Functional Analysis in Applied Mathematics and Engineering: First Mid term exam (model solution)

(1) (i) (a) Given a metric space (X, d) and an operator $T: X \rightarrow X$, provide the definition of contraction mapping.
Solution. A map $T: X \rightarrow X$ is called contraction mapping if there exists a constant $c \in(0,1)$ such that $d(T(x), T(y)) \leq c d(x, y) .{ }^{1}$
(b) Given a metric space (X, d) and an operator $T: X \rightarrow X$, provide the definition of fixed point for the map T.

Solution. A point $x \in X$ is a fixed point for T if $T(x)=x$.
(c) State and prove the Contraction Mapping Theorem.

Solution. Statement of the Theorem: If $T: X \rightarrow X$ is a contraction mapping on a complete metric space (X, d), then T has exactly one fixed point. ${ }^{2}$

Proof of the Theorem: Let $x_{0} \in X$ be any point in X. We define a sequence $\left(x_{n}\right)$ in X by

$$
x_{n+1}=T\left(x_{n}\right), \quad \text { for } n \geq 0 .
$$

We show that $\left(x_{n}\right)$ is a Cauchy sequence. ${ }^{3}$ If $n \geq m \geq 1$, since T is a contraction with constant c, using the triangle inequality we get

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & =d\left(T^{n} x_{0}, T^{m} x_{0}\right) \\
& \leq c^{m} d\left(T^{n-m} x_{0}, x_{0}\right) \\
& \leq c^{m}\left[d\left(T^{n-m} x_{0}, T^{n-m-1} x_{0}\right)+\ldots+d\left(T x_{0}, x_{0}\right)\right] \\
& \leq c^{m}\left[\sum_{k=0}^{n-m-1} c^{k}\right] d\left(x_{1}, x_{0}\right) \\
& \leq c^{m}\left[\sum_{k=0}^{+\infty} c^{k}\right] d\left(x_{1}, x_{0}\right) \\
& =\left(\frac{c^{m}}{1-c}\right) d\left(x_{1}, x_{0}\right)
\end{aligned}
$$

[^0]which implies that $\left(x_{n}\right)$ is a Cauchy sequence since $c<1$. Since X is complete, $\left(x_{n}\right)$ converges to a limit $x \in X$. By continuity of T, we get
$$
T x=T\left(\lim _{n \rightarrow+\infty} x_{n}\right)=\lim _{n \rightarrow+\infty} T x_{n}=\lim _{n \rightarrow+\infty} x_{n+1}=x
$$
which shows that x is a fixed point. Finally, let $x, y \in X$ be two fixed points, then
$$
0 \leq d(x, y)=d(T x, T y) \leq c d(x, y) .
$$

Since $c<1$, we have $d(x, y)=0$, so $x=y$ and the fixed point is unique.
(ii) (a) Given a family \mathcal{F} of functions from a metric space space $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, provide the definition of equicontinuity.

Solution. The family \mathcal{F} is said equicontinuous if for all $\varepsilon>0$ there is a $\delta>0$ such that if $d_{X}(x, y)<\delta$ then $d_{Y}(f(x), f(y))<\varepsilon$ for all $f \in \mathcal{F}$. ${ }^{4}$
(b) State (without proof) the Ascoli-Arzelá Theorem.

Solution. Let \mathcal{F} be a family of continuous functions on a compact metric space K. Then, $\overline{\mathcal{F}}$ is compact if and only if \mathcal{F} is equicontinuous and bounded. ${ }^{5}$
(iii) For any $n \in \mathbb{N}$, let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be the sequence of functions defined by

$$
\begin{equation*}
f_{n}(x)=\frac{n x}{1+n^{2} x^{2}} . \tag{2}
\end{equation*}
$$

(a) Show that $f_{n} \rightarrow 0$ pointwise in $[0, \infty)$.

