
Functional Analysis in Applied Mathematics and Engineering:

First Mid term exam - 09/11/2018

(1) (i) Let X be a metric space and C(X) be the space of continuous functions f : X → R.

(a) Define the uniform norm ‖ · ‖∞ on C(X). [1]

Solution: ‖f‖∞ = supx∈X |f(x)|.
(b) Let fn ∈ C(X) and fn → f uniformly. Prove that f is continuous. [4]

Solution: Let x ∈ X and let ε > 0. We need to prove that there exists

δ > 0 such that d(x, y) < δ implies |f(x)− f(y)| < ε. Because of the uniform

convergence of fn to f , there exists N ∈ N such that ‖fn − f‖∞ < ε/3 for all

n ≥ N . In particular, ‖fN − f‖∞ < ε/3. Since fN is continuous, there is a

δ > 0 such that d(x, y) < δ implies |fN (x) − fN (y)| < ε/3. Now, assuming

d(x, y) < δ we get

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|

≤ 2‖fN − f‖∞ + |fN (x)− fN (y)| < 2ε/3 + ε/3 = ε,

and the assertion is proven.

(ii) (a) State (without proof) Arzelá-Ascoli Theorem. [2]

Solution: Let (K, d) be a compact metric space and let C(K) be the space

of continuous functions f : K → R equipped with the ‖ · ‖∞ norm. A subset

F ⊂ C(K) is precompact if and only if it is bounded and equicontinuous.

(b) Let M > 0. Prove that the set

BM = {f : [0, 1] → R : f is Lipschitz, Lip(f) ≤ M , and f(0) = 0}
is relatively compact in C([0, 1]). (Hint: Use Arzelá-Ascoli Theorem) [3]

Solution: We use Arzelá-Ascoli Theorem. We need to show that BM is

bounded and equicontinuous. The Lipschitz condition |f(x)−f(y)| ≤ M |x−y|
with y = 0 implies

|f(x)| ≤ |f(x)− f(0)|+ |f(0)| ≤ M |x| ≤ M

because x ∈ [0, 1]. Hence, ‖f ||∞ = supx∈[0,1] |f(x)| ≤ M for all f ∈ BM , which

means that BM is bounded. Moreover, the same Lipschitz condition above

implies that, for a given ε > 0, choosing δ = ε/M and assuming |x − y| < δ

one gets

|f(x)− f(y)| ≤ M |x− y| < Mδ = M
ε

M
= ε,



and therefore BM is equicontinuous.

(iii) Consider the sequence of continuous functions fn : [0, 1] → R

fn(x) =
n2x2

1 + n3x3
.

(a) Prove that fn → 0 pointwise on [0, 1] as n → +∞. [2]

Solution: for x = 0 we get fn(0) = 0, and therefore fn(0) trivially tends to

zero for n → +∞. If x 6= 0 we have

0 ≤ n2x2

1 + n3x3
≤ n2x2

n3x3
=

1

nx
→ 0

as n → +∞. Therefore, by comparison we get fn(x) → 0 for all x ∈ [0, 1] as

n → +∞.

(b) Does fn → 0 uniformly on [0, 1]? Motivate your answer suitably. [2]

Solution: We need to compute ‖fn‖∞ = maxx∈[0,1] |fn(x)|. Since fn ≥ 0, we

need to find the maximum of fn, which we may do by computing

f ′

n(x) =
2n2x(1 + n3x3)− 3n3x2n2x2

(1 + n3x3)2
=

2n2x− n5x4

(1 + n3x3)2
=

n2x(2− n3x3)

(1 + n3x3)2
,

which gives a stationary point for fn at xn = 21/3/n. Computing fn(xn) =

22/3

3 > 0, which means that ‖fn‖∞ is positive and constant with respect to n,

so it cannot converge to zero. Hence, fn does not converge to zero uniformly.

(2) (i) (a) Provide the definition of Lebesgue integral
∫

φ(x) dx for a simple function

φ : Rd → R. [1]

Solution: Given a simple function ϕ(x) =
∑n

i=1 αi1Ei for some n ∈ N, some

α1, . . . , αn ∈ R without repetitions, and for some Lebesgue measurable sets

E1, . . . , En such that Ei ∩ Ej = ∅ if i 6= j, we get

∫

ϕ(x)dx =

n
∑

i=1

αim(Ei).

