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Abstract. We consider a two-species system of nonlocal interaction PDEs
modeling the swarming dynamics of predators and prey, in which all agents
interact through attractive/repulsive forces of gradient type. In order to model
the preator-prey interaction, we prescribed proportional potentials (with op-
posite signs) for the cross-interaction part. The model has a particle-based
discrete (ODE) version and a continuum PDE version. We investigate the
structure of particle stationary solution and their stability in the ODE sys-
tem in a systematic form, and then consider simple examples. We then prove
that the stable particle steady states are locally stable for the fully nonlinear
continuum model, provided a slight reinforcement of the particle condition is
required. The latter result holds in one space dimension. We complement
all the particle examples with simple numerical simulations, and we provide
some two-dimensional examples to highlight the complexity in the large time
behaviour of the system.

1. Introduction

The mathematical modeling of the collective motion for multi-agent aggregates
arises in various research �elds such as biology, ecology, robotics, and control theory,
as well as sociology and economics. This subject has attracted a lot of attention in
the recent years, and the modeling of bird �ocks, �sh schools, and insect swarming
in general has been deeply investigated by several applied mathematicians, see
for instance [10, 22, 25, 27�31]. Among the others, the problem of predator-prey
interactions has been formulated in the context of swarming models and collective
behaviour, see e.g. [22,25,28], with the goal of catching the typical spatial patterns
that occur in practical situations, see also a related contribution in [3]. A signi�cant
example is the formation of empty space surrounding a group of predators, with
aggregates of prey all around, which is usually observed in �sh schools or in �ock of
sheeps - as a special case of self-emerging patterns that typically arise in swarming
models.

The dynamics of predators and prey in animal and social biology has attracted
the interest of many applied mathematicians in the last century, since the pioneering
works of Lotka [24] and Volterra [33]. In the classical literature, the predator-prey
interaction is typically described via reaction terms in a set of di�erential equations,
possibly combined with di�usion terms, we refer to the classical book [26] and the
references therein.

The main idea behind the new swarming modelling approach is that the presence
of each prey biases the movement of each predator via a transport term rather than
a reaction term (e.g. similarly to the transport term in a chemotaxis model), and a
symmetric mechanisms activates the movement of the prey away from the predators.
Consequently, an interacting particle approach to this problem can be formulated
as follows.
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Let X1, . . . , XN be the spatial positions of N predators, and let Y1, . . . , YM be
the positions of M prey. Each predator Xi has a strength coe�cient mi

X > 0,
whereas each prey Yi has an attractiveness coe�cient mi

Y > 0. Such coe�cients
may be considered as proportional to the single masses of the individuals, and we
shall therefore refer to them as masses. We assume that predator and prey are
subject to a self-organising force in absence of interaction with the other species.
More precisely, we assume that each predator moves under the e�ect of a radial
nonlocal force directed towards all other predators, and a similar phenomenon holds
for the prey. Whether the self-organising forces are attractive or repulsive depends
on the situation under study. We then assume that the predators are attracted
by the prey, where the prey are subject to a repulsive force with respect to all the
predators. All the above mentioned forces are considered as gradients of potential
quantities depending on distances between the agents under consideration. The so-
cial mechanisms resulting into social attraction of the predators, social attraction of
the prey, and predator-prey interaction respectively are, in principle, independent.
On the other hand, the predator-prey interaction is assumed to take place via the
same force �eld in our aproach, both in the attractive drift that makes the predator
move towards a prey and in the repulsive drift that drive the prey away from the
predators.

The resulting system is
Ẋi(t) = −

N∑
k=1

mk
X∇S1(Xi(t)−Xk(t))−

M∑
h=1

mh
Y∇K(Xi(t)− Yh(t)),

Ẏj(t) = −
M∑
h=1

mh
Y∇S2(Yj(t)− Yh(t)) + α

M∑
k=1

mk
X∇K(Yj(t)−Xk(t)),

(1)

with i = 1, . . . , N and j = 1, . . . ,M . The coe�cient α > 0 is the result of a mass
normalization of both species, after which m1

X + . . .+mN
X = m1

Y + · · ·+mM
Y = 1,

which simpli�es the analysis of the model. All the potentials in (1) incorporate
such normalization process, and the constant α expresses the ratio between the
total mass of the predators and the total mass of the prey. The potentials S1 and
S2 are called self-interaction potentials, they express the social tendency of each
single species to form social aggregates without the e�ect of the other species. The
potential K is responsible for the predator-prey interaction, and is called cross-
interaction potential. We observe that our model does not take into account the
annihilation rate of the prey once they are caught by a predator. This issue will be
tackled in future studies.

We recall that an interaction potential G is said to be radial if G(x) = g(|x|)
for some g : [0,+∞) → R. G is attractive if g′(r) > 0 for r > 0, G is repulsive if
g′(r) < 0 for r > 0. We shall assume that all the potential S1, S2,K are radial.
No assumptions are required on the attractiveness and repulsiveness of S1 and S2,
whereas we shall always require that K is attractive. More precise assumptions on
the three potentials will be stated in Section 2. The constant α can be interpreted
as a mobility coe�cient for the prey.

A minimal version of (1) in two dimensions, with only one predator and arbitrar-
ily many prey, has been considered in [17, 29]. In both papers, the self-interaction
of the prey is driven by a potential S2 with a short range (singular) repulsion
and a long range attraction, whereas S1 ≡ 0, i. e. no self-interaction among the
predators. Two distinct potential are used in [17,29] to model predator-prey inter-
action. In particular, the attractive force driving the predators towards the prey is
singular at zero, and is supposed to be stronger than the repulsive force pushing
the prey away from the predators at small distances. By incorporating a singular
short range repulsion in the self-interaction of the prey, the approach in [17, 29]
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induces the formation of nontrivial patterns in some way to prevent the action of
the predators. Our model tries to catch a similar behaviour as a direct consequence
of the predator-prey interaction. Moreover, we require that the two predator-prey
interaction potentials are proportional in order to have a suitable linear combina-
tion of �rst momenta preserved in time, which possibly allows to select a unique
equilibrium for �xed initial data.

The model (1) has a continuum counterpart, namely{
∂tµ1 = div(µ1(∇S1 ∗ µ1 +∇K ∗ µ2))

∂tµ2 = div(µ2(∇S2 ∗ µ2 − α∇K ∗ µ1)),
(2)

where µ1 and µ2 are time dependent probability measures denoting the (normalized)
concentration of predators and prey respectively. This system is a two-species
generalization of the nonlocal interaction equation

∂tµ = div (µ∇K ∗ µ) . (3)

The main issue of (3) is the possibility of developing blowup in �nite time, even for
solutions which are initially very smooth. This characteristic is mainly due to the
possibility that the interaction kernel K is attractive close to the origin and that it
has a certain singularity in the second derivative (for example K(x) ≈ |x|1+α, with
α ∈ [0, 1) has such a Lipschitz singularity). After the pioneering works [9, 23], a
fairly complete Lp−theory has been developed in [4�8], also for potentials producing
blowup in �nite time. Application of the Wasserstein distance and of the gradient
�ows theory for smooth kernels was introduced in [1, 14] and extended to singular
kernels in [12,13,16].

A systematic mathematical theory for a system of the form (2) has been per-
formed in [18]. In particular, system (2) should be framed in the context of non
symmetrizable systems, for which the Wasserstein gradient �ow theory developed
in [1] and adapted to systems in [18] does not work. For a class of potentials with
regularity less that C2, [18] proves existence via an implicit-explicit version of the
JKO scheme [21]. For C2 potentials, existence and uniqueness can be proved by
the method of characteristics.

Despite its rather simple structure, and despite being quite similar to the so called
2×2 symmetrizable systems of nonlocal interaction equations (with a gradient �ow
structure) considered in [18], the discrete system (1) and the continuum counterpart
(2) turn out to feature a rather complex dynamics. First of all, in order to simplify
the problem, we shall work with C2 potentials, which implies authomatically that
all the steady states will be combinations of Dirac's deltas. Then, we start exploring
steady states, �rst in a systematic form and then by considering simple examples
with at most two agents per species. Hence, we investigate the structure of the
linearised system around particle steady states at the discrete level.

We show that, in a suitable discrete norm adapted to the steady state under
consideration, such system features a simple linear structure, which simpli�es the
study of the spectrum, and therefore allows to detect relatively simple stability
conditions. We then turn back to the simple examples, and provide simple stability
conditions. In order to simplify the coverage of the paper, most of the computations
are performed in one space dimension. Some computations, such as stability condi-
tions in the particle framework, can be easily generalised to the multi dimensional
case. All the examples are complemented with simple numerical simulations.

The main result concerns with the local nonlinear stability vs. instability of
steady states for the continuum system of nonlocal PDEs (2) in one space dimen-
sion. Basically we prove that a simple su�cient condition for the stability can be
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obtained by a slightly stronger requirement of the stability condition for the par-
ticle system (1). The stability result holds in the ∞-Wasserstein distance, and is
contained in Theorem 4.1. We conclude the paper with some simulations in two
space dimensions, which highlight the complexity of the system, and suggest the
existence of more complex patterns in case of singular potentials.

