
Functional Analysis in Applied Mathematics and Engineering:

First Mid term exam (model solution)

(1) (i) (a) Given a metric space (X, d) and an operator T : X → X, provide the definition

of contraction mapping. [1].

Solution. A map T : X → X is called contraction mapping if there exists a

constant c ∈ (0, 1) such that d(T (x), T (y)) ≤ cd(x, y).1

(b) Given a metric space (X, d) and an operator T : X → X, provide the definition

of fixed point for the map T . [1].

Solution. A point x ∈ X is a fixed point for T if T (x) = x.

(c) State and prove the Contraction Mapping Theorem. [5].

Solution. Statement of the Theorem: If T : X → X is a contraction mapping

on a complete metric space (X, d), then T has exactly one fixed point.2

Proof of the Theorem: Let x0 ∈ X be any point in X. We define a sequence

(xn) in X by

xn+1 = T (xn), for n ≥ 0.

We show that (xn) is a Cauchy sequence.3 If n ≥ m ≥ 1, since T is a

contraction with constant c, using the triangle inequality we get

d(xn, xm) = d(Tnx0, T
mx0)

≤ cmd(Tn−mx0, x0)

≤ cm
[

d(Tn−mx0, T
n−m−1x0) + . . .+ d(Tx0, x0)

]

≤ cm

[

n−m−1
∑

k=0

ck

]

d(x1, x0)

≤ cm

[

+∞
∑

k=0

ck

]

d(x1, x0)

=

(

cm

1− c

)

d(x1, x0),

1Many students gave the definition of contraction mapping with c ∈ R

2Many students did not write the hypothesis that X has to be a complete metric space

3Many students did not understand in the proof one has to construct a Cauchy sequence



which implies that (xn) is a Cauchy sequence since c < 1. SinceX is complete,

(xn) converges to a limit x ∈ X. By continuity of T , we get

Tx = T

(

lim
n→+∞

xn

)

= lim
n→+∞

Txn = lim
n→+∞

xn+1 = x,

which shows that x is a fixed point. Finally, let x, y ∈ X be two fixed points,

then

0 ≤ d(x, y) = d(Tx, Ty) ≤ cd(x, y).

Since c < 1, we have d(x, y) = 0, so x = y and the fixed point is unique.

(ii) (a) Given a family F of functions from a metric space space (X, dX) and (Y, dY ),

provide the definition of equicontinuity. [1].

Solution. The family F is said equicontinuous if for all ε > 0 there is a δ > 0

such that if dX(x, y) < δ then dY (f(x), f(y)) < ε for all f ∈ F .4

(b) State (without proof) the Ascoli-Arzelá Theorem. [2].

Solution. Let F be a family of continuous functions on a compact metric

space K. Then, F is compact if and only if F is equicontinuous and bounded.5

(iii) For any n ∈ N, let fn : [0,∞) → R be the sequence of functions defined by

fn(x) =
nx

1 + n2x2
.

(a) Show that fn → 0 pointwise in [0,∞). [2].

Solution. If x = 0 then fn(0) = 0 for all n ∈ N. If x 6= 0, then

0 ≤ fn(x) ≤
nx

n2x2
=

1

nx
→ 0

as n → +∞.

(b) Is {fn}n uniformly convergent on [0,∞)? Justify your answer in detail. [3].

Solution. The uniform convergence of fn to 0 on [0,+∞) would hold, by

definition, if

‖fn‖∞ = sup
x≥0

|fn(x)| → 0

as n → +∞. To compute the supremum of fn on [0,+∞), differentiate fn:

f ′
n(x) =

1

(1 + n2x2)2
(n(1 + n2x2)− 2n3x2) =

n(1− n2x2)

(1 + n2x2)2
,

4Many students wrote the definition of equi-continuity for a single function
5Many students did the mistake to state that all the space of continuous functions is compact if and only it is

bounded, closed and equi-continuous. This statement is of course false!



and the only stationary point of fn on [0,+∞) is xn = 1/n. Such a point is

a maximum point. On xn, fn achieves the value

fn(xn) = fn(1/n) = 1/2,

and this proves

‖fn‖∞ = sup
x≥0

|fn(x)| =
1

2
,

hence fn cannot converge to zero uniformly on [0,+∞).

(2) (i) Given a measurable function f : R
d → [0,+∞], provide the definition of the

Lebesgue integral of f . [2]

Solution. The Lebesgue integral of f is defined by6

∫

fdx = sup

{
∫

φdx : 0 ≤ φ ≤ f , φ simple

}

.

