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Solution

(1) (i) Provide the definition of Lebesgue measurable set E ⊂ Rd. [2]

Solution.

A bounded set E ⊂ Rd is called Lebesgue measurable if the inner measure

m∗(E) = sup{m(K) , k ⊂ E , K compact}

and the outer measure

m∗(E) = inf{m(A) , A ⊃ E , A open}

coincide. An unbounded set E ⊂ Rd is called Lebesgue measurable if E ∩BR(0) is

Lebesgue measurable according to the previous definition for all R ≥ 0.

(ii) Say which of the following statements are true. Provide a short motivation for each

answer (not more than two lines!).

(a) All sets E ⊂ Rd are Lebesgue measurable. [1]

Solution.

False. The Vitali set is an example of a non measurable set in R. It can be

constructed thanks to the axiom of choice.

(b) All countable sets are Lebesgue measurable with measure zero. [1]

Solution.

True. A countable set C can be written as the countable union of points,

and points have zero measure. The countable additivity property of Lebesgue

measure prove the assertion.

(c) All measurable sets with zero Lebesgue measure are at most countable. [1]

Solution.

False. The Cantor set is uncountable, and yet it has zero measure.

(d) If m∗(E) = 0 then E is Lebesgue measurable. [1]

Solution.

True. Since 0 ≤ m∗(E) ≤ m∗(E) for all sets E ⊂ Rd, we have

0 ≤ m∗(E) ≤ m∗(E) = 0



which implies m∗(E) = m∗(E) = 0 and the set E is measurable.

(iii) Prove that a bounded set E ⊂ Rd is Lebesgue measurable if and only if for all ε > 0

there exists an open set U ⊂ Rd with U ⊃ E and m∗(U \ E) < ε. [6]

Solution.

Assume first E Lebesgue measurable. The characterization of measurable sets with

open and compact sets yields, for all ε > 0, the existence of a compact set K and

an open set A such that K ⊂ E ⊂ A and m(A)−m(K) ≤ ε. In particular, a simple

monotonicity property implies m(A \ E) ≤ ε, and since A \ E is measurable (A is

open), we have m∗(A \ E) ≤ ε.

Assume now that for all ε > 0 there exists an open set A ⊂ Rd with A ⊃ E and

m∗(A \E) < ε. For all n ∈ N, we choose ε = 1/n, and get an open set An ⊃ E such

that m∗(An \E) ≤ 1/n. Now let A :=
⋂

n∈NAn. As intersection of countably many

measurable sets, A is measurable. Since A \ E ⊂ An \ E for all n, we clearly have

m∗(A \ E) ≤ m∗(An \ E) ≤ 1/n.

By arbitrariness of n (no dependency on n occurs on the left hand side), we have

m∗(A\E) = 0, and therefore A\E is Lebesgue measurable. Hence, E = A\ (A\E)

is measurable.

(2) (i) Let f : Rd → [0,+∞] be a measurable function.

(a) Provide the definition of Lebesgue integral
∫
Rd f(x)dx. [1,5]

Solution.

Lebesgue’ integral of f ≥ 0 is defined as∫
fdx = sup

{∫
φdx , 0 ≤ φ ≤ f , φ simple function

}
.

(b) State (without proof) Markov ’s inequality. [1,5]

Solution.

Given λ > 0 and f : Rd → [0,+∞] measurable, then

m({x | f(x) ≥ λ}) ≤ 1

λ

∫
fdx .

(c) Show that if
∫
Rd f(x)dx < +∞ then f is finite almost everywhere. [3]

Solution.

Let

E∞ = {x ∈ Rd | f(x) = +∞} ,



and for all M ∈ N

EM = {x ∈ Rd | f(x) ≥M} .

Markov’s inequality implies

m(EM ) ≤ 1

M

∫
Rd

f(x)dx

and the assumption on the integral of f implies m(EM ) → 0 as M → +∞.

Now, since EM+1 ⊂ EM for all M ∈ N, and since m(E1) < +∞ (once again

in view of Markov’s inequality), the continuity of Lebesgue measure implies

m(E∞) = m(
⋂
M

EM ) = lim
M→+∞

m(EM ) = 0 .