The paper is structured as follows. In Section 2 we recall the basics on p-
Wasserstein distances in spaces of probability measures, with the natural extension
to two species Cartesian products proposed in [18]. Moreover, we brie�y recall the
existing theory on two species systems of the form (2). In Section 3 we perform
a systematic study of the particle steady states and their linear stability under
the particle system (1), with some examples involving at most two particles per
species. In Section 4 we prove our main result in Theorem 4.1, which provides a
reasonable su�cient condition for the nonlinear local stability of the particle steady
states for the continuum model (2) in one space dimension. Finally, in Section
5 we propose some numerical examples in two dimensions, which emphasize the
asymptotic complexity of the model under study.

2. Preliminaries

In this section we collect preliminary concepts on the Wasserstein distance and
we state the assumptions on our model.

We recall that a function G : Rd → R is a radial potential if

(Rad) G(x) = g(|x|) for some function g : [0,+∞)→ R.

A radial potential is called an attractive potential if

(Attr) G(x) = g(|x|) with g ∈ C1((0,+∞) and g′(r) > 0 if r > 0.

Throughout the whole paper we shall require

(A1) S1, S2,K ∈ C2,γ(Rd) for a Hölder exponent 0 < γ ≤ 1.
(A2) S1, S2, and K satisfy (Rad).
(A3) K satis�es (Attr).

We are interested in the stationary states of (2), namely with the measures µ1

and µ2 satisfying {
div(µ1(∇S1 ∗ µ1 +∇K ∗ µ2)) = 0

div(µ2(∇S2 ∗ µ2 − α∇K ∗ µ1)) = 0.
(4)

Before de�ning our notion of solution for (2), we recall the basics tools in optimal
transport and review the theory for (2) developed in literature.

2.1. Wasserstein distances. Let p ∈ [1,+∞). We recall the de�nition of the
p-Wasserstein space of probability measures with �nite p-moment

Pp(R
d) =

{
µ ∈P(Rd) : mp(µ) =

∫
Rn

|x|p dµ(x) <∞
}
.

For a measure µ ∈P(Rd) and a Borel map T : Rd → Rk, denote with T#µ ∈P(Rd)
the push-forward of µ through T , de�ned by∫

Rk

f(y)dT#µ(y) =

∫
Rd

f(T (x))dµ(x) for all f Borel functions on Rk.

We endow the space Pp(R
d) with the Wasserstein distance, see for instance [1,2,32]

W p
p (µ, ν) = inf

γ∈Γ(µ,ν)

{∫
R2d

|x− y|pdγ(x, y)

}
, (5)
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where Γ(µ1, µ2) is the class of transport plans between µ and ν, that is the class
of measures γ ∈ P(R2d) such that, denoting by πi the projection operator on the
i-th component of the product space, the marginality condition

πi#γ = µi i = 1, 2

is satis�ed. By introducing Γo(µ, ν) as the class of optimal plans, in which the
minimum in (5) is achieved, we can rewrite the Wasserstein distance as

W p
p (µ, ν) =

∫
R2d

|x− y|pdγ(x, y), γ ∈ Γo(µ, ν).

The ∞-Wasserstein distance is de�ned on the space of compactly supported prob-
ability measures as

W∞(µ, ν) = lim
p→+∞

W p
p (µ, ν) = inf{ess supγ |x− y| : γ ∈ Γ(µ, ν)}.

Since we are working in a `multi-species' structure, we consider the product space
Pp(R

d)×Pp(R
d) endowed with a product structure. In the following we shall use

bold symbols to denote elements in a product space. For a p ∈ [1,+∞], we use the
notation

Wp
p(µ,ν) = W p

p (µ1, ν1) +W p
p (µ2, ν2),

with µ = (µ1, µ2),ν = (ν1, ν2) ∈Pp(R
d)×Pp(R

d).

2.2. Existence theory for (2). Concerning the well-posedness of (2) in a measure
sense, in [18] the authors present a systematic existence and uniqueness theory for
the general system of nonlocal interaction equations with two species{

∂tµ1 = div (µ1∇S1 ∗ µ1 + µ1∇K1 ∗ µ2)

∂tµ2 = div (µ2∇S2 ∗ µ2 + µ2∇K2 ∗ µ1)
, (6)

in which S1, S2,K1,K2 are even, locally Lipschitz continuous potentials with a
gradient which is continuous except possibly at the origin. We state our de�nition
of weak measure solution for (6), which uses the space P2(Rd).

De�nition 2.1. A curve µ(·) = (µ1(·), µ2(·)) : [0,+∞) → P2(Rd)2 is a weak
measure solution to (6) is, for all φ, ψ ∈ C∞c (Rd), we have

d

dt

∫
φ(x)dµ1(x, t) = −1

2

∫∫
∇H1(x− y) · (∇φ(x)−∇φ(y))dµ1(x)dµ1(y)

−
∫∫
∇K1(x− y) · ∇φ(x)dµ1(x)dµ2(y)

d

dt

∫
ψ(x)dµ2(x, t) = −1

2

∫∫
∇H2(x− y) · (∇ψ(x)−∇ψ(y))dµ2(x)dµ2(y)

−
∫∫
∇K2(x− y) · ∇ψ(x)dµ2(x)dµ1(y).

We recall that in the case of atomic initial conditions, namely with

µ(0) = (µ1(0), µ2(0)) =

 N∑
i=1

mX
i δXi(0),

M∑
j=1

mY
j δYj(0)

 ,

with mX
1 + . . .+mX

N = mY
1 + . . .+mY

M = 1, the moving particle solution

µ(t) = (µ1(t), µ2(t)) =

 N∑
i=1

mX
i δXi(t),

M∑
j=1

mY
j δYj(t)

 ,
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with
Ẋi(t) = −

N∑
k=1

mX
k ∇S1(Xi(t)−Xk(t))−

M∑
k=1

mY
k ∇K1(Xi(t)− Yk(t))

Ẏj(t) = −
M∑
k=1

mY
k ∇S2(Yj(t)− Yk(t))−

N∑
k=1

mX
k ∇K2(Yj(t)−Xk(t))

, (7)

for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}, formally satis�es (6) (rigorously when
S1, S2,K1,K2 ∈ C1(Rd)).

The following theorem states existence of weak measure solutions for (6). In such
a general setting, and in particular without requiring any algebraic constraint for the
four interaction potentials, the existence of weak measure solutions is provided using
an implicit-explicit version of the Jordan-Kinderlehrer-Otto (JKO) scheme [21],
provided ∇K1 and ∇K2 are continuous at the origin.

Theorem 2.1 (Existence of weak measure solutions [18] ). Assume S1, S2,K1,K2

are even, locally Lipschitz continuous potentials, and assume that ∇K1 and ∇K2 are
continuous on Rd and ∇S1 and ∇S2 are continuous on Rd \{0}. Let µ0 ∈P2(Rd)2

be �xed. Then, there exists an absolutely continuous curve µ(·) : [0,+∞) →
P2(Rd)2 such that µ(0) = µ0 and µ(t) is a weak measure solution to (6) in the
sense of De�nition 2.1.

Under the present assumptions on the interaction potentials, no uniqueness result
is proven in [18]. However, for C2 potentials, using a variant of the method of
characteristics, the following result holds.

Theorem 2.2 (Stability [18]). Let p ∈ [1,+∞]. Assume that S1, S2,K1,K2 are
C2 and consider two initial measures µ0,ν0 ∈ Pp(R

d)2 with compact support and
the corresponding weak measure solutions of (6) µ and ν. Then, there exists a

constant C̃ > 0 such that

Wp (µt,νt) ≤ eC̃tWp (µ0,ν0) t ≥ 0. (8)

Consequently, for a given initial condition µ0 ∈P(Rd)2
p, there exists a unique weak

measure solution to (6).

Proof. The proof in the case p = 2 is contained in [18, Theorem 4.2]. The general
case p ∈ [1,+∞) can be performed by following exactly the same procedure, and
will therefore be omitted. The proof for p = +∞ can be obtained by sending
p→ +∞ in the previous step. �

In the case of symmetrizable system, i.e. with cross-interaction potentials such
that

K1 = βK2 β > 0, (9)

the same results are proved through a generalization of the Wasserstein gradient
�ow theory approach [1, 2]. The relationship between the potential, in fact, brings
out an important property of the system: the system (6) can in fact be associated
with the energy functional

F(µ1, µ2) =
1

2

∫
Rd

H1 ∗ µ1dµ1 +
1

2

∫
Rd

H2 ∗ µ2dµ2 +

∫
Rd

K ∗ µ2dµ1,

and rewritten, at least formally, as
∂tµ1 = div

(
µ1∇

δF

δµ1

)
∂tµ2 = αdiv

(
µ2∇

δF

δµ2

) , (10)
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where the terms δF
δµ1

and δF
δµ2

can be interpreted at this stage as functional deriv-

ative in the spirit of Frechét derivative. The theory developed in [18] under the
assumption (9) requires the additional assumption that all the interaction kernels
S1, S2,K1,K2 are λ-convex for some λ ∈ R (i. e. convex up to quadratic per-
turbations in a suitable weighed metric structure on P2(Rd) ×P2(Rd)), but the
regularity of all the kernels can be relaxed to assuming that the gradient of all
kernels is continuous except at the origin.

