 2-Wasserstein distance of gradient flow solutions (which we will prove anyhow)
because in this case it is not guaranteed that atomic initial data will produce atomic solutions for
all times. The convergence of (8) towards (4) requires uniform estimates on the particle system
which are non trivial extensions of what was done in [14]. Indeed, in the latter the computation of
the drift acting on each particle xi was obtained by simply counting the number of particles of each
species on the left and on the right of xi. However, we will be able to get our result by borrowing
some of the ideas in [16] in the one species case.

The paper is structured as follows.

• In Section 2 we analyse the problem of existence, uniqueness, and stability of gradient flow
solutions for (4). More in detail, in Subsection 2.1 we introduce the main tools we use in
optimal transport and gradient flows. and we state the main result of this Section in Theorem
2.1. In Subsection 2.2 we prove our main result. The proof uses some convexity property
of the functional E (Subsubsection 2.2.1), the construction via JKO scheme (Subsubsection
2.2.2), and the so-called flow-interchange technique introduced in [25] (Subsubsection 2.2.3).
The proof is concluded in Subsubsection 2.2.4.

• In Section 3 we analyse the deterministic particle approximation of (4) via (8). More
precisely, in Subsection 3.1 we prove that no collisions occur for particles of the same species,
whereas there may be collisions between particles of opposite species. Subsection 3.2 is
devoted to the main Lp estimate for the scheme (8). Subsection 3.3 is devoted to the proof
of Theorem 3.1 in which the many particle limit result is stated.
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2. Existence and uniqueness of gradient flow solutions

2.1. Preliminaries and statement of the well-posedness result. All concepts defined in this
subsection are taken from the book [1]. We denote by P(Rn) the space of probability measures on
Rn and by P2(Rn) the subspace of probability measures with finite second moment, i.e.,

P2(Rn) =

{
µ ∈ P(Rn) :

ˆ
Rn

|x|2 dµ(x) < +∞
}
.

If µ ∈ P(Rn) and T : Rn → Rm is a Borel map, we denote by

ν = T#µ , ν ∈ P(Rm) ,

the push-forward measure of µ through the map T , which is defined as

ν(A) = µ(T−1(A)),

for all Borel sets A ⊂ Rm. The map T is called a transport map pushing the measure µ to the
measure ν. We further restrict to the one-dimensional case for simplicity. The 2-Wasserstein
distance is defined on P2(R)× P2(R) as

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

¨
R×R

|x− y|2 dγ(x, y)
)1/2

, (9)

for all µ, ν ∈ P2(R), where Γ(µ, ν) is the class of transport plans between µ and ν, i.e.,

Γ(µ, ν) = {γ ∈ P(R× R) : π1#γ = µ,Fπ2#γ = ν},

and πi : R×R → R, i = 1, 2, is the projection operator on the i-th component of the product space
R×R. Denoting by Γo(µ, ν) the class of optimal plans between µ and ν, namely the minimizers of
(9), the 2-Wasserstein distance can be rewritten as

W 2
2 (µ, ν) =

¨
R×R

|x− y|2 dγ(x, y),

for all γ ∈ Γo(µ, ν). The existence of optimal plans is guaranteed by Prokhorov’s Theorem, see
e.g. [1]. The pair (P2(R),W2) is a complete metric space. Finally, we denote by Pa

2(R) the set of
probability measures with finite second moment that are absolutely continuous with respect to the
Lebesgue measure.

Since we are dealing with two interacting species in the one-dimensional space, in this subection
we adapt the above definitions to the product space P2(R)2, which we equip with the 2-Wasserstein
product distance defined by

W2
2(µ,ν) =W 2

2 (µ1, ν1) +W 2
2 (µ2, ν2),

for all µ = (µ1, µ2),ν = (ν1, ν2) ∈ P2(R)2. Furthermore, given µ = (µ1, µ2), we set L2(µ) =
L2(dµ1)× L2(dµ2) and

∥v∥2L2(µ) =

ˆ
R
v21(x) dµ1(x) +

ˆ
R
v22(x) dµ2(x),

for v = (v1, v2) ∈ L2(µ).
Considering µ = (µ1, µ2), ν = (ν1, ν2) ∈ P2(R)2, a constant speed geodesics connecting µ and ν

is a curve γt : [0, 1] → P2(R)2, with γt = (γ1t , γ
2
t ) given by

γ1t = ((1− t)π1 + tπ2)#γ1 and γ2t = ((1− t)π1 + tπ2)#γ2, (10)

where γ1 ∈ Γo(µ1, ν1), and γ2 ∈ Γo(µ2, ν2).
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Definition 2.1 (λ-convexity along geodesics). Let λ ∈ R, and let ϕ : P2(R)2 → (−∞,∞] be a
proper functional. We say that ϕ is λ-geodesically convex (or simply λ-convex) on P2(R)2 if for
any µ,ν ∈ P2(R)2 there exists a constant speed geodesic γt as in (10) such that, for all t ∈ [0, 1],

ϕ(γt) ≤ (1− t)ϕ(µ) + tϕ(ν)− λ

2
t(1− t)W2

2(µ,ν).

Definition 2.2 (k-flow). A semigroup Sϕ : [0,∞]×P2(R)2 → P2(R)2 is a k-flow for the functional
ϕ : P2(R)2 → (−∞,∞] with respect to the 2-Wasserstein distance W2 if, for any µ ∈ P2(R)2, the
curve t 7→ St

ϕµ is absolutely continuous on [0,∞[ and satisfies the evolution variational inequality
(E.V.I.)

1

2

d+

dt
W2

2(S
t
ϕµ,ν) +

k

2
W2

2(S
t
ϕµ,ν) ≤ ϕ(ν)− ϕ(St

ϕµ),

for all t > 0 and for any measure ν ∈ P2(R)2 with ϕ(ν) <∞.

Let γt ∈ AC([0,∞);P2(R)2) be an absolutely continuous curve on P2(R)2. Its metric derivative
is defined as

|γ ′
t|(t) := lim sup

h→0

W2(γt+h,γt)

|h|
,

and it exists almost everywhere due to the absolutely continuity of γt, see [1].

Definition 2.3 (Fréchet sub-differential in P2(R)2f). Let ϕ : P2(R)2 → (−∞,∞] be a proper and
lower semi-continuous functional. Let µ = (µ1, µ2) ∈ P2(R)2. A vector field v = (v1, v2) ∈ L2(µ)
belongs to the Fréchet sub-differential of ϕ at µ, denoted by ∂ϕ(µ), if

ϕ(ν)− ϕ(µ) ≥ inf
γi∈Γo(µi,νi)

ˆ
R2×R2

[v1(x1)(y1 − x1) + v2(x2)(y2 − x2)] dγ1(x1, y1) dγ2(x2, y2)

+ o(W2
2(µ,ν)),

for all ν ∈ P2(R)2. Furthermore, if ∂ϕ(µ) ̸= ∅, ∂0ϕ(µ) denotes the element of minimal L2(µ)-norm
in ∂ϕ(µ).

We observe that ∂ϕ(µ) is a closed and convex subset of L2(µ), and consequently ∂0ϕ(µ) is
(uniquely) well defined.

If ϕ : Pa
2(R)2 → (−∞,∞] is λ-convex, for any µ ∈ D(ϕ) we define the metric slope as, cf. [1],

|∂ϕ|(µ) = lim sup
µ→ν

(ϕ(µ)− ϕ(ν))+

W2(µ,ν)
,

that is finite if and only if ∂ϕ(µ) ̸= ∅. Moreover, the metric slope can be rewritten as

|∂ϕ|(µ) = min{∥v∥L2(µ) : v ∈ ∂ϕ(µ)} .

