Functional Analysis in Applied Mathematics and Engineering: Third Mid term exam - 12/01/2018

Full name: \qquad
Matricola: \qquad
(1) (i) Let $(H,(\cdot, \cdot))$ be a Hilbert space.
(a) Let $x \in H$ and let $\varphi: H \rightarrow \mathbb{C}$ be defined by

$$
\begin{equation*}
\varphi(y)=(x, y) . \tag{2}
\end{equation*}
$$

Prove that $\varphi \in H^{*}$ and compute $\|\varphi\|_{H^{*}}$.
Solution. If $x=0$ there is nothing to prove. Otherwise, in order to prove that $\varphi \in H^{*}$ we need to prove that it is a linear and bounded functional. Linearity follows from the properties of the scalar product, while for the boundedness we argue as follows:
Let $y \in H$, then by using Cauchy-Schwarz inequality we get

$$
|\varphi(y)|=|(x, y)| \leq\|x\|\|y\|,
$$

then φ is bounded. To compute the norm we recall that

$$
\|\varphi\|_{H^{*}}=\sup _{y \in H, y \neq 0} \frac{|\varphi(y)|}{\|y\|},
$$

then by choosing $y=x$ it easily follows that $\|\varphi\|_{H^{*}}=\|x\|$.
(b) State (without proof) Riesz' representation Theorem.

Solution. If φ is a bounded linear functional on a Hilbert space H, then there is a unique vector $y \in H$ such that

$$
\varphi(x)=\langle y, x\rangle \quad \text { for al } x \in H .
$$

(ii) Let A be a bounded linear operator on the Hilbert space H.
(a) State the property that defines the adjoint operator A^{*}.

Solution. The defining property of the adjoint $A^{*} \in \mathcal{B}(H)$ of an operator $A \in \mathcal{M}(H)$ is that

$$
\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle \quad \text { for all } x, y \in H .
$$

(b) Prove that A^{*} is well defined and is a bounded operator.

Solution. To prove that A^{*} exists and is uniquely defined, we have to show that for every $x \in H$, there is a unique vector $z \in H$, depending linearly on x, such that

$$
\langle z, y\rangle=\langle x, A y\rangle \quad \text { for all } x, y \in H
$$

For fixed x, the map φ_{x} defined by

$$
\varphi_{x}(y)=\langle x, A y\rangle
$$

is a bounded linear functional on H, with $\left\|\varphi_{x}\right\| \leq\|A\|\|x\|$. By the Riesz representation theorem, there is a unique $z \in H$ such that $\varphi_{x}(y)=\langle z, y\rangle$. This z satisfies the required property, so we set $A^{*} x=z$.

We need to prove then that A^{*} is a bounded linear operator. The linearity of A^{*} is left as an exercise. Regarding the boundedness, we have that

$$
\begin{aligned}
\left\|A^{*} x\right\|=\sup _{y \in H,\|y\| \leq 1}\left|\left(A^{*} x, y\right)\right| & =\sup _{y \in H,\|y\| \leq 1}|(x, A y)| \\
& \leq \sup _{y \in H,\|y\| \leq 1}\|x\|\|A y\| \\
& \leq\|A\|\|x\|
\end{aligned}
$$

Then, A^{*} is a bounded linear operator.
(c) Prove that $\overline{\operatorname{ran} A}=\left(\operatorname{ker} A^{*}\right)^{\perp}$.

Solution. See the proof of Theorem 7.18 of the Lecture Notes.
(iii) State (without proof) Banach-Alaoglu's theorem.

Solution. The closed unit ball of a Hilbert space is weakly compact.
(2) (i) Let A be a bounded linear operator on the Hilbert space H.
(a) Define the resolvent set and the spectrum of A.

Solution. The resolvent set of A, denoted by $\rho(A)$, is the set of complex numbers λ such that $A-\lambda \mathbb{I}$ is invertible. The spectrum of A is the set $\sigma(A)=\mathbb{C} \backslash \rho(A)$.
(b) Define the point spectrum, the continuous spectrum, and the residual spectrum of A.

Solution. The point spectrum of A is the set of complex numbers λ such that $A-\lambda \mathbb{I}$ is not $1: 1$. The continuous spectrum is the set of complex numbers λ such that $A-\lambda \mathbb{I}$ is $1: 1$ but not onto and $\operatorname{Ran}(A-\lambda \mathbb{I})$ is dense in H. The
residual spectrum is the set of complex numbers λ such that $A-\lambda \mathbb{I}$ is $1: 1$ but not onto and $\operatorname{ran}(A-\lambda \mathbb{I})$ is not dense in H.
(c) Prove that if λ belongs to the residual spectrum of A then $\bar{\lambda}$ is an eigenvalue of A^{*}.

