Functional Analysis in Applied Mathematics and Engineering: First Mid term exam - 09/11/2018

(1) (i) Let X be a metric space and $C(X)$ be the space of continuous functions $f: X \rightarrow \mathbb{R}$.
(a) Define the uniform norm $\|\cdot\|_{\infty}$ on $C(X)$.

Solution: $\|f\|_{\infty}=\sup _{x \in X}|f(x)|$.
(b) Let $f_{n} \in C(X)$ and $f_{n} \rightarrow f$ uniformly. Prove that f is continuous.

Solution: Let $x \in X$ and let $\varepsilon>0$. We need to prove that there exists $\delta>0$ such that $d(x, y)<\delta$ implies $|f(x)-f(y)|<\varepsilon$. Because of the uniform convergence of f_{n} to f, there exists $N \in \mathbb{N}$ such that $\left\|f_{n}-f\right\|_{\infty}<\varepsilon / 3$ for all $n \geq N$. In particular, $\left\|f_{N}-f\right\|_{\infty}<\varepsilon / 3$. Since f_{N} is continuous, there is a $\delta>0$ such that $d(x, y)<\delta$ implies $\left|f_{N}(x)-f_{N}(y)\right|<\varepsilon / 3$. Now, assuming $d(x, y)<\delta$ we get

$$
\begin{aligned}
& |f(x)-f(y)| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right| \\
& \quad \leq 2\left\|f_{N}-f\right\|_{\infty}+\left|f_{N}(x)-f_{N}(y)\right|<2 \varepsilon / 3+\varepsilon / 3=\varepsilon,
\end{aligned}
$$

and the assertion is proven.
(ii) (a) State (without proof) Arzelá-Ascoli Theorem.

Solution: Let (K, d) be a compact metric space and let $C(K)$ be the space of continuous functions $f: K \rightarrow \mathbb{R}$ equipped with the $\|\cdot\|_{\infty}$ norm. A subset $\mathcal{F} \subset C(K)$ is precompact if and only if it is bounded and equicontinuous.
(b) Let $M>0$. Prove that the set
$\mathcal{B}_{M}=\{f:[0,1] \rightarrow \mathbb{R}: f$ is Lipschitz, $\operatorname{Lip}(f) \leq M$, and $f(0)=0\}$ is relatively compact in $C([0,1])$. (Hint: Use Arzelá-Ascoli Theorem)

Solution: We use Arzelá-Ascoli Theorem. We need to show that \mathcal{B}_{M} is bounded and equicontinuous. The Lipschitz condition $|f(x)-f(y)| \leq M|x-y|$ with $y=0$ implies

$$
|f(x)| \leq|f(x)-f(0)|+|f(0)| \leq M|x| \leq M
$$

because $x \in[0,1]$. Hence, $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)| \leq M$ for all $f \in \mathcal{B}_{M}$, which means that \mathcal{B}_{M} is bounded. Moreover, the same Lipschitz condition above implies that, for a given $\varepsilon>0$, choosing $\delta=\varepsilon / M$ and assuming $|x-y|<\delta$ one gets

$$
|f(x)-f(y)| \leq M|x-y|<M \delta=M \frac{\varepsilon}{M}=\varepsilon,
$$

and therefore \mathcal{B}_{M} is equicontinuous.
(iii) Consider the sequence of continuous functions $f_{n}:[0,1] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f_{n}(x)=\frac{n^{2} x^{2}}{1+n^{3} x^{3}} \tag{2}
\end{equation*}
$$

(a) Prove that $f_{n} \rightarrow 0$ pointwise on $[0,1]$ as $n \rightarrow+\infty$.