An absolute continuous curve γ(t) : [0, T ] → Pa
2(R)2 is a curve of maximal slope for ϕ if the map

t 7→ ϕ(γ(t)) is absolute continuous and it holds

ϕ(γ(s))− ϕ(γ(t)) ≥ 1

2

ˆ t

s

[
|γ ′|2(σ) + |∂ϕ|2[γ(σ)]

]
dσ,

for all 0 ≤ s ≤ t ≤ T .
We now consider the functional

E[(ρ, η)] =
1

2

¨
R2

W (x− y) dρ(x) dρ(y) +
1

2

¨
R2

W (x− y) dη(x) dη(y)

−
¨

R2

W (x− y) dρ(x) dη(y).

(11)
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As mentioned in the introduction, (4) is the formal gradient flow of E in the 2-Wasserstein product
space structure. The concept of gradient flows may be formulated in many equivalent ways (under
suitable conditions on the functional), including the above defined concept of curve of maximal
slope. Following [1], we formalise this concept in the Definition below.

Definition 2.4 (Gradient flow solution). Let γ0 = (ρ0, η0) ∈ Pa
2(R)2. An absolutely continuous

curve γ(t, ·) = (ρ(t, ·), η(t, ·)) : [0, T ] → Pa
2(R)2 is a gradient flow solution to (4) if ρ(t, ·) and η(t, ·)

solve {
∂tρ(t, x) + ∂x(ρ(t, x)v(t, x)) = 0,

∂tη(t, x) + ∂x(η(t, x)w(t, x)) = 0,

in the distributional sense, with initial datum γ0, where the velocity field b(t, x) = (v(t, x), w(t, x))
satisfies

bi(t, ·) = −(∂0E[γ(t)])i

for i = 1, 2, and

∥b(t, ·)∥L2(γ(t)) = |γ ′|(t),

for a.e. t > 0.

The main result of this section is the following Theorem.

Theorem 2.1. Let T > 0 be fixed and m ∈ (1,∞]. Assume (ρ0, η0) ∈ (P2(R) ∩ Lm(R))2. Then,
there exists a unique gradient flow solution (ρ, η) ∈ AC([0, T ]; (P2(R) ∩ Lm(R))2) to system (4) in
the sense of Definition 2.4. Moreover, the pair (ρ, η) satisfies the properties

ˆ
R
|x|2[ρ(t, x) + η(t, x)] dx ≤ eCt

ˆ
R
|x|2[ρ0(x) + η0(x)] dx,

∥ρ(t, ·)∥Lm(R) + ∥η(t, ·)∥Lm(R) ≤ CeCt
(
∥ρ0∥Lm(R) + ∥η0∥Lm(R)

)
,

for t ∈ [0, T ], and for some constant C > 0 independent of t. Finally, if γ1 = (ρ1, η1) and
γ2 = (ρ2, η2) are two gradient flow solutions to (4) with initial conditions γ1

0 and γ2
0 respectively,

the following stability estimate holds

W2(γ
1(t, ·),γ2(t, ·)) ≤ e

t
2W2(γ

1
0 , γ

2
0), (12)

for all t ∈ [0, T ].

2.2. Proof of Theorem 2.1. In order to prove existence and uniqueness of solutions to system (4)
in the sense of Definition 2.4, we essentially follow the strategy used in [8] for the case of Newtonian
interactions. More precisely,

• we start by providing some properties on the interaction energy functional (11), and in
particular we characterise the (unique) element of minimal L2-norm of its sub-differential;

• we construct our solution as the limit of the so-called JKO scheme, see [22];
• using the so-called flow interchange technique, see [25], we prove some further properties of

the limiting curve, in particular a uniform-in-time control on the second order moment and
on the Lp norm for an initial condition in Lp;

• we deduce that the limit of the JKO scheme is a curve of maximal slope, i.e., a gradient
flow solution, due to some results in [1];

• the λ-convexity property implies a stability estimate in the 2-Wasserstein space and conse-
quently the uniqueness of solutions.
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2.2.1. λ-convexity of the functional.

Proposition 2.1. The functional E in (11) is λ-geodesically convex on Pa
2(R) × Pa

2(R) for all
λ ≤ −1/2. Furthermore, setting

(∂0W ∗ µ)(x) =
ˆ
y ̸=x

W ′(x− y) dµ(y),

for µ ∈ P2(R), the vector field

∂0E[(ρ, η)] =

(
∂0W ∗ ρ− ∂0W ∗ η
∂0W ∗ η − ∂0W ∗ ρ

)
(13)

is the unique element of minimal L2-norm in the sub-differential of E.

Proof. We write

E[(ρ, η)] = H(ρ) +H(η) +B[(ρ, η)],

with

H(ρ) :=
1

2

¨
R×R

W (x− y) dρ(x) dρ(y),

H(η) :=
1

2

¨
R×R

W (x− y) dη(x) dη(y),

B[(ρ, η)] :=

¨
R×R

(−W )(x− y) dρ(x) dη(y).

The Morse potential W (x) in (5) can be split as follows:

W (x) = S(x) +N(x)

with

N(x) =
1

2
(1− |x|), S(x) =

1

2
(e−|x| + |x| − 1).

The function N(x) (usually referred to as the Newtonian potential in 1d) has a Lipschitz singularity
at the origin, whereas the function S(x) satisfies S′′(x) = W (x) and therefore S belongs to W 2,∞.
Hence, the functional H is 0-convex seen as a functional on P2(R), and hence as a functional on
P(R)2 as well. Concerning the cross term B, since −W is −1-convex, arguing as in [8, Proposition
4] (see also [15, Proposition 3.1]), we get the −1/2-geodesic convexity of B with λ = −1/2 because
the singular part is 0-convex (since −N is convex) and the smooth part has second derivative with
minimum equal to −1/2. Hence, E is −1/2-convex. In order to prove that the right-hand side of
(13) belongs to the sub-differential of E at (ρ, η), by using the additivity of the sub-differential, it
is sufficient to show that

∂0W ∗ ρ ∈ ∂H(ρ), ∂0W ∗ η ∈ ∂H(η),

(
∂0W ∗ η
∂0W ∗ ρ

)
∈ ∂B[(ρ, η)].

Notice that the first two inclusions are meant in the usual one-species sense. These inclusions follow
by splitting the Morse potential as W (x) = N(x)+S(x) as above, and using both [5, Theorem 5.1]
for the singular part and the regularity of S and classical results in [1] for the smooth part. Finally,
in order to prove that ∂0E is the unique element of minimal L2-norm of the sub-differential of E,
one can proceed as in [9, Proposition 2.2], see also [1, Theorem 10.4.11]. □
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2.2.2. JKO scheme. Let τ > 0 be fixed. Assume that γ0 = (ρ0, η0) ∈ Pa
2(R) × Pa

2(R) is the initial
datum and E[γ0] < ∞. We define recursively the sequence {γn

τ }n∈N = {(ρnτ , ηnτ )}n∈N in P2(R)2 as
follows:

γ0
τ = γ0,

γn+1
τ ∈ argmin

{
1

2τ
W2

2(γ
n
τ ,γ) + E(γ), γ ∈ Pa

2(R)2
}
. (14)

Let T > 0 and N = ⌈Tτ ⌉. We define the interpolation of the sequence {γn
τ }n=0,...,N as the piecewise

constant curve
γτ (t) = γn

τ , (15)
for t ∈ ((n− 1)τ, nτ ], as 1 ≤ n ≤ N − 1. We now want to prove that the family of curves {γτ}τ>0

is compact in a suitable sense. To this aim, we will use a refined version of Ascoli-Arzelà theorem,
see [1, Proposition 3.3.1].

Proposition 2.2. Let T > 0. The family {γτ}τ>0 defined in (15) admits a subsequence {γτk}k∈N,
with τk ↘ 0, converging to an absolutely continuous curve γ : [0, T ] → P2(R)2 uniformly in t ∈ [0, T ]
with values in the narrow topology, as k → ∞.