It has been pointed out in [18] that the particle system (7) is a gradient �ow in
a suitable weighted �nite dimensional norm when K1 = βK2 for some β > 0, and
it is well known that the gradient �ow structure can partly compensate the lack
of regularity of the functional (i. e. of the interaction kernels) at the origin, in a
way to get uniqueness of solutions. Such a remark explains why the uniqueness
for (6) is a di�cult task with mildly singular potentials and when the symmetry
assumption (9) is dropped. Another problem that one has to tackle when (9) does
not hold is the fact that (6) has, in general, no other conserved quantities except
the total mass, whereas (9) implies that the joint center of mass

β

∫
xdµ1(x) +

∫
xdµ2(x)

is constant for all times.
Our system (2) does not fall into the class of symmetrizable systems (9), because

the two cross-interaction potentials are proportional via a negative constant in our
case. Hence, no gradient �ow structure can be used. Hence, the general results
in Theorem 2.1 and 2.2 apply. However, (2) has essentially a similar algebraic
structure to that of a symmetrizable system. Indeed, it is easy to show that the
joint center of mass

Cα(t) := α

∫
xdµ1(x)−

∫
xdµ2(x) (11)

is constant in time in (2). We shall see that such property is crucial in the study of
stationary states later on in the paper. For future use we recall the particle version
of (2):

Ẋi(t) = −
N∑
k=1

mk
X∇S1(Xi(t)−Xk(t))−

M∑
k=1

mk
Y∇K(Xi(t)− Yk(t))

Ẏj(t) = −
M∑
k=1

mk
Y∇S2(Yj(t)− Yk(t)) + α

N∑
k=1

mk
X∇K(Yj(t)−Xk(t))

, (12)

for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}.

2.3. The one dimensional case. We shall focus most of our attention on the one
dimensional case for (2){

∂tµ1 = ∂x(µ1(S′1 ∗ µ1 +K ′ ∗ µ2))

∂tµ2 = ∂x(µ2(S′2 ∗ µ2 − αK ′ ∗ µ1))
, (13)

In one space dimension, the Wasserstein distance can be expressed in terms of the
so called pseudo-inverse functions [15]. Consider a measure µ ∈ P(R) and let
R : R→ [0, 1] the distribution function associated to µ,

R(x) =

∫ x

−∞
dµ(x) = µ ((−∞, x]) .

De�ne the the pseudo-inverse function of the distribution function R on [0, 1) by

u(z) := inf {x ∈ R | R(x) > z} z ∈ [0, 1).
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Then, the p−Wasserstein distance can be expressed as the Lp-norm of the pseudo-
inverse function by

Wp(µ1, µ2) = ‖u1 − u2‖Lp([0,1]), (14)

where u1 and u2 are constructed from µ1 and µ2 respectively as above, see [32].
Clearly, u1 and u2 are non-decreasing functions.

The main advantage in introducing the pseudo-inverse functions is that we can
rewrite the system (2) in a convenient way to deal with convolutions, cf. for instance
[11, 15, 19, 20, 23]. Indeed, in terms of the pseudo-inverses u1 and u2, (13) can be
re-written as the system of integro-di�erential equations

∂tu1(z, t) =

∫ 1

0

S′1(u1(ζ, t)− u1(z, t))dζ +

∫ 1

0

K ′(u2(ζ, t)− u1(z, t))dζ

∂tu2(z, t) =

∫ 1

0

S′2(u2(ζ, t)− u2(z, t))dζ − α
∫ 1

0

K ′(u1(ζ, t)− u2(z, t))dζ

.

(15)
Another key advantage in using this formulation is that the atomic parts of

a probability measure µ correspond to piecewise constant regions of the pseudo-
inverse function u. For example let µ = δx0 , then the corresponding pseudo-inverse
variable is u ≡ x0 on [0, 1). If µ = γδx1

+ (1 − γ)δx2
with γ ∈ (0, 1), then the

corresponding pseudo-inverse is u = x11[0,γ) + x21[γ,1).

3. A systematic study of particle steady states

3.1. Particle steady states. In this section we focus on steady states for (2)
which are linear combinations of Dirac's deltas, namely µ̄1, µ̄2 ∈P(Rd), with

(µ̄1, µ̄2) =

(
N∑
k=1

mk
XδX̄k(x),

M∑
h=1

mh
Y δȲh(x)

)
. (16)

Hence, (12) implies the following steady state condition
0 =

N∑
k=1

∇S1(X̄k − X̄i)m
k
X +

M∑
h=1

∇K(Ȳh − X̄i)m
h
Y

0 =

M∑
h=1

∇S2(Ȳh − Ȳj)mh
Y − α

N∑
k=1

∇K(X̄k − Ȳj)mk
X

, (17)

for i ∈ {1, . . . , N} and j ∈ {1, . . . .M}. By taking the linear combination of the �rst
N equations in (17) with coe�cients mi

X for i = 1, . . . , N , since the assumptions
(A1) and (A2) imply ∇S1(0) = 0, we get the necessary condition

N∑
i=1

M∑
h=1

∇K(Ȳh − X̄i)m
h
Ym

i
X = 0, (18)

which is due to the fact that ∇S1 is an odd vector �eld.
We notice that d out of the d(N +M) conditions in (17) are redundant. Indeed,

by taking the linear combination of the �rst N equations (in Rd) with coe�cients
αmi

X with i = 1, . . . , N , plus the linear combination of the �nal M equations (in

Rd) with coe�cients −mj
Y with j = 1, . . . ,M , we get the trivial identity 0 = 0 in

Rd. Hence, system (17) alone is not enough to determine a unique steady state.
This is not surprising, since we know that the d-dimensional quantity

Cα = α

N∑
i=1

mi
XXi −

M∑
j=1

mj
Y Yj

is an invariant of the time-dependent problem, and therefore one would like to
produce a unique steady state once the quantity Cα is prescribed. Let us analyse
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this issue more in detail. Under the notation Ω = (X,Y ) ∈ Rd(N+M) with X ∈
(Rd)N and Y ∈ (Rd)M , consider the nonlinear mapping A : Rd(M+N) → Rd(M+N)

de�ned by A(Ω) = (a1
X(Ω), . . . , aNX(Ω), a1

Y (Ω), . . . , aMY (Ω)) and

aiX(Ω) =

N∑
k=1

∇S1(Xk −Xi)m
k
X +

M∑
h=1

∇K(Yh −Xi)m
h
Y , i = 1, . . . , N,

ajY (Ω) =

M∑
h=1

∇S2(Yh − Yj)mh
Y − α

N∑
k=1

∇K(Xk − Yj)mk
X , j = 1, . . . ,M.

We know that

α

N∑
i=1

mi
Xa

i
X(Ω)−

M∑
j=1

mj
Y a

j
Y (Ω) = 0, for all Ω ∈ Rd(M−N). (19)

Since (19) is a set of d equations, this implies that the image of Rd(M+N) through
A is a manifold of at most dimension d(M +N − 1). Let us assume for simplicity
that such dimension is exactly d(M +N − 1). Set

Λ = (αm1
X Id, . . . , αm

N
X Id,−m1

Y Id, . . . ,−mM
Y Id) ∈Md×d(N+M),

with Id being the identity matrix in Md×d, and consider the joint system

A(Ω) = 0, ΛΩ = c, (20)

for some c ∈ Rd. Let us denote by Λi the i-th row of Λ, i = 1, . . . , d. By the
implicit function theorem, a su�cient condition for (20) to be locally uniquely
solvable around some steady state Ω̄ is that the matrix(

DA(Ω̄)
Λ

)
(21)

has rank d(N +M). Under the assumption that A has a rank of dimension d(M +
N − 1), this is equivalent to requiring that no vector in span(Λ1, . . . ,Λd) belongs
to R(DA(Ω̄)T ) = Ker(DA(Ω̄))⊥. On the other hand, condition (19) gives

Λi ∈ Ker(DA(Ω̄)T ) = R(DA(Ω̄))⊥, for all i = 1, . . . , d.

Hence, by requiring the orthogonality condition

Ker(DA(Ω̄)T ) ∩Ker(DA(Ω̄))⊥ = {0}, (22)

we immediately obtain that the matrix in (21) has maximal rank, and therefore
(20) is locally solvable. If condition (22) is not satis�ed, then (20) is solvable only
for a restricted class of constants c.