(ii) (a) State (without proof) Fatou’s lemma. [2]

Solution. Let fn : Rd → R be a sequence of nonnegative measurable func-

tions. Then,7

∫
(

lim inf
n→+∞

fn(x)

)

dx ≤ lim inf
n→+∞

∫

fn(x)dx.

(b) Find a sequence fn : R → [0,+∞) for which the strict inequality holds in

Fatou’s lemma. [3]

Solution. An example is fn(x) = 1[n,n+1). Indeed, for all x ∈ R one has that

fn(x) = 0 for all n > x, which implies that fn(x) → 0 pointwise as n → +∞.8

Hence
∫

(

lim inf
n→+∞

fn(x)

)

dx =

∫

0dx = 0.

Moreover,
∫

fn(x)dx =

∫ n+1

n
1dx = 1

6Many students here provided other definitions, such f ∈ Lp, f measurable; some others also provided the

definition of integral of a sign changing function, which was not required.
7The assumption f nonnegative is crucial, otherwise the statement is not true in general, see the counter

example fn = −1/n discussed in class.
8Other examples could be provided such as fn(x) = n1[0,1/n](x), leading to a similar outcome. In any case,

the convergence of fn to zero almost everywhere must be proven! I removed fractions of points in some cases in

which this property was stated but not proven.



for all n ∈ N. Hence,

lim inf
n→+∞

∫

fn(x)dx = 1 > 0.

(iii) Let f, g ∈ Lp(Rd) with p ∈ (1,+∞). Prove the Hölder inequality

‖f g‖1 ≤ ‖f‖p ‖g‖p′ ,

with p′ such that 1
p + 1

p′ = 1. [5]

Solution. The statement is trivial if either f or g are zero almost everywhere.

Otherwise, we clearly have ‖f‖Lp > 0 and ‖g‖Lq > 0. For a fixed α > 0 we have

|f(x)g(x)| =

∣

∣

∣

∣

f(x)

α

∣

∣

∣

∣

|αg(x)| ≤
1

p

∣

∣

∣

∣

f(x)

α

∣

∣

∣

∣

p

+
1

q
|αg(x)|q ,

where we have used Young’s inequality. By integrating the above inequality on R
d

we get

‖fg‖L1(Rd) ≤
1

p

1

αp
‖f‖p

Lp(Rd)
+

1

q
αq‖g‖q

Lq(Rd)
.

We now choose α such that the two terms on the above right hand side are equal,

namely

α :=
‖f‖

1
q

Lp

‖g‖
1
p

Lq

,

which yields

‖fg‖L1(E) ≤
1

p

‖g‖Lq

‖f‖
p/q
Lp

‖f‖pLp +
1

q

‖f‖Lp

‖g‖
q/p
Lq

‖g‖qLq ,

and the definition of p and q implies the last term above equals ‖f‖Lp‖g‖Lq .9

(iv) Let p ∈ [1,+∞) and α ∈ R. Prove that the function

f(x) =











sin(|x|)
|x|α if |x| < 1

0 if |x| ≥ 1,

is in Lp(Rd) for α < d+p
p . [3].

Solution. Compute
∫

Rd

|f(x)|pdx =

∫

{|x|≤1}

| sin(x)|p

|x|αp
dx

=

∫ 1

0
rd−1

∫

{|x|=r}

| sinx|p

rαp
drdσ,

9Some students opted for an alternative procedure in which the functions are normalized in Lp and Lq respec-

tively, and the proof actually works much faster. Clearly, such alternative procedure (without mistakes) was still

implying the 5 points.



where we have used polar coordinates. Here Cd is a suitable positive constant

depending on the dimension d. Now, the above integrand is possibly singular at

r = 0, and is continuous at any other point r ∈ (0, 1]. By Taylor expanding the sin

function near 0 we get sinx = x+ o(|x|). This implies, near x = 0,

rd−1 | sinx|
p

rαp
∼ rd−1+p−αp.

Now,
∫ 1

0
rd−1+p−αpdr = lim

ε→0

∫ 1

ε
rd−1+p−αpdr =

1

d+ p− αp
rd+p−αp|r=1

r=ε,

which equals 1
d+p−αp(1− εd+p−αp), and the limit of this quantity as ε → 0 is finite

if d+ p− αp > 0, which is equivalent to α < d+p
p .10

10No one completed this proof correctly. I still gave some points for those who got a condition by estimating

the sin term by 1 in absolute value