Proof. Considering two consecutive iterations γn
τ and γn+1

τ , since γn+1
τ fulfils (14), it holds that

1

2τ
W2

2(γ
n
τ ,γ

n+1
τ ) ≤ E[γn

τ ]− E[γn+1
τ ],

thus
E[γn

τ ] ≤ E[γ0], (16)
for all n ∈ N. Taking m < n and summing over k from m to n− 1, we get

1

2τ

n−1∑
k=m

W2
2(γ

k
τ ,γ

k+1
τ ) ≤ E[γm

τ ]− E[γn
τ ].

Considering the definition of E and applying Hölder’s inequality and Young’s inequality for convo-
lutions, we are able to control E[γn

t ] from below by means of a constant C depending on ∥W∥L∞(R).
Therefore, using (16), we have

1

2τ

n−1∑
k=m

W2
2(γ

k
τ ,γ

k+1
τ ) ≤ E[γ0] + C =: C(γ0, ∥W∥L∞(R)). (17)

Now take m < n and 0 ≤ s < t, with s ∈ ((m − 1)τ,mτ ] and t ∈ ((n − 1)τ, nτ ]. By using the
inequality (17), we obtain

W2
2(γτ (s),γτ (t)) = W2

2(γ
m
τ ,γ

n
τ ) ≤

[ n−1∑
k=m

W2(γ
k
τ ,γ

k+1
τ )

]2
≤ (n−m)

n−1∑
k=m

W2
2(γ

k
τ ,γ

k+1
τ ).

For s = 0, we deduce
W2

2(γ0,γτ (t)) ≤ C(γ0, T, ∥W∥L∞(R)),

that implies that the second moment of γτ (t) is uniformly bounded on [0, T ], which implies the
image of [0, T ] via the family of curves γτ is compact in the narrow topology. Moreover, since
|n−m| < |t−s|

τ + 1, from (17) we deduce that γτ is 1/2-Hölder equi-continuous, indeed

W2(γτ (s),γτ (t)) ≤ |n−m|1/2
( n−1∑

k=m

W2
2(γ

k
τ ,γ

k+1
τ )

)1/2

≤ c(
√
|t− s|+

√
τ),

9



for some c > 0. Thus,
lim sup
τ→0+

W2(γτ (s),γτ (t)) ≤ ω(s, t),

where ω(s, t) = c
√
|t− s| is a symmetric function on [0, T ]× [0, T ], and lim(s,t)→(r,r) ω(s, t) = 0 for

all r ∈ [0, T ]. By applying [1, Proposition 3.3.1], the statement is proven. □

2.2.3. Flow interchange. We now want to prove that the curve γ obtained in Proposition 2.2 is a
gradient flow solution to (4) in the sense of Definition 2.4. To this aim, it is sufficient to show that
γ is a curve of maximal slope since, from [1, Theorem 11.1.3], curves of maximal slope coincide with
gradient flow solutions in the sense of Definition 2.4 for λ-convex functionals. We adopt the flow
interchange strategy, proposed in [25], that is, we consider some auxiliary gradient flows to estimate
the dissipation of some other energy functionals we want to control. In particular, we will use this
technique twice: first to find a uniform bound in time on the second order moment of γ, then to
obtain Lm-regularity for γ, as m > 1.

We first consider the decoupled system{
∂tu1 = ∂x(2xu1),

∂tu2 = ∂x(2xu2),
(18)

that can be seen as the gradient flow of

G(u1, u2) =

ˆ
R
|x|2(u1(x) + u2(x)) dx,

with respect to the 2-Wasserstein distance W2. Denoting by SG = (SG1 , S
G
2) the semigroup generated

by system (18), we know that SG is a λ-flow for the functional G for all λ ≥ 0. We define the
dissipation of E along SG as

DGE(γ) = lim sup
h↓0

E(γ)− E(SGhγ)

h
,

for all γ = (ρ, η) ∈ Pa
2(R)× Pa

2(R). Consider the continuity equation

∂tζ − ∂x(2xζ) = 0, (19)

with the initial datum ζ(t = 0) = ζ0. Following [1, Chapter 8], we can associate to (19) to flow map
Φt : R → R that is the solution to the ODE model{

ẋ(t) = −2x,

x(t = 0) = x0,

i.e., Φt(x0) = x0e
−2t, and the solution to (19) can be represented as

ζ(t, x) = (Φt)#ζ0,

namely ζ is the push-forward of the initial datum through the flow map Φ.

Proposition 2.3. Let T > 0 be fixed. Let γ0 = (ρ0, η0) ∈ Pa
2(R)2 be such that G[γ0] < +∞. Then,

the piecewise constant interpolation γτ = (ρτ , ητ ) satisfiesˆ
R
|x|2[ρτ (t, x) + ητ (t, x)] dx ≤ eCt

ˆ
R
|x|2[ρ0(x) + η0(x)] dx,

for any t ∈ [0, T ], with C > 0 a constant independent of t and τ . Moreover, the limit γ has bounded
second order moment uniformly in [0, T ].

10



Proof. Since γn+1
τ is defined as in (14), it holds that

1

2τ
W2

2(γ
n+1
τ ,γn

τ ) + E(γn+1
τ ) ≤ 1

2τ
W2

2(S
G
hγ

n+1
τ ,γn

τ ) + E(SGhγ
n+1
τ ),

for all h > 0. Considering the definition of dissipation of E along SG, dividing by h > 0 and taking
the lim sup as h ↓ 0, we obtain

τDGE(γn+1
τ ) ≤ 1

2

d+

dt

(
W2

2(S
G
t γ

n+1
τ ,γn

τ )

)∣∣∣∣
t=0

≤ G(γn
τ )− G(γn+1

τ ),

where the last inequality follows by the fact that SG is a 0-flow for G. Concerning the dissipation of
E along SG, we get

DGE(γn+1
τ ) = lim sup

h↓0

E(γn+1
τ )− E(SGhγ

n+1
τ )

h
= lim sup

h↓0

ˆ 1

0

(
− d

dz

∣∣∣∣
z=ht

E(SGzγ
n+1
τ )

)
dt. (20)

Estimating the energy functional E along the solution SGt γ
n+1
τ to (18), we get

E(SGt γ
n+1
τ ) = E[(SG1,tρ

n+1
τ , SG2,tη

n+1
τ )] = E[((Φt)#ρ

n+1
τ , (Φt)#η

n+1
τ )]

=
1

2

¨
R2

W (x− y) d((Φt)#ρ
n+1
τ )(y) d((Φt)#ρ

n+1
τ )(x)

+
1

2

¨
R2

W (x− y) d((Φt)#η
n+1
τ )(x) d((Φt)#η

n+1
τ )(y)

−
¨

R2

W (x− y) d((Φt)#η
n+1
τ )(y) d((Φt)#ρ

n+1
τ )(x)

=
1

2

¨
R2

W (x− y) d((Φt)#ρ
n+1
τ − (Φt)#η

n+1
τ )(y) d((Φt)#ρ

n+1
τ − (Φt)#η

n+1
τ )(x)

=
1

2

¨
R2

W (Φt(x)− Φt(y)) d(ρ
n+1
τ − ηn+1

τ )(y) d(ρn+1
τ − ηn+1

τ )(x)

=
1

2

¨
R2

W ((x− y)e−2t) d(ρn+1
τ − ηn+1

τ )(y) d(ρn+1
τ − ηn+1

τ )(x)

=
1

2

¨
R2

e−|x−y|e−2t
d(ρn+1

τ − ηn+1
τ )(y) d(ρn+1

τ − ηn+1
τ )(x).

We now have to compute the derivative with respect to time at t = 0. To this end, we consider the
difference quotient and the Taylor expansion of e−|x−y|e−2t in t = 0 and observe that the ratio

E(SGt γ
n+1
τ )− E(γn+1

τ )

t

can be passed to the t ↘ 0 limit due to Lebesgue dominated convergence’s theorem. Hence, we
deduce

d

dt
E(SGt γ

n+1
τ )

∣∣∣∣
t=0

=

¨
R2

|x− y|e−|x−y| d(ρn+1
τ − ηn+1

τ )(y) d(ρn+1
τ − ηn+1

τ )(x).

