Functional Analysis in Applied Mathematics and Engineering: Model Mid term exam

- (1) (i) Let K be a compact metric space. Prove that the space C(K) of continuous functions on K equipped with the sup norm is complete. [4]
 - (ii) State (without proof) the contraction mapping theorem.
 - (iii) Let $f_n \in C([0,1])$ be such that $||f_n||_{\infty} \leq 1$. Set

$$F_n(x) = \int_0^x f_n(y) dy.$$

Show that the sequence F_n has a subsequence that converges uniformly on [0, 1]. [3]

- (iv) Let $f_n : [0, +\infty) \to \mathbb{R}$ defined by $f_n(x) = x^n$. Find the maximal subset of \mathbb{R} on which f_n converges pointwise. Find the subsets of \mathbb{R} on which f_n converges uniformly. [5]
- (2) (i) Given a measurable function $f : \mathbb{R}^d \to [0, +\infty]$, provide the definition of the Lebesgue integral of f. [2]
 - (ii) Prove that if $f \ge 0$ almost everywhere on \mathbb{R}^d then

$$m(\{x \in \mathbb{R}^d : f(x) \ge \lambda\}) \le \frac{1}{\lambda} \int f(x) dx.$$
[4]

(iii) Let $f, g \in L^p(\mathbb{R}^d)$ with $p \in [1, +\infty)$. Prove that

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}.$$

[5]

[2]

(iv) Let $p \in [1, +\infty)$. Determine for which $\alpha \in (0, +\infty)$ the function $f : [0, 1] \to \mathbb{R}$ with $f(x) = x^{-\alpha}$ belongs to $L^p([0, 1].$ [3]