Solution: for $x=0$ we get $f_{n}(0)=0$, and therefore $f_{n}(0)$ trivially tends to zero for $n \rightarrow+\infty$. If $x \neq 0$ we have

$$
0 \leq \frac{n^{2} x^{2}}{1+n^{3} x^{3}} \leq \frac{n^{2} x^{2}}{n^{3} x^{3}}=\frac{1}{n x} \rightarrow 0
$$

as $n \rightarrow+\infty$. Therefore, by comparison we get $f_{n}(x) \rightarrow 0$ for all $x \in[0,1]$ as $n \rightarrow+\infty$.
(b) Does $f_{n} \rightarrow 0$ uniformly on [0,1$]$? Motivate your answer suitably.

Solution: We need to compute $\left\|f_{n}\right\|_{\infty}=\max _{x \in[0,1]}\left|f_{n}(x)\right|$. Since $f_{n} \geq 0$, we need to find the maximum of f_{n}, which we may do by computing

$$
f_{n}^{\prime}(x)=\frac{2 n^{2} x\left(1+n^{3} x^{3}\right)-3 n^{3} x^{2} n^{2} x^{2}}{\left(1+n^{3} x^{3}\right)^{2}}=\frac{2 n^{2} x-n^{5} x^{4}}{\left(1+n^{3} x^{3}\right)^{2}}=\frac{n^{2} x\left(2-n^{3} x^{3}\right)}{\left(1+n^{3} x^{3}\right)^{2}}
$$

which gives a stationary point for f_{n} at $x_{n}=2^{1 / 3} / n$. Computing $f_{n}\left(x_{n}\right)=$ $\frac{2^{2 / 3}}{3}>0$, which means that $\left\|f_{n}\right\|_{\infty}$ is positive and constant with respect to n, so it cannot converge to zero. Hence, f_{n} does not converge to zero uniformly.
(2) (i) (a) Provide the definition of Lebesgue integral $\int \phi(x) d x$ for a simple function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Solution: Given a simple function $\varphi(x)=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{E_{i}}$ for some $n \in \mathbb{N}$, some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ without repetitions, and for some Lebesgue measurable sets E_{1}, \ldots, E_{n} such that $E_{i} \cap E_{j}=\emptyset$ if $i \neq j$, we get

$$
\int \varphi(x) d x=\sum_{i=1}^{n} \alpha_{i} m\left(E_{i}\right) .
$$

(b) Provide the definition of Lebesgue integral $\int f(x) d x$ for a measurable function
$f: \mathbb{R}^{d} \rightarrow[0,+\infty]$.

Solution:

$\int f(x) d x=\sup \left\{\int \varphi(x) d x: \varphi(x) \leq f(x)\right.$ for a. e. $x \in \mathbb{R}^{d}$ and φ is simple $\}$.
(c) Define the L^{p} norm for a measurable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $p<+\infty$. [1] Solution: $\|f\|_{L^{p}}=\left(\int|f(x)|^{p} d x\right)^{1 / p}$.
(ii) (a) State (without proof) Fatou's Lemma.

Solution: Let $f_{n}: \mathbb{R}^{d} \rightarrow[0,+\infty]$ be a sequence of measurable functions.
Then

$$
\int\left(\liminf _{n \rightarrow+\infty} f_{n}(x)\right) d x \leq \liminf _{n \rightarrow+\infty} \int f_{n}(x) d x
$$

(b) Provide an example of sequence $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ of measurable functions such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}} f_{n}(x) d x \neq \int_{\mathbb{R}}\left(\lim _{n \rightarrow+\infty} f_{n}(x)\right) d x \tag{2}
\end{equation*}
$$

Solution: Set $f_{n}: \mathbb{R} \rightarrow[0,+\infty)$ with $f_{n}(x)=\mathbf{1}_{n, n+1}(x)$. For a given $x \in \mathbb{R}$, let n be the a positive integer such that $n-1 \geq x$. Then $f_{k}(x)=0$ for all $k \geq n$, therefore $f_{n}(x) \rightarrow 0$ for all $x \in \mathbb{R}$. So,

$$
\int\left(\liminf _{n \rightarrow+\infty} f_{n}(x)\right) d x=0
$$

in this case. On the other hand, for all $n \in \mathbb{N}$ we have

$$
\int f_{n}(x) d x=\int_{n}^{n+1} 1 d x=1
$$

which implies that $\liminf _{n \rightarrow+\infty} \int f_{n}(x) d x=1$ in this case.
(iii) State and prove Hoelder's inequality.