Since e−|x−y| ≤ 1 and, by construction, γn+1
τ ∈ Pa

2(R)× Pa
2(R), by Hölder’s inequality and Young’s

inequality, we end up with

d

dt
E(SGt γ

n+1
τ )

∣∣∣∣
t=0

≤ C

[ˆ
R
|x|2

(
ρn+1
τ (x) + ηn+1

τ (x)
)
dx

]
= CG(γn+1

τ ),

where C is a positive constant. We deduce from (20)

(1− Cτ)G(γn+1
τ ) ≤ G(γn

τ ),
11



and by iteration it holds that

G(γn
τ ) ≤

(
1

1− Cτ

)n

G(γ0),

for all n ∈ N. Since τ = T/n we obtain for large n (or small τ)(
1

1− Cτ

)n

=

[(
1

1− C T
n

) n
T
]T

∼ eCT ,

and thus ˆ
R
|x|2[ρnτ (x) + ηnτ (x)] dx ≤ eCT

ˆ
R
|x|2[ρ0(x) + η0(x)] dx.

It follows ˆ
R
|x|2[ρτ (t, x) + ητ (t, x)] dx ≤ eCT

ˆ
R
|x|2[ρ0(x) + η0(x)] dx,

for all t ∈ [0, T ], thus the subsequence {γτk}k∈N obtained in Proposition 2.2 has second moment
bounded uniformly in [0, T ], and this holds also for its limit γ, due to the weak lower semi-continuity
of the second moment w.r.t. narrow convergence. □

We now consider the decoupled system{
∂tu1 = ∂xxu

m
1 + ε∂xxu1,

∂tu2 = ∂xxu
m
2 + ε∂xxu2,

(21)

as the gradient flow of the functional

F(u1, u2) =
1

m− 1

ˆ
R
[u1(x)

m + u2(x)
m] dx+ ε

ˆ
R
[u1(x) log u1(x) + u2(x) log u2(x)] dx, (22)

with ε > 0 andm ∈ (1,∞), with respect the 2-Wasserstein distance W2. We denote by SF = (SF1 , S
F
2 )

the semigroup generated by system (21), which is well known to be a 0-flow for the functional F,
see [1]. For γ = (ρ, η) ∈ Pa

2(R)× Pa
2(R), we define the dissipation of E along SF as

DFE(γ) = lim sup
h↓0

E(γ)− E(SFhγ)

h
.

In the following proposition we prove that if the initial datum is regular, namely γ0 ∈ (Pa
2(R) ∩

Lm(R))2, then the piecewise constant interpolation γτ keeps this regularity in time.

Lemma 2.1. For an arbitrary ρ ∈ P2(R), there exists a positive constant c > 0 such thatˆ
R
ρ(log ρ+ c|x|2) dx ≥ 0 .

Proof. Let c be a constant we will choose later. For a general ρ ∈ P2(R), a straightforward compu-
tation yields ˆ

R
ρ(log ρ+ c|x|2) dx =

ˆ
R
ρ(log ρ− log e−c|x|2) dx

=

ˆ
R

ρ

e−c|x|2 log
ρ

e−c|x|2 e
−c|x|2 dx =

ˆ
R
e−c|x|2h log h dx

=

ˆ
R
ψ(h)e−c|x|2 dx ≥ 0,

since ψ(h) := h log h − h + 1 ≥ 0, where h = ρ/e−c|x|2 , and the constant c is chosen such that´
R e

−c|x|2 dx = 1 =
´
R ρ dx. □
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Proposition 2.4. Let T > 0, and m ∈ (1,∞]. Assume γ0 = (ρ0, η0) ∈ (Pa
2(R) ∩ Lm(R))2, with

F[γ0] <∞. The piecewise constant interpolation γτ = (ρτ , ητ ) satisfies

∥ρτ (t, ·)∥Lm(R) + ∥ητ (t, ·)∥Lm(R) ≤ CeCt
(
∥ρ0(·)∥Lm(R) + ∥η0(·)∥Lm(R)

)
,

for m ∈ (1,∞) and t ∈ [0, T ], where C is a constant depending on m. A similar estimate holds for
the case m = +∞, with C = 1. Moreover, the limit γ belongs to L∞([0, T ], (Lm(R))2).

Proof. Since γn+1
τ satisfies (14), then

1

2τ
W2

2(γ
n+1
τ ,γn

τ ) + E(γn+1
τ ) ≤ 1

2τ
W2

2(S
F
hγ

n+1
τ ,γn

τ ) + E(SFhγ
n+1
τ ),

for all h > 0. By the definition of dissipation of E along SF, we get

τDFE(γn+1
τ ) ≤ 1

2

d+

dt

(
W2

2(S
F
t γ

n+1
τ ,γn

τ )

)∣∣∣∣
t=0

≤ F(γn
τ )− F(γn+1

τ ), (23)

where the last inequality follows by the fact that SF is a 0-flow for F. As in the proof of Proposition
2.3, we obtain

DFE(γn+1
τ ) = lim sup

h↓0

E(γn+1
τ )− E(SFhγ

n+1
τ )

h
= lim sup

h↓0

ˆ 1

0

(
− d

dz

∣∣∣∣
z=ht

E(SFz γ
n+1
τ )

)
dt. (24)

Since SF is the flow generated by the solution to (21), we compute
d

dt
E(SFt γ

n+1
τ ) =

ˆ
R
∂xx[(S

F
1,tρ

n+1
τ )m − (SF2,tη

n+1
τ )m]W ∗ (SF1,tρn+1

τ − SF2,tη
n+1
τ ) dx

+ ε

ˆ
R
∂xx(S

F
1,tρ

n+1
τ − SF2,tη

n+1
τ )W ∗ (SF1,tρn+1

τ − SF2,tη
n+1
τ ) dx.

Integrating by parts and using the elliptic law (6), we get
d

dt
E(SFt γ

n+1
τ ) =

ˆ
R
((SF1,tγ

n+1
τ )m − (SF2,tγ

n+1
τ )m)W ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ ) dx

−
ˆ
R
((SF1,tγ

n+1
τ )m − (SF2,tγ

n+1
τ )m)(SF1,tγ

n+1
τ − SF2,tγ

n+1
τ ) dx

+ ε

ˆ
R
(SF1,tγ

n+1
τ − SF2,tγ

n+1
τ )W ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ ) dx

− ε

ˆ
R
(SF1,tγ

n+1
τ − SF2,tγ

n+1
τ )2 dx

−
[
((SF1,tγ

n+1
τ )m − (SF2,tγ

n+1
τ )m)W ′ ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

]x=+∞

x=−∞

+

[
∂x((S

F
1,tγ

n+1
τ )m − (SF2,tγ

n+1
τ )m)W ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

]x=+∞

x=−∞

− ε

[
(SF1,tγ

n+1
τ − SF2,tγ

n+1
τ )W ′ ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

]x=+∞

x=−∞

+ ε

[
∂x(S

F
1,tγ

n+1
τ − SF2,tγ

n+1
τ )W ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

]x=+∞

x=−∞
.