Solution. Let λ be in the residual spectrum of A. Then $\operatorname{ran}(A-\lambda \mathbb{I})$ is not dense in H. Hence, $\overline{\operatorname{ran}(A-\lambda \mathbb{I})} \subsetneq H$ is a proper, closed linear subspace of H. By the orthogonal projection theorem, there exists $z \neq 0$ such that $z \in \overline{\operatorname{ran}(A-\lambda \mathbb{I})}{ }^{\perp}$. Since $\overline{\lambda I}$ is the adjoint of $\lambda \mathbb{I}$, the result in exercise 1-(ii)-(c) implies that $z \in \operatorname{ker}\left(A^{*}-\bar{\lambda} \mathbb{I}\right)$. Since $z \neq 0$ this shows that $A^{*}-\bar{\lambda} \mathbb{I}$ is not $1: 1$, and therefore $\bar{\lambda}$ is an eigenvalue of A^{*}.
(ii) Let $H=L^{2}([0,1])$ and $M: H \rightarrow H$ defined by

$$
\begin{equation*}
(M f)(x)=x f(x), \quad x \in[0,1] . \tag{2}
\end{equation*}
$$

(a) Prove that M has no eigenvalues.

Solution. Let $\lambda \in \mathbb{C}$ be an eigenvalue for M. Then, there exists $f \in L^{2}([0,1])$, f not equal to zero almost everywhere, such that $M f=\lambda f$. By definition of M this means

$$
(x-\lambda) f(x)=0 \quad \text { almost everywhere on }[0,1] .
$$

Since f is not equal to zero almost everywhere, the latter implies that $(x-\lambda)=$ 0 for almost every $x \in[0,1]$, which is a contradiction (independently on whether or not λ belongs to $[0,1]!)$. Hence, M has not eigenvalues.
(b) Prove that $\sigma(M)=[0,1]$.

Solution. Since M has no eigenvalues, the only possibility for $\lambda \in \mathbb{C}$ to be an element of the spectrum is that the equation

$$
(M-\lambda \mathbb{I}) f=g
$$

has no solution $f \in L^{2}([0,1])$ for some $g \in L^{2}([0,1])$. Formally, the only possible candidate solution is given by

$$
f(x)=\frac{g(x)}{x-\lambda}
$$

Now, if $\lambda \in[0,1]^{c}$ then the function $\frac{1}{x-\lambda}$ is uniformly bounded on $[0,1]$ because $|x-\lambda| \geq c$ for some positive constant c. Hence

$$
\int_{0}^{1}|f(x)|^{2} d x=\int_{0}^{1} \frac{1}{(x-\lambda)^{2}}|g(x)|^{2} d x \leq \frac{1}{c} \int_{0}^{1}|g(x)|^{2} d x
$$

and the latter term is finite in view of $g \in L^{2}$. This proves that $[0,1]^{c} \subset \rho(M)$ or equivalently $\sigma(M) \subset[0,1]$. On the other hand, if $\lambda \in[0,1]$ then the are examples of $g \in L^{2}$ such that the above f is not in L^{2}, for example take $g \equiv 1$. We get in this case $f(x)=\frac{1}{x-\lambda}$ which is clearly not in $L^{2}([0,1])$ because

$$
\int_{0}^{1}|f(x)|^{2} d x=\int_{0}^{1} \frac{1}{(x-\lambda)^{2}} d x=+\infty
$$

(iii) Let $H=\ell^{2}(\mathbb{N})$ and let $S: H \rightarrow H$ be the left-shift operator

$$
(T x)_{n}=x_{n+1}, \quad k=1,2,3, \ldots \quad x=\left(x_{k}\right)_{k=1}^{+\infty} .
$$

Consequently, $[0,1] \subset \sigma(M)$.
(a) Prove that $\|T\| \leq 1$.

Solution.

$$
\|T x\|_{\ell^{2}}^{2}=\sum_{n=1}^{+\infty}(T x)_{n}^{2}=\sum_{n=1}^{+\infty} x_{n+1}^{2}=\sum_{n=2}^{+\infty} x_{n}^{2} \leq \sum_{n=1}^{+\infty} x_{n}^{2}=\|x\|_{\ell^{2}}^{2}
$$

therefore $\|T\|=\sup _{\|x\|_{\ell^{2}} \leq 1}\|T x\|_{\ell^{2}} \leq 1$.
(b) Let $\lambda \in(-1,1)$. Prove that λ is an eigenvalue of T.

Solution.

(c) Prove that $\sigma(T)=[-1,1]$.

Solution.