Solution: The inequality states

$$
\|f g\|_{L^{1}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

if p and q are conjugate numbers in $[1,+\infty]$. The proof in the case $p=1$ and $q=+\infty$ follows from the estimate

$$
\|f g\|_{L^{1}}=\int|f(x) g(x)| d x \leq \int|f(x)|\|g\|_{L^{\infty}} d x=\|g\|_{L^{\infty}}\|f\|_{L^{1}}
$$

In the case $p>1$, for all $\alpha>0$ Young's inequality implies

$$
|f(x) g(x)| \leq \alpha|f(x)| \frac{|g(x)|}{\alpha} \leq \frac{\alpha^{p}|f(x)|^{p}}{p}+\frac{|g(x)|^{p}}{q \alpha^{q}}
$$

Integrating we get

$$
\|f g\|_{L^{1}} \leq \frac{\alpha^{p}}{q}\|f\|_{L^{p}}^{p}+\frac{1}{q \alpha^{q}}\|g\|_{L^{q}}^{q} .
$$

Optimizing in $\alpha>0$ the above right hand side we obtain that the minimum value is achieved at

$$
\alpha=\frac{\|g\|_{L^{q}}^{1 / p}}{\|f\|_{L^{p}}^{1 / q}} .
$$

We then get

$$
\|f g\|_{L^{1}} \leq \frac{1}{q}\|f\|_{L^{p}}^{p-p / q}\|g\|_{L^{q}}+\frac{1}{q}\|g\|_{L^{q}}^{q-q / p}\|f\|_{L^{p} .}
$$

Since p and q are conjugate, we get $p-p / q=p(1-1 / q)=p / p=1$ and $q-q / p=$ $q(1-1 / p)=q / q=1$, which implies the assertion.
(iv) Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{\arctan x}{\sqrt{x}}
$$

Find all $p \in[1,+\infty]$ such that $f \in L^{p}((0,+\infty))$. Motivate your answer.
Solution: We have to find all $p \in[1,+\infty]$ such that

$$
\int_{0}^{+\infty} \frac{(\arctan x)^{p}}{x^{p / 2}} d x<+\infty
$$

We immediately notice that the above integrand is bounded near $x=0$. Indeed,

$$
\frac{(\arctan x)^{p}}{x^{p / 2}} \simeq x^{p / 2} \quad \text { as } n \rightarrow 0
$$

which follows by a simple first order Taylor expansion of the arctan function. Therefore, the problem is only affected by the behavior of the integrand at $+\infty$. Now, if $p>2$, since $\arctan x \leq \pi / 2$, we have

$$
\begin{aligned}
& \int_{1}^{+\infty} \frac{(\arctan x)^{p}}{x^{p / 2}} d x \leq \int_{1}^{+\infty} \frac{\pi^{p}}{2^{p} x^{p / 2}} d x \\
& =\frac{\pi^{p}}{2^{p}} \int_{1}^{+\infty} x^{-p / 2} d x=\frac{\pi^{p}}{2^{p}} \lim _{R \rightarrow+\infty} \frac{1}{p / 2-1}\left(1-R^{1-p / 2}\right) \\
& =\frac{\pi^{p}}{2^{p}} \frac{1}{p / 2-1}<+\infty
\end{aligned}
$$

On the other hand, if $p \in[1,2]$, we know that $\arctan x \geq \pi / 4$ for all $x \geq 1$, which implies

$$
\int_{1}^{+\infty} \frac{(\arctan x)^{p}}{x^{p / 2}} d x \geq \frac{\pi^{p}}{4^{p}} \int_{1}^{+\infty} x^{-p / 2} d x
$$

which is infinite because $-p / 2 \geq \leq-1$. Therefore, the answer is $p>2$.