Solution. If $x=0$ then $f_{n}(0)=0$ for all $n \in \mathbb{N}$. If $x \neq 0$, then

$$
0 \leq f_{n}(x) \leq \frac{n x}{n^{2} x^{2}}=\frac{1}{n x} \rightarrow 0
$$

as $n \rightarrow+\infty$.
(b) Is $\left\{f_{n}\right\}_{n}$ uniformly convergent on $[0, \infty)$? Justify your answer in detail. [3]. Solution. The uniform convergence of f_{n} to 0 on $[0,+\infty)$ would hold, by definition, if

$$
\left\|f_{n}\right\|_{\infty}=\sup _{x \geq 0}\left|f_{n}(x)\right| \rightarrow 0
$$

as $n \rightarrow+\infty$. To compute the supremum of f_{n} on $[0,+\infty)$, differentiate f_{n} :

$$
f_{n}^{\prime}(x)=\frac{1}{\left(1+n^{2} x^{2}\right)^{2}}\left(n\left(1+n^{2} x^{2}\right)-2 n^{3} x^{2}\right)=\frac{n\left(1-n^{2} x^{2}\right)}{\left(1+n^{2} x^{2}\right)^{2}},
$$

[^1]and the only stationary point of f_{n} on $[0,+\infty)$ is $x_{n}=1 / n$. Such a point is a maximum point. On x_{n}, f_{n} achieves the value
$$
f_{n}\left(x_{n}\right)=f_{n}(1 / n)=1 / 2
$$
and this proves
$$
\left\|f_{n}\right\|_{\infty}=\sup _{x \geq 0}\left|f_{n}(x)\right|=\frac{1}{2}
$$
hence f_{n} cannot converge to zero uniformly on $[0,+\infty)$.
(2) (i) Given a measurable function $f: \mathbb{R}^{d} \rightarrow[0,+\infty]$, provide the definition of the Lebesgue integral of f.
Solution. The Lebesgue integral of f is defined by ${ }^{6}$
$$
\int f d x=\sup \left\{\int \phi d x: 0 \leq \phi \leq f, \phi \text { simple }\right\}
$$
(ii) (a) State (without proof) Fatou's lemma.

Solution. Let $f_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a sequence of nonnegative measurable functions. Then, ${ }^{7}$

$$
\int\left(\liminf _{n \rightarrow+\infty} f_{n}(x)\right) d x \leq \liminf _{n \rightarrow+\infty} \int f_{n}(x) d x
$$

(b) Find a sequence $f_{n}: \mathbb{R} \rightarrow[0,+\infty)$ for which the strict inequality holds in Fatou's lemma.

Solution. An example is $f_{n}(x)=1_{[n, n+1)}$. Indeed, for all $x \in \mathbb{R}$ one has that $f_{n}(x)=0$ for all $n>x$, which implies that $f_{n}(x) \rightarrow 0$ pointwise as $n \rightarrow+\infty .{ }^{8}$ Hence

$$
\int\left(\liminf _{n \rightarrow+\infty} f_{n}(x)\right) d x=\int 0 d x=0
$$

Moreover,

$$
\int f_{n}(x) d x=\int_{n}^{n+1} 1 d x=1
$$

[^2]for all $n \in \mathbb{N}$. Hence,
$$
\liminf _{n \rightarrow+\infty} \int f_{n}(x) d x=1>0
$$
(iii) Let $f, g \in L^{p}\left(\mathbb{R}^{d}\right)$ with $p \in(1,+\infty)$. Prove the Hölder inequality
\[

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{p^{\prime}} \tag{5}
\end{equation*}
$$

\]

with p^{\prime} such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Solution. The statement is trivial if either f or g are zero almost everywhere.
Otherwise, we clearly have $\|f\|_{L^{p}}>0$ and $\|g\|_{L^{q}}>0$. For a fixed $\alpha>0$ we have

$$
|f(x) g(x)|=\left|\frac{f(x)}{\alpha}\right||\alpha g(x)| \leq \frac{1}{p}\left|\frac{f(x)}{\alpha}\right|^{p}+\frac{1}{q}|\alpha g(x)|^{q}
$$

where we have used Young's inequality. By integrating the above inequality on \mathbb{R}^{d} we get

$$
\|f g\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq \frac{1}{p} \frac{1}{\alpha^{p}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}^{p}+\frac{1}{q} \alpha^{q}\|g\|_{L^{q}\left(\mathbb{R}^{d}\right)}^{q}
$$