In order to deepen the understanding of the above structure, we consider some
simple examples.

3.1.1. Example: one predator and one prey. In the case of one predator and one
prey in one space dimension, i. e. with a single Dirac mass in both components,
with the unique predator positioned in X̄ and the unique prey in Ȳ . Then, condition
(18) reduces to

K ′(X̄ − Ȳ ) = 0,

which is satis�ed if and only if X̄ = Ȳ . Actually, this is the only condition that
arises from system (17). In order to detect a unique steady state, one has to use
the constraint

αX̄ − Ȳ = c,

which gives, for α 6= 1, the unique solution

(X̄, Ȳ ) =

(
c

α− 1
,

c

α− 1

)
.
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For α = 1 the above solution is inconsistent, and one only has a solution if c = 0,
in which case every solution of the form (X̄, X̄) is a steady state.

In this case the matrix DA(X̄, Ȳ ) is given by

DA(X̄, Ȳ ) =

(
−K ′′(Ȳ − X̄) K ′′(Ȳ − X̄)
−αK ′′(Ȳ − X̄) αK ′′(Ȳ − X̄)

)
,

and the vector Λ = (α,−1). It is immediately clear that, assuming K ′′(Ȳ −X̄) 6= 0,
we have Ker(D(A(X̄, Ȳ ))T ) = [Λ], whereas Ker(D(A(X̄, Ȳ ))) = [(1, 1)]. Hence,
Ker(D(A(X̄, Ȳ )))⊥ = [(1,−1)]. Since

[(α,−1)] = [(1,−1)]

if and only if α = 1, we see the consistence with the general structure seen above.

3.1.2. One predator and two prey. Consider now the one dimensional con�guration
of one predator in X̄ and two prey in Ȳ1 and Ȳ2 with massesm and 1−m respectively,
with m ∈ (0, 1). Assume without restriction Ȳ1 < Ȳ2. Then, a necessary condition
for (X̄, Ȳ1, Ȳ2) to be a steady state is

mK ′(X̄ − Ȳ1) = (1−m)K ′(Ȳ2 − X̄).

The above condition can be satis�ed only if Ȳ1 < X̄ < Ȳ2, in particular, if m = 1
2 ,

thanks to the symmetry of the interaction kernel K, we have that the steady state
has the following symmetry property

Ȳ2 − X̄ = X̄ − Ȳ1.

Using the stationary equation for Ȳ1, one obtains the second condition

S′2(Ȳ2 − Ȳ1)

2
= αK ′

(
Ȳ2 − Ȳ1

2

)
.

We have two conditions for three unknowns. Once again, we need to invoke the
extra condition

αX̄ − 1

2
(Ȳ1 + Ȳ2) = c.

With the notation above, and with the notation K1 = K ′′(Ȳ1 − X̄), K2 =
K ′′(Ȳ2 − X̄), B = S′′2 (Ȳ2 − Ȳ1), we have

DA(X̄, Ȳ1, Ȳ2) =

−mK1 − (1−m)K2 mK1 (1−m)K2

−αK1 αK1 − (1−m)B (1−m)B
−αK2 mB αK2 −mB

 ,

and

Λ = (α,−m,−(1−m)).

Assuming Ker(DA(X̄, Ȳ1, Ȳ2)) ∩ (Ker(DA(X̄, Ȳ1, Ȳ2))T )⊥ 6= {0} implies, for some
µ, ν1, ν2 ∈ R,

µ

 α
−m

−(1−m)

 = ν1

 −αK1

αK1 − (1−m)B
(1−m)B

+ ν2

 −αK2

mB
αK2 −mB


and a simple computation implies µ = 0 if α = 1. Hence, once again, a unique
steady state exists if α 6= 1 provided the matrix DA(X̄, Ȳ1, Ȳ2) has rank at least
two. Such condition is satis�ed e.g. when

αK1K2 6= B(K1m−K2(1−m)).
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3.2. A general stability condition. We now turn to the linearised stability of
the steady states under the particle system (7). For simplicity, we shall now analyse
the one dimensional ODEs
Ẋi(t) =

N∑
k=1

mk
XS
′
1(Xk(t)−Xi(t)) +

M∑
h=1

mh
YK

′(Yh(t)−Xi(t)) i = 1, .., N

Ẏj(t) =

M∑
h=1

mh
Y S
′
2(Yh(t)− Yj(t))− α

N∑
k=1

mk
XK

′(Xk(t)− Yj(t)) j = 1, ..,M

,

(23)
with

N∑
k=1

mk
X =

M∑
h=1

mh
Y = 1.

A preliminary analysis on the linearised stability of stationary states for the ODE
system (23) can be an useful guideline for the analysis of the continuum model.

Assume that the masses m1
X , . . . ,m

N
X ,m

1
Y , . . . ,m

M
Y are �xed. Assume a steady

state Ω̄ = (X̄1, . . . , X̄N , Ȳ1, . . . , ȲM ) is given. We recall that the quantity

Mα(t) = α

N∑
i=1

mi
XXi(t)−

M∑
j=1

mj
Y Yj(t), (24)

is preserved in time. We recall that the constraint

α

N∑
i=1

mi
XXi −

M∑
j=1

mj
Y Yj = c (25)

for some c ∈ R is needed in order to select a unique steady state.
We now analyse the stability of the above steady state for (23). The linearised

system for (23) around Ω̄, with Ω(t) = Ω̄ + δΩ(t) and

δΩ(t) = (δX1, ..., δXN , δY1, ..., δYM ) ,

reads, for i = 1, ..N and j = 1, ..,M :
˙δXi = −

N∑
k=1

mk
XS
′′
1 (X̄i − X̄k) (δXi − δXk)−

M∑
h=1

mh
YK

′′(X̄i − Ȳh) (δXi − δYh)

˙δY j = −
M∑
h=1

mh
Y S
′′
2 (Ȳj − Ȳh) (δYj − δYh) + α

N∑
k=1

mk
XK

′′(Ȳj − X̄k) (δYj − δXk)

.

(26)
Clearly, the perturbed state must satisfy the constraint Mα(t) = c. Hence

(αm1
X , . . . , αm

N
X ,−m1

Y , . . . ,m
M
Y ) · δΩ = 0. (27)

By introducing the following quantities

diX =

 N∑
k=1, k 6=i

mk
XS
′′
1 (X̄i − X̄k) +

M∑
h=1

mh
YK

′′(X̄i − Ȳh)

 i = 1, .., N,

djY =

 M∑
h=1, h 6=j

mh
Y S
′′
2 (Ȳj − Ȳh)− α

N∑
k=1

mk
XK

′′(Ȳj − X̄k)

 j = 1, ..,M,
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the system (26) reads
˙δXi = −diXδXi +

N∑
k=1, k 6=i

mk
XS
′′
1 (X̄i − X̄k)δXk +

M∑
h=1

mh
YK

′′(X̄i − Ȳh)δYh

˙δY j = −djY δYj +

M∑
h=1, h 6=j

mh
Y S
′′
2 (Ȳj − Ȳh)δYh − α

N∑
k=1

mk
XK

′′(Ȳj − X̄k)δXk

.

(28)
We can easily rewrite the above system (28) in matrix form. We consider the
matrices:

S̄1 =
(
mk
XS
′′
1 (X̄i − X̄k)(1− δik)

)
i,k
, i = 1, ..., N, k = 1, ..., N (29)

S̄2 =
(
mh
Y S
′′
2 (Ȳj − Ȳh)(1− δj,h)

)
j,h
, j = 1, ...,M, h = 1, ...,M (30)

K̄X =
(
mh
YK

′′(X̄i − Ȳh)
)
i,h
, i = 1, ..., N, h = 1, ...,M (31)

K̄Y =
(
mk
XK

′′(Ȳj − X̄k)
)
j,k
, j = 1, ...,M, k = 1, ..., N, (32)

which collect all the second derivatives of the kernels in the steady state. Then, the
perturbed system (28) can be written as

d

dt
δΩ = (D +H) δΩ,

with

H =

 0 K̄X

−αK̄Y 0

 , D =

S̄1 + diag
(
− diX

)N
i=1

0

0 S̄2 + diag
(
− djY

)M
j=1

 .

Therefore, the system (26) is stable if and only if the matrix D + H, restricted to
the subspace (27), is stable, i. e. if all the eigenvalues corresponding to eigenvectors
in (27) have non-positive real part.

On the other hand, system (28) features a more re�ned structure that makes the
computation of the spectrum of D+H much easier. For �xed masses m1

X , . . . ,m
N
X ,

m1
Y , . . . ,m

M
Y with

N∑
i=1

mi
X =

M∑
j=1

mj
Y = 1,

we consider the weighted inner product on RN+M

〈Ω1,Ω2〉2,w = α

N∑
i=1

mi
XX1,iX2,i +

M∑
j=1

mj
Y Y1,iY2,i,

where we are using the block notation

Ω1 = (X1, Y1), Ω2 = (X2, Y2)

Xi = (Xi,1, . . . , Xi,N ), Y1 = (Yi,1, . . . , Yi,M ), for i = 1, 2.

