Functional Analysis in Applied Mathematics and Engineering:

First Mid term exam - 09/11/2018

(1) (i) Let X be a metric space and C'(X) be the space of continuous functions f : X — R.

(a) Define the uniform norm || - ||oc on C'(X). 1]
Solution: || f||cc = sup,cx |f(2)]
(b) Let f, € C(X) and f,, = f uniformly. Prove that f is continuous. [4]

Solution: Let x € X and let ¢ > 0. We need to prove that there exists
d > 0 such that d(z,y) < 0 implies |f(z) — f(y)| < €. Because of the uniform
convergence of f,, to f, there exists N € N such that || f,, — fllcc < &/3 for all
n > N. In particular, | fy — fllec < €/3. Since fy is continuous, there is a
0 > 0 such that d(x,y) < 0 implies |fn(z) — fn(y)| < €/3. Now, assuming
d(z,y) < 0 we get

[f (@) = F@) < [f (@) = In (@) + [ fn (@) = In ()] + v (y) = F(y)l

<2/fn = flloo + [ fn(2) — fn(y)l <2e/3+e/3=¢,

and the assertion is proven.

State (without proof) Arzeld-Ascoli Theorem. 2]
Solution: Let (K,d) be a compact metric space and let C'(K) be the space
of continuous functions f : K — R equipped with the || - ||cc norm. A subset
F C C(K) is precompact if and only if it is bounded and equicontinuous.
Let M > 0. Prove that the set

By =A{f:[0,1] = R : f is Lipschitz, Lip(f) < M, and f(0) = 0}

is relatively compact in C([0,1]). (Hint: Use Arzeld-Ascoli Theorem) (3]
Solution: We use Arzeld-Ascoli Theorem. We need to show that By, is
bounded and equicontinuous. The Lipschitz condition |f(x)— f(y)| < M|z—y]|
with y = 0 implies

[f (@) < |f (@) = FO)[+F(0)] < Mlz| < M

because € [0, 1]. Hence, || f||coc = supgep1)|f(x)| < M for all f € Bas, which
means that Bjs is bounded. Moreover, the same Lipschitz condition above
implies that, for a given € > 0, choosing § = ¢/M and assuming |z — y| < 0

one gets

F(@) = fW) < Mle —y| < M6 = M7 =,



and therefore B) is equicontinuous.

(iii) Consider the sequence of continuous functions f, : [0,1] = R

n2z?
) =
(a) Prove that f,, — 0 pointwise on [0, 1] as n — +o0. 2]

Solution: for 2 = 0 we get f,,(0) = 0, and therefore f,(0) trivially tends to

zero for n — +oo. If z £ 0 we have

2.2 2,.2 1

0<% nr -0
~ 14 n3z3 ~ ndzd3  nax

as n — +oo. Therefore, by comparison we get f,(z) — 0 for all z € [0,1] as
n — +o0.
(b) Does f, — 0 uniformly on [0, 1]? Motivate your answer suitably. 2]
Solution: We need to compute || fy|lc = maxgejo 1] [fn(®)]. Since f,, >0, we
need to find the maximum of f,, which we may do by computing
C2nx(1+nP2?) — 3nda*n?a? 2z —nPat nPa(2 — nda?)

(1 + ndz3)? T (T+ndz)?2 (14 nsad)?

which gives a stationary point for f, at x, = 2V/3/n. Computing f,(z,) =
@ > 0, which means that || f, || is positive and constant with respect to n,

so it cannot converge to zero. Hence, f,, does not converge to zero uniformly.

(2) (i) (a) Provide the definition of Lebesgue integral [ ¢(x)dx for a simple function
¢: R = R. 1]
Solution: Given a simple function p(z) = > | a;1p, for some n € N, some
at, ..., an € R without repetitions, and for some Lebesgue measurable sets

Ei,...,Ey, such that E;NE; =0 if i # j, we get

/cp(x)dx = Zalm(EZ)
=1

(b) Provide the definition of Lebesgue integral [ f(z)dx for a measurable function
f:R% — [0, 4+00]. 1]

Solution:

/f(x)da: = sup {/ap(m)d:p : o(x) < f(z) for a. e. x € R? and ¢ is simple} .

(c) Define the LP norm for a measurable function f : R? — R with p < 4-o00. [1]
Solution: ||f||z» = ([ |f(z)Pdz)"”.



(ii)  (a) State (without proof) Fatou’s Lemma. 1]

Solution: Let f,, : R? — [0,+00] be a sequence of measurable functions.

Then
o <
/(%E}-Igf"(x)> dx hmlnf/fn

(b) Provide an example of sequence f,, : R — R of measurable functions such that
i ot [ (i i) ae
2]

Solution: Set f,, : R — [0,+00) with f,(z) = 1, n4+1(z). For a given z € R,
let n be the a positive integer such that n —1 > z. Then f(x) = 0 for all
k > n, therefore f,(z) — 0 for all z € R. So,

[ (it oo e =0

in this case. On the other hand, for all n € N we have

/fn(m)da: _ /:H ldo =1,

which implies that liminf,, | [ fn(z)dz =1 in this case.
(iii) State and prove Hoelder’s inequality. [4]

Solution: The inequality states

Ifalle < W fllzellglize

if p and ¢ are conjugate numbers in [1,4o0c]. The proof in the case p = 1 and

q = +oo follows from the estimate

19l Z/\f(ft)g(fv)ldx S/If(fv)l\lgHLoodw = llgllzellfllz1-

In the case p > 1, for all & > 0 Young’s inequality implies

o @I o)
D qod

7@t < o ) 12 <

Integrating we get

aP 1
ol < S 1A + ol

Optimizing in « > 0 the above right hand side we obtain that the minimum value

is achieved at

1
lgllyr

A




We then get
1 p—p/4q 1 q—q/p
[fgll < 5Hf||Lp lgllze + 5||9||Lq [FalyZe

Since p and ¢ are conjugate, we get p —p/q=p(l —1/q) =p/p=1and ¢ —q/p =
q(1 —1/p) = q/q = 1, which implies the assertion.
Let f:(0,+00) = R be defined by

arctanx
fz) = T
Find all p € [1, +o0] such that f € LP((0,+00)). Motivate your answer. [4]

Solution: We have to find all p € [1,400] such that

/+°° (arctan )
0

P
o2 dr < +o0.

We immediately notice that the above integrand is bounded near z = 0. Indeed,

arctan x)?
G
xp/2

which follows by a simple first order Taylor expansion of the arctan function. There-
fore, the problem is only affected by the behavior of the integrand at 4+o0o. Now, if

p > 2, since arctanz < /2, we have

400 P +o00 P
/ (arctan ) d < / ™
1 g;p/2 1 2}7:13]7/2
+
_m [ PPy = s lim ! (1 - Rl_p/2)
» 2 Rotoo p/2 — 1
LS S
= —— 00.
% p/2 — 1
On the other hand, if p € [1,2], we know that arctanz > 7/4 for all x > 1, which
implies
/+°° (arctanx)pdx > P Heo P2y
1 ap/? 4 Jy

which is infinite because —p/2 >< —1. Therefore, the answer is p > 2.