The boundary terms vanish since the solution to (21) decays rapidly at infinity. Indeed∣∣∣∣((SF1,tγn+1
τ )m− (SF2,tγ

n+1
τ )m)W ′ ∗ (SF1,tγn+1

τ −SF2,tγ
n+1
τ )

∣∣∣∣ ≤ 2∥W ′∥L∞(R)((S
F
1,tγ

n+1
τ )m+(SF2,tγ

n+1
τ )m)
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vanishes as |x| → ∞. Concerning the second boundary term we get∣∣∣∣∂x((SF1,tγn+1
τ )m − (SF2,tγ

n+1
τ )m)W ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

∣∣∣∣ ≤ 2|∂x((SF1,tγn+1
τ )m + (SF2,tγ

n+1
τ )m)|

that goes to zero as |x| → ∞. The third term can be estimated as∣∣∣∣(SF1,tγn+1
τ − SF2,tγ

n+1
τ )W ′ ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

∣∣∣∣ ≤ 2∥W ′∥L∞(R)(S
F
1,tγ

n+1
τ + SF2,tγ

n+1
τ )

that converges to 0 as |x| → ∞. About the last term we have∣∣∣∣∂x(SF1,tγn+1
τ − SF2,tγ

n+1
τ )W ∗ (SF1,tγn+1

τ − SF2,tγ
n+1
τ )

∣∣∣∣ ≤ 2|∂x(SF1,tγn+1
τ + SF2,tγ

n+1
τ )|

that again vanishes as |x| → ∞. Thus, by using Hölder’s inequality and Young’s inequality for convo-
lutions, and recalling ∥W ∗(SF1,tγn+1

τ −SF2,tγ
n+1
τ )∥L∞(R) ≤ ∥W∥L∞(R)∥SF1,tγn+1

τ +SF2,tγ
n+1
τ ∥L1(R) ≤ 1,

we deduce
d

dt
E(SFt γ

n+1
τ ) ≤

ˆ
R
((SF1,tρ

n+1
τ )m − (SF2,tη

n+1
τ )m)W ∗ (SF1,tρn+1

τ − SF2,tη
n+1
τ ) dx

+ ε

ˆ
R
(SF1,tρ

n+1
τ − SF2,tη

n+1
τ )W ∗ (SF1,tρn+1

τ − SF2,tη
n+1
τ ) dx

≤
ˆ
R
((SF1,tρ

n+1
τ )m + (SF2,tη

n+1
τ )m) dx+ 2ε.

Thus, we get

DFE(γn+1
τ ) ≥ lim sup

h↓0

ˆ 1

0

(
−
ˆ
R
[(SF1,zρ

n+1
τ )m + SF2,zη

n+1
τ )m] |z=ht dx dt− 2ε

= − lim inf
h↓0

ˆ 1

0

ˆ
R
[(SF1,zρ

n+1
τ )m + SF2,zη

n+1
τ )m] |z=ht dx dt− 2ε.

By (23)-(24), and by using the definition of F in (22), we obtain

(1− τ(m− 1))F(γn+1
τ ) ≤ F(γn

τ ) + 2ετ − τε(m− 1)

ˆ
R
[ρn+1

τ log ρn+1
τ + ηn+1

τ log ηn+1
τ ] dx.

By adding and subtracting the second moment of both ρn+1
τ and ηn+1

τ (which are finite at any time
due to Proposition 2.3), multiplied by a certain constant, from Lemma 2.1 we end up with

(1− τ(m− 1))F(γn+1
τ ) ≤ F(γn

τ ) + Cmετ,

for some constant C depending on T , which gives

F(γn+1
τ ) ≤ F(γn

τ )

(1− τ(m− 1))
+

Cmετ

(1− τ(m− 1))
.

Iterating this estimate, we get

F[γn
τ ] ≤

(
1

1− τ(m− 1)

)n

F(γ0) + Cmτε

n∑
k=0

1

(1− τ(m− 1))k
.

By using once again the definition of F, and Lemma 2.1, we obtain (by possibly renaming the
constant C)

1

m− 1

ˆ
R
[(ρnτ (x))

m + ηnτ (x))
m] dx ≤

(
1

1− τ(m− 1)

)n

F(γ0) + Cmτε
n∑

k=0

1

(1− τ(m− 1))k
+ Cmε.
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Now, by sending ε↘ 0 we have

1

m− 1

ˆ
R
[(ρnτ (x))

m + ηnτ (x))
m] dx ≤

(
1

1− τ(m− 1)

)n ˆ
R
[(ρ0(x))

m + (η0(x))
m] dx.

Recalling that τ = T/n, since(
1

1− τ(m− 1)

)n

=

[(
1

1− T (m−1)
n

) n
T (m−1)

]T (m−1)

∼ eT (m−1),

we get ˆ
R
[(ρnτ (x))

m + (ηnτ (x))
m] dx ≤ (m− 1)et(m−1)

ˆ
R
[(ρ0(x))

m + (η0(x))
m],

for all n ∈ N, that implies
ˆ
R
[(ρτ (t, x))

m + (ητ (t, x))
m] dx ≤ (m− 1)et(m−1)

ˆ
R
[(ρ0(x))

m + (η0(x))
m],

for t ∈ [0, T ], and m ∈ (1,∞). Moreover,(ˆ
R
[(ρτ (t, x))

m + (ητ (t, x))
m] dx

) 1
m

≤ (m− 1)
1
m et

m−1
m

(ˆ
R
[(ρ0(x))

m + (η0(x))
m]

) 1
m

,

from which we deduce that the case m = +∞ is also satisfied by sending m → +∞. We obtain
that the subsequence {γτk}k∈N of Proposition 2.2 is bounded in L∞([0, T ], Lm(R))2, thus it admits
a converging subsequence γ ′ ∈ Lm([0, T ],R)2 in the weak Lm

t,x topology in the case m finite. In
the case m = +∞, such subsequence exists in the weak-∗ topology of L∞([0, T ]× R). The limit γ ′

coincides with γ on [0, T ] due to Proposition 2.2, and it features the same estimate. □

2.2.4. Conclusion of the existence and uniqueness proof. In this subsection we want to prove that
γ is a curve of maximal slope for E. Let γ̃τ : [0,+∞) → P2(R)2 be the De Giorgi variational
interpolation of the discrete values {γn

τ } defined in (14), that satisfies

γ̃τ (t) = γ̃τ ((n− 1)τ + δ) ∈ argmin
{

1

2δ
W2

2(γ
n−1
τ ,γ) + E(γ), γ ∈ P2(R)2

}
,

if t = (n− 1)τ + δ ∈ ((n− 1)τ, nτ ]. By arguing as in [1], the following inequality holds:

1

2

ˆ T

0
∥vτk(t)∥

2
L2(γτk

(t)) dt+
1

2

ˆ T

0
|∂E|2[γ̃τk(t)] dt+ E(γτk(T )) ≤ E(γ0), (25)

where (γτk ,vτk) is the solution to the continuity equation ∂tγτk(t) + div(vτk(t)γk(t)) = 0 in the
sense of distributions, with γτk from Proposition 2.2, and vτk the unique velocity field with minimal
L2(γτk(t))-norm, see [1, Theorem 8.3.1, Theorem 8.4.5]. Up to a subsequence, the sequences γτ

and γ̃τ converge narrowly to the same limit γ provided in Proposition 2.2. Then, by the lower
semi-continuity of the slope, see [9], one can pass to the limit in (25) proving that γ is a curve of
maximal slope. Finally, by [1, Theorem 11.1.4], we conclude that this curve of maximal slope γ
is the unique gradient flow solution to (4) in the sense of Definition 2.4. Indeed, if γ1 and γ2 are
two gradient flow solutions to (4) with initial data γ1

0 and γ2
0 respectively, by [1, Theorem 11.1.4]

we deduce the stability estimate (12) for all t ∈ [0, T ], and thus the uniqueness of the solution is
guaranteed.
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3. Deterministic particle approximation

In this section we deal with the problem of approximating the gradient flow solution found
in Theorem 2.1 with a discrete density constructed out of a set of particles moving through a
system of ordinary differential equations, i.e., a set of deterministic particles. As mentioned in the
introduction, we assume that all the masses are equal to 1/N and we deal with the particle scheme

ẋi =
1

N

N−1∑
k=0

W (xk+1 − xi)−W (xk − xi)

xk+1 − xk
−

N−1∑
k=0

1

N

W (yk+1 − xi)−W (yk − xi)

yk+1 − yk
,

ẏj =
1

N

N−1∑
k=0

W (yk+1 − yj)−W (yk − yj)

yk+1 − yk
−

N−1∑
k=0

1

N

W (xk+1 − yj)−W (xk − yj)

xk+1 − xk
,

(26)

as i, j = 0, . . . , N . System (26) is coupled with the initial conditions

xi(0) = xi,0 , yi(0) = yi,0 , i = 0, . . . , N. (27)

In general, the conditions xi,0 ≤ xi+1,0 and yi,0 ≤ yi+1,0 are required for all i = 0, . . . , N − 1. In our
paper we shall always work with the strict inequalities

xi,0 < xi+1,0 , yi,0 < yi+1,0 , i = 0, . . . , N − 1 .