(b) Provide the definition of Lebesgue integral
∫

f(x) dx for a measurable function

f : Rd → [0,+∞]. [1]

Solution:

∫

f(x)dx = sup

{
∫

ϕ(x)dx : ϕ(x) ≤ f(x) for a. e. x ∈ R
d and ϕ is simple

}

.

(c) Define the Lp norm for a measurable function f : Rd → R with p < +∞. [1]

Solution: ‖f‖Lp =
(∫

|f(x)|pdx
)1/p

.



(ii) (a) State (without proof) Fatou’s Lemma. [1]

Solution: Let fn : Rd → [0,+∞] be a sequence of measurable functions.

Then
∫

(

lim inf
n→+∞

fn(x)

)

dx ≤ lim inf
n→+∞

∫

fn(x)dx.

(b) Provide an example of sequence fn : R → R of measurable functions such that

lim
n→+∞

∫

R

fn(x) dx 6=
∫

R

(

lim
n→+∞

fn(x)

)

dx.

[2]

Solution: Set fn : R → [0,+∞) with fn(x) = 1n,n+1(x). For a given x ∈ R,

let n be the a positive integer such that n − 1 ≥ x. Then fk(x) = 0 for all

k ≥ n, therefore fn(x) → 0 for all x ∈ R. So,
∫

(

lim inf
n→+∞

fn(x)

)

dx = 0

in this case. On the other hand, for all n ∈ N we have
∫

fn(x)dx =

∫ n+1

n
1dx = 1,

which implies that lim infn→+∞

∫

fn(x)dx = 1 in this case.

(iii) State and prove Hoelder’s inequality. [4]

Solution: The inequality states

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq

if p and q are conjugate numbers in [1,+∞]. The proof in the case p = 1 and

q = +∞ follows from the estimate

‖fg‖L1 =

∫

|f(x)g(x)|dx ≤
∫

|f(x)|‖g‖L∞dx = ‖g‖L∞‖f‖L1 .

In the case p > 1, for all α > 0 Young’s inequality implies

|f(x)g(x)| ≤ α|f(x)| |g(x)|
α

≤ αp|f(x)|p
p

+
|g(x)|p
qαq

.

Integrating we get

‖fg‖L1 ≤ αp

q
‖f‖pLp +

1

qαq
‖g‖qLq .

Optimizing in α > 0 the above right hand side we obtain that the minimum value

is achieved at

α =
‖g‖1/pLq

‖f‖1/qLp

.



We then get

‖fg‖L1 ≤ 1

q
‖f‖p−p/q

Lp ‖g‖Lq +
1

q
‖g‖q−q/p

Lq ‖f‖Lp .

Since p and q are conjugate, we get p− p/q = p(1− 1/q) = p/p = 1 and q − q/p =

q(1− 1/p) = q/q = 1, which implies the assertion.

(iv) Let f : (0,+∞) → R be defined by

f(x) =
arctanx√

x
.

Find all p ∈ [1,+∞] such that f ∈ Lp((0,+∞)). Motivate your answer. [4]

Solution: We have to find all p ∈ [1,+∞] such that
∫ +∞

0

(arctanx)p

xp/2
dx < +∞.

We immediately notice that the above integrand is bounded near x = 0. Indeed,

(arctanx)p

xp/2
≃ xp/2 as n → 0,

which follows by a simple first order Taylor expansion of the arctan function. There-

fore, the problem is only affected by the behavior of the integrand at +∞. Now, if

p > 2, since arctanx ≤ π/2, we have
∫ +∞

1

(arctanx)p

xp/2
dx ≤

∫ +∞

1

πp

2pxp/2
dx

=
πp

2p

∫ +∞

1
x−p/2dx =

πp

2p
lim

R→+∞

1

p/2− 1

(

1−R1−p/2
)

=
πp

2p
1

p/2− 1
< +∞.

On the other hand, if p ∈ [1, 2], we know that arctanx ≥ π/4 for all x ≥ 1, which

implies
∫ +∞

1

(arctanx)p

xp/2
dx ≥ πp

4p

∫ +∞

1
x−p/2dx,

which is infinite because −p/2 ≥≤ −1. Therefore, the answer is p > 2.