Hence, f is finite outside E∞ which has measure zero, i. e. f is finite almost

everywhere.

(ii) State (without proof) Lebesgue’s dominated convergence theorem. [3]

Solution.

Let fn : Rd → R be a sequence of measurable functions converging almost every-

where to some measurable function f : Rd → R. Assume there exists a nonnegative

measurable function g : Rd → R with
∫
Rd g(x)dx < +∞ and such that |fn(x)| ≤ g(x)

for almost every x ∈ Rd. Then,∫
f(x)dx = lim

n→+∞

∫
fn(x)dx.

(iii) Find an example of a sequence of measurable functions fn : R→ R such that∫
Rd

(
lim

n→+∞
fn(x)

)
dx < lim

n→+∞

∫
Rd

fn(x)dx .

[3]Solution.

There are many examples. One of them is

fn(x) = 1[n,n+1](x)

for which one can easily see that

lim
n→+∞

fn(x) = 0 , for all x ∈ R

and ∫
fn(x)dx = 1 , for all n ∈ N .

Hence

0 =

∫
0dx <

∫
fn(x)dx = 1 .



(3) Let (E, ‖ · ‖) be a normed space.

(i) Provide the definition of the weak topology σ(E,E∗). [2]

Solution.

Let E∗ be the dual space of E, i. e the space of all continuous linear functionals on

E. For all f ∈ E∗ we set

ϕf (x) = 〈f, x〉 .

Then, σ(E,E∗) is the inverse limit topology of the family of maps {ϕf}f∈E∗ , i. e.

the coarsest topology on E that makes all functionals in E∗ continuous.

(ii) Let x0 ∈ E. Let O be an open neighborhood or x0 in the weak topology σ(E,E∗).

Explain in two lines why there exist ε > 0, N ∈ N, and f1, . . . , fN ∈ E∗ such that

O ⊃ {x ∈ E : |〈fi, x− x0〉| < ε , i = 1, . . . , N}.

[2]
Solution.

The family of sets of the form {x ∈ E : |〈fi, x − x0〉| < ε , i = 1, . . . , N}, with

ε > 0, N ∈ N, and f1, . . . , fN ∈ E∗, is a base of neighborhoods for x0 in the weak

topology. This is easily understood by recalling that the inverse limit topology can

be constructed by taking arbitrary unions of finite intersections of inverse images

via ϕf of an open interval in R.

(iii) Let S = {x ∈ E : ‖x‖ = 1}. Prove that if E is infinite dimensional then S is not

closed in σ(E,E∗). [8]

Solution.

Let x0 ∈ E be such that ‖x0‖ < 1. For some ε > 0, N ∈ N, and f1, . . . , fN ∈ E∗,

let

V = {x ∈ E | |〈fi, x〉| < ε , for all i = 1, . . . , N}

be an arbitrary basic open neighborhood of x0 in σ(E,E∗). We prove that V ∩S 6= ∅,

which will imply that x0 6∈ S belongs to the weak closure of S, and hence S is not

weakly closed. We claim that there exists y0 ∈ E, y0 6= 0 such that 〈fi, y0〉 = 0 for

all i = 1, . . . , N . Assuming that the claim is false, we define the map Φ : E → RN

as

Φ(x) = (〈f1, x〉, . . . , 〈fN , x〉) .

If the claim is false then Φ is a linear isomorphism between E and Φ(E), which

implies E is finite dimensional, and that is a contradiction. Now, let G : [0,+∞)→



[0,+∞) defined by

g(t) = ‖x0 + ty0‖ .

g is clearly continuous, with g(0) < 1 and g(t)→ +∞ as t→ +∞. Therefore, there

exists some t0 with g(t0) = ‖x0 + t0y0‖ = 1. We compute, for all i = 1, . . . , N ,

〈fi, x0 + t0y0〉 = 〈fi, x0〉 ,

which implies x0 + t0y0 ∈ V . On the other hand, x0 + t0y0 ∈ S, i. e. V ∩ S 6= ∅,

which proves the assertion.