We set, for all i, j ∈ {0, . . . , N − 1},

di = xi+1 − xi, rj = yj+1 − yj ,

and
Di =

1

Ndi
=

1

N(xi+1 − xi)
, Rj =

1

Nrj
=

1

N(yj+1 − yj)
.

We then define the piecewise constant densities

ρN (t, x) =

N−1∑
k=0

Dk(t)1[xk(t),xk+1(t))(x), ηN (t, x) =

N−1∑
k=0

Rk(t)1[yk(t),yk+1(t))(x). (28)

We stress at this stage that ρN (t, ·) (ηN (t, ·) respectively) is well defined at a given time t ≥ 0 if no
pairs of particles of the species x (y respectively) are colliding at that time. If so, the two functions
ρN (t, ·) and ηN (t, ·) are probability measures at every time t ≥ 0. Assuming for the time being that
no collisions occur, we have the expressions

ẋi =
1

N

N−1∑
k=0

W (xk+1 − xi)−W (xk − xi)

xk+1 − xk
− 1

N

N−1∑
k=0

W (yk+1 − xi)−W (yk − xi)

yk+1 − yk

=
N−1∑
k=0

ˆ xk+1

xk

1

N

1

dk
W ′(z − xi) dz −

N−1∑
k=0

ˆ yk+1

yk

1

N

1

rk
W ′(z − xi) dz

=
N−1∑
k=0

ˆ xk+1

xk

DkW
′(z − xi) dz −

N−1∑
k=0

ˆ yk+1

yk

RkW
′(z − xi) dz

=

N−1∑
k=0

ˆ
R
Dk1[xk,xk+1)(z)W

′(z − xi) dz −
N−1∑
k=0

ˆ
R
Rk1[yk,yk+1)(z)W

′(z − xi) dz

=

ˆ
R
ρN (t, z)W ′(z − xi) dz −

ˆ
R
ηN (t, z)W ′(z − xi) dz

= −W ′ ∗ ρN (xi) +W ′ ∗ ηN (xi).
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In the same way, we find that

ẏj = −W ′ ∗ ηN (yj) +W ′ ∗ ρN (yj).

Therefore, our particle scheme (26) can be re-written as{
ẋi = −W ′ ∗ ρN (xi) +W ′ ∗ ηN (xi),

ẏj = −W ′ ∗ ηN (yj) +W ′ ∗ ρN (yj),
(29)

as i, j = 0, . . . , N .

3.1. Analysis of particles collisions. We now assume that particles do not overlap at the initial
time and we will prove that particles of the same species do not collide for all t ≥ 0. Clearly, due
to classical Cauchy-Lipschitz theory for ODEs, there exists a time T ≥ 0 such that (26) (as well as
its reformulation (29)) has a classical solution. Such a solution can be extended as long as particles
do not collide.

Proposition 3.1. Assume that all the particles are detached at the initial time. Then, particle of
the same species do not collide for all t ≥ 0.

Proof. We proceed by contradiction. Let us denote by xi and xi+1 two of the colliding particles,
and t∗ > 0 is the collision time, i.e.,

xi(t
∗) = xi+1(t

∗).

We can assume that the first collision between these two particles occurs at time t∗, so that in the
time interval (t∗ − ε, t∗), for some ε > 0, the particles are detached, namely

xi(s) < xi+1(s)

for all s ∈ (t∗ − ε, t∗).
Case 1: particles xi and xi+1 have no particles of the opposite species between them.
Let yj and yj+1 be two consecutive particles of the opposite species such that

yj(s) ≤ xi(s) < xi+1(s) ≤ yj+1(s)

as s ∈ (t∗ − ε, t∗). Using the first equation in (29), the fundamental theorem of calculus, and the
elliptic equation (6), we get

ḋi = −[(W ′ ∗ ρN )(xi+1(s))− (W ′ ∗ ρN )(xi(s))] + [(W ′ ∗ ηN )(xi+1(s))− (W ′ ∗ ηN )(xi(s))]

=

ˆ xi+1

xi

W ′′ ∗ (−ρN (z) + ηN (z)) dz

=

ˆ xi+1

xi

(ρN (z)− ηN (z)) dz +

ˆ xi+1

xi

W ∗ (−ρN (z) + ηN (z)) dz

≥ 1

N
−
ˆ xi+1

xi

ηN (z) dz − di∥W ∗ (ρN − ηN )∥L∞(R) .

We stress that the use of the fundamental theorem of calculus is justified by the assumption that
particles do not collide, which implies ρN and ηN are in L∞ and that makes the convolutionsW ′′∗ρN
and W ′′ ∗ ηN bounded. By using Young’s inequality for convolution, we know that

∥W ∗ (ρN − ηN )∥L∞(R) ≤ ∥W∥L∞(R)∥ρN − ηN∥L1(R) ≤ 1,

thus

ḋi ≥
1

N
−
ˆ xi+1

xi

ηN (z) dz − di.
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Now, for z ∈ (xi, xi+1) and s ∈ (t∗ − ε, t∗), we have that

ηN (z, s) =
1

N(yj+1 − yj)
≤ 1

N(xi+1 − xi)
=

1

Ndi
.

Therefore

ḋi ≥
1

N
− di

[
1

Ndi
+ 1

]
= −di.

By using Grönwall inequality, this implies that

di(t
∗) ≥ di(t

∗ − ε)e−ε,

i.e., di > 0 at time t∗ and this is a contradiction.
Case 2: there is one particle of the opposite species between xi and xi+1 and one
between yj−1 and yj+1 stays far. Assume that

yj−1(s) ≤ xi(s) < yj(s) < xi+1(s) ≤ yj+1(s)

for s ∈ (t∗ − ε, t∗), and xi(t∗) = yj(t
∗) = xi+1(t

∗). Furthermore, we assume that yj−1, yj , and yj+1

do not collide before the time t∗, that is, yj−1 and yj+1 "remain far" from xi and xi+1 up to the
collision time. Thus, there exists a constant λ > 0 such that

min{yj − yj−1, yj+1 − yj} ≥ λ

for s ∈ (t∗ − ε, t∗). Proceeding as in Case 1, we easily obtain

ḋi ≥
1

N
− di

[
1

Nλ
+ 1

]
.

Hence, a simple ODE argument implies di gets close to λ
1+Nλ for large times, which implies it cannot

denegerate on finite time. We now assume that only one of the two particles yj−1 or yj+1 collide
with all particles among them at time t∗. Assume that particle is yj−1. Hence, yj+1 − xi ≥ λ for
some λ > 0. On s ∈ (t∗ − ε, t∗) we then have

ḋi ≥
1

N
− di −

ˆ xi+1

xi

ηN (z, s)ds

=
1

N
− di −

yj − xi
N(yj − xi)

− xi+1 − yj
N(yj+1 − xi)

≥ −di −
xi+1 − yj
Nλ

≥ −
(
1 +

1

Nλ

)
di ,

and the above implies

di(t
∗) ≥ di(t

∗ − ε)e−(1+
1

Nλ)ε,

which is a contradiction.
Case 3. Conclusion. By possibly interchanging the roles of the two species, we have ruled out
the case in which two particles of the y species collide with no x-particle in between. Hence, the
only possible case left is the one in which, with the notation of Case 2, all particles yj−1, xi, yj ,
xi+1, and yj+1 collide at the same time. By considering in turns the neighbor particles, a simple
induction argument implies that a collision between particles of the same species is possible if and
only if the two species are alternated and all particles collide at the same time. Indeed, if this is
not the case we can always fall in one of the cases considered in Case 2. Assume therefore

x0(s) < y0(s) < x1(s) < y1(s) < · · · < xi(s) < yi(s) < · · · < xN−1(s) < yN−1(s) < xN (s) < yN (s)
18



for s ∈ (t∗ − ε, t∗), and xi(t
∗) = yj(t

∗) for all i, j = 0, . . . , N , i.e., all the particles are detached
before t∗ and collide at t∗. This implies that

N−1∑
i=0

di(t
∗) +

N−1∑
j=0

rj(t
∗) = 0 = xN (t∗)− x0(t

∗) + yN (t∗)− y0(t
∗).