Clearly, the inner product induces the weighted norm

‖Ω‖22,w = α

N∑
i=1

mi
XX

2
i +

M∑
j=1

mj
Y Y

2
j , Ω = (X,Y ) ∈ R

N+M .

One can easily see that the bilinear form

〈Ω1, DΩ2〉2,w
is symmetric, whereas the bilinear form

〈Ω1, HΩ2〉2,w
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is anti-symmetric. Indeed, due to the symmetry of S′′, we have

〈Ω1, DΩ2〉2,w

= −α
N∑
i=1

mi
XX1,iX2,id

i
X + α

N∑
i=1

∑
k 6=i

mi
Xm

k
XS
′′
1 (X̄i − X̄k)X1,iX2,k

−
M∑
j=1

mj
Y Y1,jY2,jd

j
Y +

M∑
j=1

∑
h6=j

mj
Ym

h
Y S
′′
2 (Ȳj − Ȳh)Y1,jY2,h

= 〈DΩ1,Ω2〉2,w,

and, due to the symmetry of K ′′,

〈Ω1, HΩ2〉2,w =

= α

N∑
i=1

M∑
h=1

mi
Xm

h
YK

′′(X̄i − Ȳh)X1,iY2,h

− α
M∑
j=1

N∑
k=1

mj
Ym

k
XK

′′(Ȳj − X̄k)Y1,jX2,k = −〈HΩ1,Ω2〉2,w.

Consequently, the perturbed system (28) satis�es the energy estimate

d

dt
‖δΩ‖22,w = 〈δΩ, DδΩ〉2,w + 〈δΩ, HδΩ〉2,w = 〈δΩ, DδΩ〉2,w, (33)

and only the spectrum of D plays a role in the stability of Ω̄. Notice that, in the
weighed space (Rd(N+M), 〈·, ·〉2,w), D is the symmetric part of the bilinear form
D +H.

3.3. Examples. We conclude this section by presenting some simple illustrative
examples of how the above stability condition results into a competition between
the predators' chasing ability and the prey ability to organize (e.g. via the attrac-
tive potential S2) and to escape from the predators. A key role is played by the
parameter α, which somehow rules the (normalised) velocity of the prey to escape
from the predators.

3.3.1. One predator and one prey. Following the �rst example in subsection 3.1.1,
let us consider the case of one particle per species, both with unit masses, i. e.{

Ẋ(t) = K ′(Y (t)−X(t))

Ẏ (t) = −αK ′(X(t)− Y (t))
, (34)

and let Ω̄ =
(
X̄, Ȳ

)
∈ R2 be a steady state. The linearised equations (28) are{

˙δX = −K ′′(0)δX +K ′′(0)δY
˙δY = −αK ′′(0)δX + αK ′′(0)δY

. (35)

Clearly, the perturbations δX and δY must satisfy αδX = δY in order to preserve
the joint center of mass.

This linear system (35) possesses the eigenvalues λ1 = 0 e λ2 = α− 1, therefore
the system is stable (but not asymptotically) if and only if α < 1. On the other
hand, by imposing the constraint αδX = δY , system (35) becomes

˙δY = (α− 1)K ′′(0)δY,

which is asymptotically stable if and only if α < 1, see Figure 1. Basically, in this
case the constraint on the joint center of mass forces the dynamical system (35) to
evolve only along the eigenspace corresponding to the unique non-zero eigenvalue.
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Figure 1. Di�erent behavior for a one particle per species system,

governed by a normalized Gaussian potential K(x) = 1
2 (1− e−x2

).
In the �rst column with α = 0.2 we have convergence to a single
point. In the second column instability for α > 1.

Notice that, in case α = 1 the linearised system is degenerate, with both δX and
δY constant in time, i. e. we have a continuum of admissible steady states, none
of which is asymptotically stable.

On the other hand, apart from any linearisation, we note that in this simple
case of one predator vs. one prey the nonlinear system (34) is explicitly solvable.
Indeed, assume

Mα = αX − Y = c ∈ R.

By substituting αX = Y − c into the �rst equation, we get

Ẋ(t) = K ′((α− 1)X(t)− c),

which has the implicit solution∫ X(t)

X(0)

dξ

K ′((α− 1)ξ − c)
= t.

Now, if α = 1 and c 6= 0 one has the explicit formulas

X(t) = X(0) +K ′(−c)t, Y (t) = X(0) +K ′(−c)t+ c,
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which shows the predator never catches the prey. If α = 1 and c = 0, then
X(t) = Y (t) = X(0) = Y (0) for all t ≥ 0. If α < 1, we easily see that the
particle X(t) approaches the steady con�guration (α− 1)/c in an in�nite time, due
to the fact that K ′(x) gets to zero linearly as x→ 0. If α > 1, one easily sees that
the predator X(t) gets far away from the steady state. This is due to the fact that
the prey does the same thing, but with a larger speed compared to the predator.

3.3.2. One predator and two prey. We focus now on a system with one predator
with mass mX = 1 and two prey with masses m1

Y = m2
Y = 1

2 :
Ẋ(t) = 1

2 (K ′(Y1(t)−X(t)) +K ′(Y2(t)−X(t)))

Ẏ1(t) = 1
2S
′
2(Y2(t)− Y1(t))− αK ′(X(t)− Y1(t))

Ẏ2(t) = 1
2S
′
2(Y1(t)− Y2(t))− αK ′(X(t)− Y2(t))

. (36)

Here, the necessary condition (18) is

K ′(Y1 −X) +K ′(Y2 −X) = 0,

i. e. it is just equivalent to the steady condition for the �rst equation in (36). As
can be seen in Subsection 3.1.2, a steady state (X̄, Ȳ1, Ȳ2) in this case must satisfy

Ȳ1 − X̄ = X̄ − Ȳ2,

where Ȳ1 ≤ Ȳ2 without restriction. This implies

X̄ =
Ȳ1 + Ȳ2

2
.

The usual constraint on the joint center of mass implies then

c = αX̄ − Ȳ1 + Ȳ2

2
=
α− 1

2
(Ȳ1 + Ȳ2) = (α− 1)X̄,

and that identi�es X̄. The remaining condition is

S′2(Ȳ2 − Ȳ1)

2
= αK ′

(
Ȳ2 − Ȳ1

2

)
.

It is clear that X̄ = Ȳ1 = Ȳ2 = c
α−1 is a solution. Whether or not another solution

with Ȳ2 − Ȳ2 > 0 exists, it depends on the form of the kernels S2 and K.
The linearised equations are:

˙δX(t) = −1

2

(
K ′′(Ȳ1 − X̄) +K ′′(Ȳ2 − X̄)

)
δX +

1

2
K ′′(Ȳ1 − X̄)δY1 +

1

2
K ′′(Ȳ2 − X̄)δY2,

˙δY 1(t) =

(
αK ′′(X̄ − Ȳ1)− 1

2
S′′2 (Ȳ2 − Ȳ1)

)
δY1 +

1

2
S′′2 (Ȳ2 − Ȳ1)δY2 − αK ′′(X̄ − Ȳ1)δX,

˙δY 2(t) =

(
αK ′′(X̄ − Ȳ2)− 1

2
S′′2 (Ȳ1 − Ȳ2)

)
δY2 +

1

2
S′′2 (Ȳ1 − Ȳ2)δY1 − αK ′′(X̄ − Ȳ2)δX.

Let us introduce Ai = 1
2K
′′(X̄ − Ȳi), for i = 1, 2 and B2 = 1

2S
′′
2 (Ȳ2− Ȳ1). As in the

previous example, the conserved joint momentum Mα decouples the above 3 × 3
system into a 2× 2 one. Indeed, the momentum constraint reads in this case

αδX =
1

2
(δY1 + δY2) ,

and that gives the reduced system

˙δY 1(t) = ((2α− 1)A1 −B2) δY1 + (B2 −A1)) δY2,

˙δY 2(t) = ((2α− 1)A2 −B2) δY2 + (B2 −A2)) δY1.
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Consider �rst the case X̄ = Ȳ1 = Ȳ2. We have in this case A1 = A2 = A :=
1
2K
′′(0) > 0 and B2 = 1

2S
′′
2 (0). Hence, we reduce to

˙δY 1(t) = ((2α− 1)A−B2) δY1 + (B2 −A) δY2,

˙δY 2(t) = ((2α− 1)A−B2) δY2 + (B2 −A) δY1,

with eigenvalues λ1 = 2A(α−1) and λ2 = 2αA−2B2, hence we obtain the following
su�cient stability conditions on α:

α < 1 α <
B2

A
. (37)

Let us now consider the possible nontrivial con�guration Ȳ2 > Ȳ1. Due to the
symmetry of K, we must have X̄− Ȳ1 = Ȳ2− X̄, so A1 = A2 = A := 1

2K
′′(X̄− Ȳ1),

with B2 = S′′2 (Ȳ2 − Ȳ1) as usual. Note that steady state is determined in unique
way by the symmetry and the conserved quantity

Mα = αX̄ − 1

2
(Ȳ1 + Ȳ2) = c

if α 6= 1. Indeed due to the symmetry of K ′, we have 2X̄ = Ȳ1 + Ȳ2, so the
conserved quantity Mα is equal to (α− 1) X̄. Hence, if α 6= 1, we have X̄ = c

α−1 ,

and Ȳ1 + Ȳ2 = 2c
α−1 . If α = 1, as before there are no steady states if c 6= 0. In the

case α 6= 1, the remaining condition to determine uniquely the steady state is

S′2(Ȳ2 − Ȳ1) = 2αK ′
(
Ȳ2 − Ȳ1

2

)
.