We now choose α such that the two terms on the above right hand side are equal, namely

$$
\alpha:=\frac{\|f\|_{L^{p}}^{\frac{1}{q}}}{\|g\|_{L^{q}}^{\frac{1}{p}}}
$$

which yields

$$
\|f g\|_{L^{1}(E)} \leq \frac{1}{p} \frac{\|g\|_{L^{q}}}{\|f\|_{L^{p}}^{p / q}}\|f\|_{L^{p}}^{p}+\frac{1}{q} \frac{\|f\|_{L^{p}}}{\|g\|_{L^{q}}^{q / p}}\|g\|_{L^{q}}^{q}
$$

and the definition of p and q implies the last term above equals $\|f\|_{L^{p}}\|g\|_{L^{q .}}{ }^{9}$
(iv) Let $p \in[1,+\infty)$ and $\alpha \in \mathbb{R}$. Prove that the function

$$
f(x)= \begin{cases}\frac{\sin (|x|)}{|x|^{\alpha}} & \text { if }|x|<1 \tag{3}\\ 0 & \text { if }|x| \geq 1\end{cases}
$$

is in $L^{p}\left(\mathbb{R}^{d}\right)$ for $\alpha<\frac{d+p}{p}$.
Solution. Compute

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|f(x)|^{p} d x=\int_{\{|x| \leq 1\}} \frac{|\sin (x)|^{p}}{|x|^{\alpha p}} d x \\
& =\int_{0}^{1} r^{d-1} \int_{\{|x|=r\}} \frac{|\sin x|^{p}}{r^{\alpha p}} d r d \sigma
\end{aligned}
$$

[^3]where we have used polar coordinates. Here C_{d} is a suitable positive constant depending on the dimension d. Now, the above integrand is possibly singular at $r=0$, and is continuous at any other point $r \in(0,1]$. By Taylor expanding the sin function near 0 we get $\sin x=x+o(|x|)$. This implies, near $x=0$,
$$
r^{d-1} \frac{|\sin x|^{p}}{r^{\alpha p}} \sim r^{d-1+p-\alpha p} .
$$

Now,

$$
\int_{0}^{1} r^{d-1+p-\alpha p} d r=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} r^{d-1+p-\alpha p} d r=\left.\frac{1}{d+p-\alpha p} r^{d+p-\alpha p}\right|_{r=\varepsilon} ^{r=1},
$$

which equals $\frac{1}{d+p-\alpha p}\left(1-\varepsilon^{d+p-\alpha p}\right)$, and the limit of this quantity as $\varepsilon \rightarrow 0$ is finite if $d+p-\alpha p>0$, which is equivalent to $\alpha<\frac{d+p}{p} .{ }^{10}$

[^4]
[^0]: ${ }^{1}$ Many students gave the definition of contraction mapping with $c \in \mathbb{R}$
 ${ }^{2}$ Many students did not write the hypothesis that X has to be a complete metric space
 ${ }^{3}$ Many students did not understand in the proof one has to construct a Cauchy sequence

[^1]: ${ }^{4}$ Many students wrote the definition of equi-continuity for a single function
 ${ }^{5}$ Many students did the mistake to state that all the space of continuous functions is compact if and only it is bounded, closed and equi-continuous. This statement is of course false!

[^2]: ${ }^{6}$ Many students here provided other definitions, such $f \in L^{p}, f$ measurable; some others also provided the definition of integral of a sign changing function, which was not required.
 ${ }^{7}$ The assumption f nonnegative is crucial, otherwise the statement is not true in general, see the counter example $f_{n}=-1 / n$ discussed in class.
 ${ }^{8}$ Other examples could be provided such as $f_{n}(x)=n 1_{[0,1 / n]}(x)$, leading to a similar outcome. In any case, the convergence of f_{n} to zero almost everywhere must be proven! I removed fractions of points in some cases in which this property was stated but not proven.

[^3]: ${ }^{9}$ Some students opted for an alternative procedure in which the functions are normalized in L^{p} and L^{q} respectively, and the proof actually works much faster. Clearly, such alternative procedure (without mistakes) was still implying the 5 points.

[^4]: ${ }^{10}$ No one completed this proof correctly. I still gave some points for those who got a condition by estimating the sin term by 1 in absolute value