Taking the time derivative, we omit the time dependence to keep the notation to a minimum, we
obtain

ẋN − ẋ0 + ẏN − ẏ0 =−W ′ ∗ (ρN − ηN )(xN ) +W ′ ∗ (ρN − ηN )(x0)

−W ′ ∗ (ηN − ρN )(yN ) +W ′ ∗ (ηN − ρN )(y0)

=−
ˆ xN

x0

W ′′ ∗ (ρN − ηN )(z) dz −
ˆ yN

y0

W ′′ ∗ (ηN − ρN )(z) dz

=

ˆ xN

x0

(ρN − ηN )(z) dz +

ˆ yN

y0

(ηN − ρN )(z) dz

−
ˆ xN

x0

W ∗ (ρN − ηN )(z) dz −
ˆ yN

y0

W ∗ (ηN − ρN )(z) dz,

where we used the elliptic law (6). Now, by using Young’s inequality for convolutions, we get

ẋN − ẋ0 + ẏN − ẏ0 ≥ 2− [xN − x0 + yN − y0]−
ˆ xN

x0

ηN (z) dz −
ˆ yN

y0

ρN (z) dz.

By considering the particle configuration, we have that xN −x0 ≤ yN −x0 and by the monotonicity
of the integrals, since ηN ≥ 0, ˆ xN

x0

ηN (z) dz ≤
ˆ yN

x0

ηN (z) dz = 1,

and similarly ˆ xN

y0

ρN (z) dz ≤
ˆ xN

x0

ρN (z) dz = 1.

Thus, we arrive at
ẋN − ẋ0 + ẏN − ẏ0 ≥ −[xN − x0 + yN − y0],

and by Grönwall’s inequality we obtain

xN (t∗)− x0(t
∗) + yN (t∗)− y0(t

∗) ≥ [xN (t∗ − ε)− x0(t
∗ − ε) + yN (t∗ − ε)− y0(t

∗ − ε)]e−ε,

that is a contradiction. Hence, no collisions occur in finite times between particle of the same
species. □

The result in Proposition 3.1 is of paramount importance since it allows to reformulate the scheme
(26) in the form (29) with ρN and ηN defined in (28). Moreover, such a result also implies global-
in-time existence for the unique solution to the ODE system (26) provided particles are initially
detached.

Unlike particles of the same species, particles of opposite species may indeed collide in a finite
time. To see this, consider the example with two particles of each species, that is N = 1, with initial
condition

x0 = −2, x1 = −1, y0 = 1, y1 = 2 .
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We set f(t) = y0(t)− x1(t). By symmetry, it is easy to deduce that f(t) = 2y0(t). Hence,

ḟ(t) = 2ẏ0(t) = −2W ′ ∗ η1(y0(t)) + 2W ′ ∗ ρ1(y0(t))

= − 2

y1 − y0

ˆ y1

y0

W ′(y0 − z)dz +
2

x1 − x0

ˆ x1

x0

W ′(y0 − z)dz.

Without restriction, f(t) ≥ 0 for all t (otherwise, by continuity f(t1) = 0 at some time t1 and the
proof would be complete). Still due to the symmetry, d1 = r1 = y1 − y0 = x1 − x0 and we can use
the decreasing monotonicity of W on the positive half line to get

ḟ(t) = −2(W (0)−W (d1))

d1
− 2(W (f)−W (f + d1))

d1
≤ −2(W (0)−W (d1))

d1
.

Moreover, still due to the monotonicity of W and due to its convexity,

ḋ1 = ẏ1 − ẏ0 =
2(W (0)−W (d1))

d1
− W (f + d1)−W (f + 2d1)

d1
+
W (f)−W (f + d1)

d1

≤ 3(W (0)−W (d1))

d1
.

Therefore,
d

dt
(3f(t) + 2d1(t)) ≤ 0 ,

which implies
3f(t) + 2d1(t) ≤ 3f(0) + 2d1(0) =: µ0 .

In particular, d1(t) ≤ d1(0) for all t ≥ 0. Now, we claim that f(t) will vanish at some finite time t∗.
Hence,

0 ≤ 3f(t) + 2d1(t) ≤ µ0 ,

which implies 0 ≤ d1(t) ≤ µ0/2. Recalling

ḟ(t) ≤ −1− e−d1(t)

d1(t)
,

we observe that the function [0,+∞) ∋ d 7→ g(d) = 1−e−d

d is continuous, strictly decreasing, with
g(0) = 1 and g(+∞) = 0. Hence, on the closed interval d ∈ [0, µ0/2] there holds g(d) ≥ g(µ0/2) > 0.
This implies

ḟ(t) ≤ −g(µ0/2) ,
which implies f becomes zero in a finite time.

The above example shows that the self-repulsion and cross-attraction forces imply a mixing phe-
nomenon which was also observed in [14] for the case of the Newtonian interaction potential. In
short, particles tend to set in alternate species order.

3.2. Lp estimates on the particle scheme. Having in mind the particle scheme (26) as a tool to
approximate solutions to the PDE system (4) for large N , in this subsection we prove some uniform
estimates of the Lp norms of ρN and ηN with respect to N . For future use, we compute

ḋi = ẋi+1 − ẋi

= −W ′ ∗ ρN (xi+1) +W ′ ∗ ηN (xi+1) +W ′ ∗ ρN (xi)−W ′ ∗ ηN (xi)

= −[W ′ ∗ ρN (xi+1)−W ′ ∗ ρN (xi)] + [W ′ ∗ ηN (xi+1)−W ′ ∗ ηN (xi)]

=

ˆ xi+1

xi

[
−W ′′ ∗ ρN (z) +W ′′ ∗ ηN (z)

]
dz,

(30)
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and

Ḋi =− ḋi
Nd2i

=− 1

Nd2i

[ˆ xi+1

xi

−W ′′ ∗ ρN (z) +W ′′ ∗ ηN (z) dz

]
=Di

 xi+1

xi

[
W ′′ ∗ ρN (z)−W ′′ ∗ ηN (z)

]
dz.

(31)

Similarly, we have

ṙj =

ˆ yj+1

yj

[−W ′′ ∗ ηN (z) +W ′′ ∗ ρN (z)] dz, (32)

and

Ṙj = Rj

 yj+1

yj

[W ′′ ∗ ηN (z)−W ′′ ∗ ρN (z)] dz. (33)

Proposition 3.2. Let T > 0. Assume p ∈ (1,∞]. Then, the approximated density (ρN , ηN ) fulfils

∥ρN (t, ·)∥Lp(R) + ∥ηN (t, ·)∥Lp(R) ≤ et
[
∥ρN (0, ·)∥Lp(R) + ∥ηN (0, ·)∥Lp(R)

]
, (34)

for all t ∈ [0, T ] and for all N ∈ N.