This con�guration yields the same expression for the eigenvalues as in the con�g-
uration X̄ = Ȳ1 = Ȳ2, except that Ȳ1, A and B2 are now depending on α, so the
conditions (37) are somewhat implicit in α. We do not tackle this issue in detail
at this stage. In the next example we shall prove the existence of nontrivial steady
states in the special case of Gaussian interactions.

In Figure 2 we consider normalized Gaussian cross-interaction potential and

self-interaction potentials is given by S2(x) = β2

2 (1− e−x2

) respectively. Note that

B2 = 1
2β2. For such a potential only the fully aggregated steady state can be stable,

whereas the separated states Ȳ2 > Ȳ1 are always unstable.

3.3.3. Two predator and two prey. As a last example, we consider the case of two
particle per species, all the agents having mass equal to 1/2, i. e.

Ẋ1(t) = 1
2S
′
1(X2(t)−X1(t)) + 1

2 (K ′(Y1(t)−X1(t)) +K ′(Y2(t)−X1(t)))

Ẋ2(t) = 1
2S
′
1(X1(t)−X2(t)) + 1

2 (K ′(Y1(t)−X2(t)) +K ′(Y2(t)−X2(t)))

Ẏ1(t) = 1
2S
′
2(Y2(t)− Y1(t))− α

2 (K ′(X1(t)− Y1(t)) +K ′(X2(t)− Y1(t)))

Ẏ2(t) = 1
2S
′
2(Y1(t)− Y2(t))− α

2 (K ′(X1(t)− Y2(t)) +K ′(X2(t)− Y2(t)))

.

(38)
A �rst trivial steady state is given by X̄1 = X̄2 = Ȳ1 = Ȳ2 = c

2(α−1) , with c given

by (25) and α 6= 1. We shall detect an example of nontrivial steady state as follows.
Assume

X̄1 < Ȳ1 < Ȳ2 < X̄2,

and

X̄2 − Ȳ2 = Ȳ2 − Ȳ1 = Ȳ1 − X̄1 = d > 0.

We consider for simplicity the following Gaussian cross interaction kernel

K(x) = −e− x
2

2 .
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Figure 2. Di�erent behavior for the 1 × 2 system. In the �rst
column we can see convergence to the single steady state at the
origin with β2 = 1.4 and α = 0.3. In second column β2 = 1 and
α = 0.5 so the second stability condition in (37) is violated. In the
last column completely unstable con�guration with β2 = 1.4 and
α = 1.5.

Let us set for simplicity

b1 =
1

2
S′1(X̄2 − X̄1), b2 =

1

2
S′2(Ȳ2 − Ȳ1).

By requiring that both S1 and S2 are attractive kernels, one has b1, b2 > 0. We set

aij =
1

2
K ′(X̄1 − Ȳj), i, j ∈ {1, 2}.

The stationary version of system (38) is equivalent to

a11 + a12 + a21 + a22 = 0,

b1 =
1

2
(a21 + a22 − a11−12),

b2 =
α

2
(a12 + a22 − a11 − a21).

With the above choice of K, the �rst equation above is automatically satis�ed. The
constants b1 and b2 are given by

b1 = de−2d2

+
d

2
e−

d2

2 , b2 = α

(
d

2
e−

d2

2 − de−2d2

)
.



18 MARCO DI FRANCESCO AND SIMONE FAGIOLI

Since b2 > 0, one needs the following condition

d >

√
2 log 2

3
,

which allows to detect b1 and b2 as a function of d. We leave the computation to
the reader, and we just note that by requiring e.g.

S1(x) = −A1e
−σx2

2 , S2(x) = −A2e
−σx2

2 , A1, A2, σ > 0,

a non trivial solution exists if

2A1σ > 1, and σ > 1.

Note that the constraint (25) allows to �x the center of mass

X̄1 + X̄2

2
=
Ȳ1 + Ȳ2

2
=

c

α− 1
.

Assume now that a steady state for (38) is given, and let us linearise around it.
We impose α (δX1 + δX2) = δY1 +δY2, and we reduce to the following 3×3 system

˙δX2 = − (2B1 +A21 +A22) δX2 +

(
A21 +

1

α
B1

)
δY1 +

(
A22 +

1

α
B1

)
δY2,

˙δY 1 = α (A11 −A21) δX2 + ((α− 1)A11 + αA21 −B2) δY1 + (B2 −A11) δY2,

˙δY 1 = α (A12 −A22) δX2 + (B2 −A12) δY1 + ((α− 1)A12 + αA22 −B2) δY2,

where we set Aij = 1
2K
′′(X̄i − Ȳj), B1 = 1

2S
′′
1 (X̄1 − X̄2) and B2 = 1

2S
′′
2 (Ȳ1 − Ȳ2).

Let us consider only the trivial stay state, where Aij = 1
2K
′′(0) = A > 0 (we

assume for simplicity that K ′′(0) > 0), B1 = 1
2S
′′
1 (0) and B2 = 1

2S
′′
2 (0). We have

˙δX2 = − (2B1 + 2A) δX2 +

(
A+

1

α
B1

)
δY1 +

(
A+

1

α
B1

)
δY2,

˙δY 1 = ((2α− 1)A−B2) δY1 + (B2 −A) δY2,

˙δY 1 = (B2 −A) δY1 + ((2α− 1)A−B2) δY2.

Since A > 0 the stability conditions are:

A+B1 > 0, α <
B2

A
, α < 1.

In Figure 3 we show some simulation for a normalized Gaussian cross-interaction

potential. The self-interaction potentials are given by S1(x) = β1

2 (1 − e−x2

) and

S2(x) = β2

2 (1− e−x2

) respectively.

4. Local nonlinear stability

In this section we provide a reasonable su�cient condition for the nonlinear
stability of the particle steady states considered in the previous section, when they
are seen as steady states to the one-dimensional continuum system{

∂tµ1 = ∂x(µ1(S′1 ∗ µ1 +K ′ ∗ µ2))

∂tµ2 = ∂x(µ2(S′2 ∗ µ2 − αK ′ ∗ µ1))
. (39)

More precisely, we shall perturb such steady states in a space of measure, namely
the ∞-Wasserstein space of probability measures. Our analysis is inspired by the
result for one species contained in [19,20]. Consider the particle steady state

µ̄ = (µ1, µ2) =

 N∑
i=1

mi
XδX̄i ,

M∑
j=1

mj
Y δȲj

 , (40)
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Figure 3. In �rst column convergence into the single steady state
for α = 0.2, attractive S1, i.e. β1 > 0 and β2 < 1. In second column
convergence with repulsive S1, i.e. 0 > β1 > −1, α = 0.2 and
β2 < 1. Unstable con�guration for α = β2 = 0.5 and α = β2 = 1
with 0 > β1 > −1 in third and fourth columns.

Following the notation in subsection 2.3, a particle steady state for the pseudo
inverse system

∂tu1(z, t) =

∫ 1

0

S′1(u1(ζ, t)− u1(z, t))dζ +

∫ 1

0

K ′(u2(ζ, t)− u1(z, t))dζ

∂tu2(z, t) =

∫ 1

0

S′2(u2(ζ, t)− u2(z, t))dζ − α
∫ 1

0

K ′(u1(ζ, t)− u2(z, t))dζ

.

(41)
can be written in the pseudo-inverse formalism as the non-decreasing step function
ū(z)

(ū1(z), ū2(z)) =

(
N∑
i=1

X̄i1IiX
(z),

M∑
h=1

Ȳh1IhY (z)

)
, (42)
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where the intervals above are given by

IhX =

∑
j<h

mj
X ,
∑
j≤m

mj
X

 with |IhX | = mh
X ,

IhY =

∑
j<h

mj
Y ,
∑
j≤m

mj
Y

 with |IhY | = mh
Y .