Proof. Let p ∈ (1,∞). We use (30), (32), (31), and (33) above to get

d

dt

ˆ
R

(
(ρN )p + (ηN )p

)
dx

=
d

dt

N−1∑
i=0

ˆ xi+1

xi

(Di)
p dx+

N−1∑
j=0

ˆ yj+1

yj

(Rj)
p dx


=

d

dt

N−1∑
i=0

Dp
i (xi+1 − xi) +

N−1∑
j=0

Rp
j (yj+1 − yj)


= (p− 1)

ˆ
R
ρN (z)

p
[W ′′ ∗ ρN (z)−W ′′ ∗ ηN (z)] dz

+ (p− 1)

ˆ
R
ηN (z)

p
[W ′′ ∗ ηN (z)−W ′′ ∗ ρN (z)] dz

= (p− 1)

ˆ
R
(ρN (z)

p − ηN (z)
p
)[W ′′ ∗ (ρN (z)− ηN (z))] dz

= (p− 1)

ˆ
R
(ρN (z)

p − ηN (z)
p
)[W ∗ (ρN (z)− ηN (z))− (ρN (z)− ηN (z))] dz,

having used the elliptic law (6). Sinceˆ
R
(ρN (z)

p − ηN (z)
p
)(ρN (z)− ηN (z)) dz ≥ 0 ,

we use Young’s inequality for convolution to estimate

∥W ∗ (ρN − ηN )∥L∞(R) ≤ ∥W∥L∞(R)(∥ρN∥L1(R) + ∥ηN∥L1(R)) = 1,

and we end up with
d

dt
(∥ρN∥pLp(R) + ∥ηN∥pLp(R)) ≤ (p− 1)(∥ρN∥pLp(R) + ∥ηN∥pLp(R)) .
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Then, by applying Grönwall’s inequality we obtain(ˆ
R

(
|ρN (x)|p + |ηN (x)|p

)) 1
p

≤ e
p−1
p

t
(ˆ

R

[
|ρN (0, x)|p + |ηN (0, x)|p

]
dx,

) 1
p

.

Thus, the estimate (34) holds in case of p finite. The case p = +∞ may be obtained by a standard
limiting procedure by letting p→ +∞. □

3.3. Many particle limit. This subsection is devoted to the proof of the many particle limit. We
aim at proving that, given a compactly supported initial condition (ρ0, η0) ∈ (P2(R) ∩ Lp(R))2 for
some p ∈ (1,+∞], we can approximate the corresponding solution to (4) by some (ρN , ηN ) of the
form (28) constructed out of a set of moving particles xi, yi, i = 0, . . . , N solving (26) as N → +∞.

Let (ρ0, η0) ∈ (P2(R) ∩ Lp(R))2 for some p ∈ (1,+∞]. Assume further that both ρ0 and η0 have
compact support. As customary in the context of deterministic particle approximations, we atomise
the initial conditions as follows. We set

x0,0 = inf(supp(ρ0)) , y0,0 = inf(supp(η0))

and inductively, for all i ∈ {0, . . . , N − 1},

xi+1,0 = inf

{
x ∈ R :

ˆ x

xi,0

ρ0(z)dz ≥
1

N

}
,

yi+1,0 = inf

{
y ∈ R :

ˆ y

yi,0

η0(z)dz ≥
1

N

}
.

We then consider xi(t) and yi(t) as the solutions to (26)-(27) for i = 0, . . . , N . The result in
Proposition 3.1 ensures the particles trajectories exist for all times and that the discrete densities
ρN (t, ·) and ηN (t, ·) defined in (28) exist for all times t ≥ 0. We now state our main result in this
Section.

Theorem 3.1. Let T > 0 be fixed. Assume p ∈ (1,∞] and (ρ0, η0) ∈ (P2(R) ∩ Lp(R))2 with
compact support. Then, the pair of discrete densities (ρN , ηN ) converges weakly in Lp([0, T ] × R)2
for p ∈ (1,∞), and weakly-∗ in L∞([0, T ]×R)2, to the unique solution (ρ, η) to (4) in the sense of
Definition 2.4 with initial condition (ρ0, η0).

Our strategy extends the procedure in [16] to the case of two species. Some of the proofs are
straightforward generalisations of corresponding results in [16] and will therefore be omitted. We
start with a technical result, the proof of which is similar to the one in [16, Proposition 3.2]. We
omit the details.

Proposition 3.3. Let φ ∈ C1(R) be a test function. Then
d

dt

ˆ
R
φ(x)ρN (t, x) dx = −

ˆ
R
ρN (t, x)φ′(x)W ′ ∗ (ρN (t, x)− ηN (t, x)) dx+ CN , (35)

and
d

dt

ˆ
R
φ(x)ηN (t, x) dx = −

ˆ
R
ηN (t, x)φ′(x)W ′ ∗ (ηN (t, x)− ρN (t, x)) dx+ CN ,

with

|CN | ≤
2∥φ′∥L∞(R)

N
.

The result in Proposition 3.3 is the basic tool to obtain consistency in the limit, that is, to obtain
the pair of continuity equations in (4) in the N → +∞ limit.

The approximation result for the initial datum is stated in the next two Lemmas. For the proofs,
see [16, Lemma 4.1, Lemma 4.2].
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Lemma 3.1. Let p ∈ [1,∞]. Then the Lp-norms of ρN (·, 0) and ηN (·, 0) are uniformly bounded by
a positive constant C depending on ∥ρ0∥Lp(R) and ∥η0∥Lp(R), i.e.,

∥ρN0 ∥Lp(R) ≤ C, ∥ηN0 ∥Lp(R) ≤ C,

for all N ∈ N.

Lemma 3.2. Let p ∈ (1,∞] and assume (ρ0, η0) ∈ (P2(R)∩Lp(R))2. Then, ρN0 → ρ0 and ηN0 → η0
in the sense of distributions. Furthermore, ρN0 ⇀ ρ0 and ηN0 ⇀ η0 weakly in Lp(R) if p ∈ (1,∞),
whereas ρN0

∗−⇀ ρ0 and ηN0
∗−⇀ η0 weakly-∗ in L∞(R).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Concerning the initial data, from Lemma 3.2 we know that

ρN0 ⇀ ρ0, and ηN0 ⇀ η0,

weakly in Lp(R) up to a subsequence. By Proposition 3.2 and Lemma 3.1, we deduce that there
exist two subsequences of both ρN and ηN converging weakly (or weakly-∗ if p = +∞) to some
limits ρ, η ∈ Lp([0, T ]× R) as N → ∞. Hence, still denoting by ρN and ηN such subsequences, we
get

lim
N→∞

|W ′ ∗ ρN −W ′ ∗ ρ| = lim
N→∞

|W ′ ∗ (ρN − ρ)| = 0,

lim
N→∞

|W ′ ∗ ηN −W ′ ∗ η| = lim
N→∞

|W ′ ∗ (ηN − η)| = 0,

due to W ′ ∈ Lq(R), where 1
p + 1

q = 1. Since by Young’s inequality for convolution it holds that

∥W ′ ∗ ρN∥L∞(R) ≤ ∥W ′∥Lq(R), and ∥W ′ ∗ ηN∥L∞(R) ≤ ∥W ′∥Lq(R),

we get
W ′ ∗ ρN →W ′ ∗ ρ, and W ′ ∗ ηN →W ′ ∗ η,

in Lq
loc(R). Considering the result in Proposition 3.3, multiplying (35) by χ = χ(t) ∈ C∞

c ([0,∞))
and integrating on [0, T ] with supp(χ) ⊂ [0, T ], we end up withˆ T

0
χ(t)

d

dt

ˆ
R
φ(x)ρN dx dt = −

ˆ T

0

ˆ
R
χ(t)ρNφ′W ′ ∗ (ρN − ηN ) dx dt+ O(N−1T ).

Taking ψ(t, x) = χ(t)φ(x), integrating by parts we obtainˆ T

0

ˆ
R
[∂tψ − ∂xψW

′ ∗ (ρN − ηN )]ρN dx dt+

ˆ
R
ψ(0, x)ρN0 dx = O(N−1T ).

Passing to the limit as N → ∞, we get the desired convergence result for a general test function via
standard density of cylindrical test functions. By weak-lower semicontinuity, the limit (ρ, η) belongs
to (Lp([0, T ] × R))2 and it therefore coincides with the unique gradient flow solution according to
Definition 2.4. □
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