We show the local non-linear stability for the stationary states (42) of the pseudo-
inverse equation (41) under small L∞-perturbations vi(t, z) = ui(t, z) − ūi(z) for
i = 1, 2. Let us recall the de�nitions of the following quantities

dhX =

N∑
i=1

S′′1 (X̄i − X̄h)mi
X +

M∑
k=1

K ′′(Ȳk − X̄h)mk
Y h = 1, ..., N, (43)

dhY =

M∑
k=1

S′′2 (Ȳk − Ȳh)mk
Y − α

N∑
i=1

K ′′(X̄i − Ȳh)mi
X h = 1, ...,M. (44)

and de�ne, for k = 1, ...,M − 1, the following matrix

H =

diag(dhX) 0

0 diag(dkY )

−
 S̄1 K̄

−αK̄ S̄2

 = −(D +H), (45)

with D and H de�ed in Section 3.2. We also set

Λ = (αm1
X , . . . , αm

N
X ,−m1

Y , . . . ,−mM
Y ) ∈ R

N+M ,

and the hyperplane

VΛ = {Ω ∈ R
M+N : Λ · Ω = 0}.

In order to prove the local non-linear stability, we need the following lemma of
linear algebra, a proof of which can be found e.g. in [19,20].

Lemma 4.1. If, for all t > 0, a matrix A(t) ∈ L∞ (Mn(C)) satis�es σ(A) ⊂
{z ∈ C|R(z) > η > 0}, then for any induced matrix norm ||·||, there exists a constant
C > 0 such that for t > 0

||e
∫ t
0
A(s)ds|| ≤ C

(
1 + tn−1

)
e−ηt.

In particular, for A ∈Mn(C),

||e−At|| ≤ C
(
1 + tn−1

)
e−ηt.

We are now ready to state our main result.

Theorem 4.1. Let S1, S2 and K potentials under (A1), (A2) and (A3) assump-
tions. Consider a particle steady state (40) for system (39), and assume

(NS1) dhX , dkY in (43) and (44) are strictly positive for all h = 1, ..., N and k =
1, ...,M ;

(NS2) on the hyperplane VΛ, the matrix H de�ned in (45) has strictly positive
spectrum, i.e. for some ν > 0, σ(H

∣∣
VΛ

) ⊂ {z ∈ C|R(z) > ν > 0}.
Then there exist C, η, ε > 0 such that, for all initial data µ0 = (µ1,0, µ2,0) with
compact support and with

W∞ (µ1,0, µ̄1) +W∞ (µ2,0, µ̄2) < ε,

for all t > 0 we have

W∞ (µ1(t), µ̄1) +W∞ (µ2(t), µ̄2) < C
(
1 + tn−1

)
e−ηt.
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Proof. We shall work with the pseudo-inverse variables u1(t) and u2(t). We
recall that, for two compactly supported probability measures µ, ν, one has

W∞(µ, ν) = ‖u− v‖∞,
where u and v are the pseuso-inverse variables corresponding to µ and ν respectively.

The perturbations around the stationary states ui(t, z) = ūi(z) + vi(t, z) for
i = 1, 2, satisfy the equations

∂tv1(t, z) =

∫ 1

0

S′1(ū1(ζ)− ū1(z) + v1(t, ζ)− v1(t, z))dζ

+

∫ 1

0

K ′(ū2(ζ)− ū1(z) + v2(t, ζ)− v1(t, z))dζ,

∂tv2(t, z) =

∫ 1

0

S′2(ū2(ζ)− ū2(z) + v2(t, ζ)− v2(t, z))dζ

+

∫ 1

0

K ′(ū1(ζ)− ū2(z) + v1(t, ζ)− v2(t, z))dζ.

Thanks to a �rst order expansion around the stationary states and invoking the
de�nition of the step functions ūi in (42), the equation for v1 above reduces to

∂tv1(t, z) =

N∑
i=1

∫
IiX

S′′1 (X̄i − ū1(z))
(
vi1(t, ζ)− v1(t, z)

)
dζ

+

M∑
k=1

∫
IkY

K ′′(Ȳk − ū1(z))
(
vi2(t, ζ)− v1(t, z)

)
dζ +O(‖v1‖1+γ

∞ ) +O(‖v2‖1+γ
∞ )

= −v1(t, z)

(
N∑
i=1

S′′1 (X̄i − ū1(z))mi
X +

M∑
k=1

K ′′(Ȳk − ū1(z))mk
Y

)

+

N∑
i=1

S′′1 (X̄i − ū1(z))

∫
IiX

vi1(t, ζ)dζ

+

M∑
k=1

K ′′(Ȳk − ū1(z))

∫
IkY

vk2 (t, ζ)dζ +O(‖v1‖1+γ
∞ ) +O(‖v2‖1+γ

∞ ),

where vi1(t, ζ) denotes the restriction of v1(t, ζ) on IiX and vi2(t, ζ) denotes the
restriction of v2(t, ζ) on IiY . Taking d

h
X as de�ned in (43) we have

∂tv
h
1 (t, z) = −dhXvh1 (t, z) +

N∑
i=1

S′′1 (X̄i − X̄h)

∫
IiX

vi1(t, ζ)dζ

+

M∑
k=1

K ′′(Ȳk − X̄h)

∫
IkY

vk2 (t, ζ)dζ +O(‖v1‖1+γ
∞ ) +O(‖v2‖1+γ

∞ ). (46)

By integrating the above equation over the intervals IhX , for h = 1, ..., N , we have

∂tV
h
1 (t) = −V h1 (t)dhX +

N∑
i=1

S′′1 (X̄i − X̄h)mh
XV

i
1 (t)

+

M∑
k=1

K ′′(Ȳk − X̄h)mh
XV

i
2 (t) +O(‖v1‖1+γ

∞ ) +O(‖v2‖1+γ
∞ ),

with, for h = 1, ..., N and k = 1, ...,M

V h1 (t) =

∫
IhX

vh1 (t, z)dz, V k2 (t) =

∫
IkY

vh2 (t, z)dz. (47)
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Performing the same expansion for v2(t, z), for z ∈ IhY , we obtain that

∂tv
h
2 (t, z) = −dhY vh2 (t, z) +

M∑
k=1

S′′2 (Ȳk − Ȳh)V k2 (t)

− α
N∑
i=1

K ′′(X̄i − Ȳh)V i1 (t) +O(‖v1‖1+γ
∞ ) +O(‖v2‖1+γ

∞ ) (48)

and

∂tV
h
2 (t) = −dhY V h2 (t) +

M∑
k=1

S′′2 (Ȳk − Ȳh)mh
Y V

i
2 (t)

− α
N∑
i=1

K ′′(X̄i − Ȳh)mh
XV

i
1 (t) +O(‖v1‖1+γ

∞ ) +O(‖v2‖1+γ
∞ ).

with dhY de�ned in (44). Remember that the system posses a conserved quantity
Mα(t), that reduce to

α
N∑
i=1

V i1 (t) =

M∑
j=1

V j2 (t),

for perturbations. This allows to eliminate one component, for example we can
express VM2 (t) as a linear combination of the other masses V i1 and V j2 . Multiplying
(46) and (48) for sign(vh1 (t, z)) and sign(vh2 (t, z)) respectively, we have

∂t|vh1 | = −mh
1 |vh1 |+ sign(vh1 )

N∑
i=1

S′′1 (X̄i − X̄h)V i1

+ sign(vh1 )

M∑
k=1

K ′′(Ȳk − X̄h)V k2 +O(‖v1‖1+γ
∞ ) +O(‖v2‖1+γ

∞ )

and

∂t|vh2 | = −mh
2 |vh2 |+ sign(vh2 )

M∑
k=1

S′′2 (Ȳk − Ȳh)V k2 (t)

− αsign(vh2 )

N∑
i=1

K ′′(X̄i − Ȳh)V i1 (t) +O(‖v1‖1+γ
∞ ) +O(‖v2‖1+γ

∞ ).

Introducing

Ω(t) =
(
|v1

1 |, ..., |vN1 |, |v1
2 |, ..., |vM2 |, V 1

1 , ..., V
N
1 , V 1

2 , .., V
M−1
2

)
∈ R

2(N+M)−1,

we have,

d

dt
Ω(t) = A(t)Ω(t) +O

(
||Ω||1+γ

)
with A(t) =

−D O(t)

0 −H

 .

with D = diag(d1
X , ..., d

N
X , d

1
Y , ..., d

M
Y ), for some time dependent matrix O(t) which

is uniformly bounded in time. Thanks to (NS1), (NS2), reducing the matrix H

into an upper triangular form that we call H again

max {R(aii)} = max {−di,−R(hii)} ≤ max {−di,−ν} < 0.

Ω(t) is given by

Ω(t) = e
∫ t
0
A(s)dsΩ(0) +

∫ t

0

e
∫ t
s
A(τ)dτO

(
||Ω||1+γ

)
(τ)dτ.
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For Lemma 4.1, calling η = max {di, ν}

||Ω(t)||∞ ≤ C
(
1 + tn−1

)
e−ηt||Ω(0)||∞

+ C

∫ t

0

||Ω(s)||1+γ
∞

(
1 + (t− s)n−1

)
e−η(t−s)ds,

and a Gronwall type estimate closes the argument.

Remark 4.1. Similarly to what we have observed in particle stability analysis,
only the matrix

D =

S̄1 + diag
(
− diX

)N
i=1

0

0 S̄2 + diag
(
− djY

)M
j=1


contributes to the spectrum of the matrix H

4.1. Stability for a single Dirac Delta. In this subsection we consider, as an
illustrative example, the case in which the stationary states are constituted by a
single delta, namely

(µ1, µ2) = (δx̄, δx̄) (u1, u2) = (x̄, x̄) .

We are going to �nd conditions on the kernels and on the coe�cient α that ensure
linear stability of the stationary states. For S1, S2 and K smooth potentials, the
linearized equations for ui = x̄+ vi, i = 1, 2 read as{

∂tv1(z, t) = −(S′′1 (0) +K ′′(0))v1(z, t) + S′′1 (0)V1(t) +K ′′(0)V2(t)

∂tv2(z, t) = −(S′′2 (0)− αK ′′(0))v2(z, t) + S′′2 (0)V2(t)− αK ′′(0)V1(t)
. (49)

where V1 and V2 are the partial masses, de�ned by

Vi(t) =

∫ 1

0

vi(z, t)dz i = 1, 2.

We recall that the system has a conserved joint center of mass, that is equivalent
to the conservation of the joint mass Mα. Therefore, the conservation of Mα yields

αV1 = V2.

In order to study the linear stability of (49), we need a control on the terms
involving Vi. An integration over [0, 1] provides equations for V1 and V2:

d

dt
V1(t) = −(S′′1 (0) +K ′′(0))V1(t) + S′′1 (0)V1(t) + αK ′′(0)V1(t)

= (α− 1)K ′′(0)V1(t).

Now, with an explicit equation for V1 (and V2), we rewrite (49), that turns out to
be a completely decoupled system of �rst order linear integro-di�erential equations:

∂tv1(z, t) = −(S′′1 (0) +K ′′(0))v1(z, t) + (S′′1 (0) + αK ′′(0))V1(t)

∂tv2(z, t) = −(S′′2 (0)− αK ′′(0))v2(z, t) + (S′′2 (0)−K ′′(0))αV1(t)

∂tV1(t) = (α− 1)K ′′(0)V1(t)

. (50)

Note that, assuming K ′′(0) > 0, the equation for V1 provides the same stability
condition found in the particle case, namely α < 1. The equations for v1 and v2,
on the other hand, provide a non trivial condition on the combination between the
self-interaction kernels and the cross-interaction one. The matrix A reads as

A =

−(S′′1 (0) +K ′′(0)) 0 (S′′1 (0) + αK ′′(0))
0 −(S′′2 (0)− αK ′′(0)) (S′′2 (0)−K ′′(0))α
0 0 (α− 1)K ′′(0)

 ,
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and the stability conditions are

α < 1, S′′1 (0) +K ′′(0) > 0, and S′′2 (0) > αK ′′(0). (51)

We emphasize that the matrix

O =

(
S′′1 (0) + αK ′′(0)

(S′′2 (0)−K ′′(0))α

)
,

does not contribute to the stability analysis.

4.2. Stability of a non trivial singular state. We conclude this section consid-
ering the following steady state

(ū1, ū2) =

(
X̄,

2∑
i=1

Ȳi1IiY (z)

)
,

with interval's lengths given by m1
Y and m2

Y respectively. We have seen in 3.1.2
that the stationary condition for (ū1, ū2) is

K ′(X̄ − Ȳ1) =
m2
Y

m1
Y

K ′(Ȳ2 − X̄).

and choosing m1
Y = m2

Y = 1
2 , we have that the steady state

Ȳ2 − X̄ = X̄ − Ȳ1

is uniquely determined. A straightforward computation, using the conservation
condition αV1 = V 1

2 +V 2
2 , yields the following linearized equations around (ū1, ū2):

∂tv1 = −

(
S′′1 (0) +

1

2

2∑
k=1

K ′′(Ȳk − X̄)

)
v1 + S′′1 (0)V1 +

2∑
k=1

K ′′(Ȳk − X̄)V k2 ,

∂tv
1
2 =

(
αK ′′(X̄ − Ȳ1)− 1

2

2∑
k=1

S′′2 (Ȳk − Ȳ1)

)
v1

2 +

2∑
k=1

S′′2 (Ȳk − Ȳ1)V k2

− αK ′′(X̄ − Ȳ1)V1,

∂tv
2
2 =

(
αK ′′(X̄ − Ȳ2)− 1

2

2∑
k=1

S′′2 (Ȳk − Ȳ2)

)
v2

2 +

2∑
k=1

S′′2 (Ȳk − Ȳ2)V k2

− αK ′′(X̄ − Ȳ2)V1,

∂tV
1
2 =

(
αK ′′(X̄ − Ȳ1)− 1

2
S′′2 (Ȳ2 − Ȳ1)

)
V 1

2 +
1

2
S′′2 (Ȳ2 − Ȳ1)V 2

2 − αK ′′(X̄ − Ȳ1)V1,

∂tV
2
2 =

(
αK ′′(X̄ − Ȳ2)− 1

2
S′′2 (Ȳ1 − Ȳ2)

)
V 2

2 +
1

2
S′′2 (Ȳ1 − Ȳ2)V 1

2 − αK ′′(X̄ − Ȳ2)V1,

We set A = K ′′(X̄ − Ȳ2) = K ′′(X̄ − Ȳ2), B1 = S′′1 (0) and

B2 =
1

2
S′′2 (Ȳ2 − Ȳ1), B̂2 =

1

2

(
S′′2 (0) + S′′2 (Ȳ1 − Ȳ2)

)
,

we have

∂tv1 = − (A+B1) v1 +

(
A+

1

α
B1

)
V 1

2 +

(
A+

1

α
B1

)
V 2

2 ,

∂tv
1
2 =

(
αA− B̂2

)
v1

2 + (S′′2 (0)−A)V 1
2 +

(
S′′2 (Ȳ2 − Ȳ1)−A

)
V 2

2 ,

∂tv
2
2 =

(
αA− B̂2

)
v2

2 +
(
S′′2 (Ȳ1 − Ȳ2)−A

)
V 1

2 + (S′′2 (0)−A)V 2
2 ,

∂tV
1
2 = ((α− 1)A−B2)V 1

2 + (B2 −A)V 2
2 ,

∂tV
2
2 = (B2 −A)V 1

2 + ((α− 1)A−B2)V 2
2 .
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with associated matrix

A =


A+B1 0 0 A+ 1

αB1 A+ 1
αB1

0 αA− B̂2 0 S′′2 (0)−A S′′2 (Ȳ2 − Ȳ1)−A
0 0 αA− B̂2 S′′2 (Ȳ1 − Ȳ2)−A S′′2 (0)−A
0 0 0 (α− 1)A−B2 B2 −A
0 0 0 B2 −A (α− 1)A−B2

 .

A simple stability analysis can be performed here as in the previous example, and
one can get similar conditions to (51). We omit the details.

5. Numerical simulations in two dimensions

In the following we show some numerical simulations for system (12), in dimen-
sion d = 2. We start considering two species with the same number of individuals,
N = M = 200, and the dynamic driven by normalized Gaussian potentials. In
Figure 4 the self-interaction is attractive for both predators and prey. Predators,
represented by blue dots, are subordinate to two attractive potentials, so they col-
lapse very fast to the center of mass of the whole system, while prey run far away
from the center, thus creating a circular pattern and, after a while, they start ag-
gregating. Note that, after the aggregation, predators remain in the position of the
center of mass.

Figure 4. Normalized Gaussian self-attractive potentials for both
predators and prey.

A similar situation is shown in Figure 5, where we put attractive self-interaction
for the predators and repulsive self-interaction for prey. Predators behave as in the
previous simulation, prey start running far away from the center but the repulsive
self-interaction organize the particles in a uniform distribution.

Let us consider now N = 10, M = 200, so we have less predators than prey.
Still considering in Figure 6 normalized Gaussian potentials with self-attraction for
predators and self-repulsion for prey, we can see that predators start to rotating
around the center of mass trying to catch the prey.

A more realistic situation can be reproduced considering di�erent potentials.
This is the case of �gure Figure 7 where we consider cross-interaction potential

K(x) = 1− (|x|+ 1)e−|x| (52)

and the usual normalized Gaussian for the self interaction, attracting for predators
and repulsive for prey.
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Figure 5. Normalized Gaussian self-attractive potentials preda-
tors and repulsive for prey.

Figure 6. Normalized Gaussian self-attractive potentials preda-
tors and repulsive for prey with less predators then prey.

Another realistic situation is shown in Figure 8, where we consider repulsive
self-interaction for prey and no self interaction for the predators. In Figure 9, we
present the opposite situation with no self-interaction for the prey.
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Figure 7. A realistic catching with cross-interaction given by (52).
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