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(1) (a) State (without proof) Hölder’s inequality in Lp spaces. [2]

Solution.

Let p, q ∈ [1,+∞] with 1
p + 1

q = 1 (with the convention that 1/ +∞ = 0). Let

f ∈ Lp(Rd), g ∈ Lq(Rd). Then,

‖fg‖L1(Rd) ≤ ‖f‖Lp(Rd)‖g‖Lq(Rd) .

(b) Let p, q, r ∈ [1,+∞] be such that 1
r = 1

p + 1
q and let f ∈ Lp(Rd) and g ∈ Lq(Rd).

Prove that

‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq .

[4]

Solution.

From the assumptions we have

1 =
r

p
+
r

q
,

hence p/r and q/r are conjugate exponents. Therefore we can apply Hölder’s in-

equality to |f |r and |g|r:

‖fg‖rLr(Rd) = ‖|f |r|g|r‖L1 ≤ ‖|f |r‖Lp/r‖|g|r‖Lq/r = ‖f‖rLp‖g‖rLq ,

and that implies the assertion by taking the 1/r power above.

(c) Say which of the following statements are true and justify your answer shortly (two

lines for each statement):

(i) Every uniformly bounded sequence in L2 admits a converging subsequence in

the weak L2 topology. [1]

Solution.

True. L2 is a reflexive space, so the unit ball is compact in the weak topology

by Kakutani’s theorem, and the weak compactness is sequential due to the

separability of the subspace generated by the sequence itself.



(ii) The sequence fn(x) = n1[0, 1
n
] is uniformly bounded in L2(R). [1]

Solution.

False. Compute

‖fn‖2L2(R) =

∫
R
fn(x)2dx =

∫ 1/n

0
n2dx = n −−−−−→

n→+∞
+∞ ,

so the sequence is not uniformly bounded in L2.

(iii) The space L∞(R) is separable. [1]

Solution.

False. It is possible to construct an uncountable family of disjoint open balls

with unit radius. Hence there can be no dense countable subset.

(d) Prove that fn in point (ii) does not converge to zero weakly in L1(R). [3]

Solution.

Weak convergence to zero in L1 is equivalent to∫
R
fn(x)g(x)dx −−−−−→

n→+∞
0 for all g ∈ L∞(R).

Take g ≡ 1 ∈ L∞(R). We get∫
R
fn(x)g(x)dx =

∫ 1/n

0
ndx = 1 9 0 as n→ +∞ .

(2) Let H be a Hilbert space.

(a) For x, y ∈ H, prove that

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 .

[3]

Solution.

Compute

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + ‖y‖2 + 2Re(x, y) + ‖x‖2 + ‖y‖2 + 2Re(x,−y)

= ‖x‖2 + ‖y‖2 + 2Re(x, y) + ‖x‖2 + ‖y‖2 − 2Re(x, y)

= 2‖x‖2 + 2‖y‖2 .

(b) Let M ⊂ H be non-empty, closed, and convex. Let x0 ∈ H. Prove that there exists

a unique y0 ∈M such that

‖x0 − y0‖ = inf
y∈M
‖x0 − y‖ .



[4]

Solution.

The statement is trivial is x0 ∈M . Let x0 6∈M . Set

d = dist(x0,M) = inf
y∈M
‖x0 − y‖,

where d > 0 is a consequence of M being closed. From the properties of inf, there

exists a sequence {yn}n ⊂ M such that ‖yn − x0‖ → d. Use (a) with the vectors

x = x0 − yn and y = x0 − ym, for n,m ∈ N. We get

‖2x0 − yn − ym‖2 + ‖yn − ym‖2 = 2‖x0 − yn‖2 + 2‖x0 − ym‖2.

Now, we have

‖2x0 − yn − ym‖2 = 4

∥∥∥∥x0 − (ym + ym)

2

∥∥∥∥2 ,
and since M is convex, the mid-point of the segment connecting yn and ym, i. e.

(ym+ym)
2 , belongs to M . Therefore,

‖2x0 − yn − ym‖2 ≥ 4d2.

Hence, we get

4d2 + ‖yn − ym‖2 ≤ 2‖x0 − yn‖2 + 2‖x0 − ym‖2 −−−−−−→
n,m→+∞

4d2,

and this implies that ‖yn − ym‖ −−−−−−→
n,m→+∞

0, i. e. {yn}n is a Cauchy sequence.

Since H is complete, let y0 = limn→+∞ yn. By continuity of the norm, we get

‖x0 − y0‖ = d, and y0 is the desired point in M . Uniqueness: assume y0, y
′
0 are two

points in M with the same property. We can use (a) to get

4d2 + ‖y0 − y′0‖2 ≤ 2‖x0 − y0‖2 + 2‖x0 − y′0‖2,

and this implies ‖y0 − y′0‖ = 0, i. e. y0 = y′0 as desired.

(c) State (without proof) Riesz’ representation Theorem. [2]

Solution.

Let f ∈ H∗ be a linear and continuous functional on H. Then, there exists a unique

z ∈ H such that

(1) 〈f, x〉 = (x, z), for all x ∈ H.



The map σ : H∗ 3 f 7→ z ∈ H is a bijection of H∗ onto H, it is an isometry, i.

e. ‖σ(f)‖H = ‖f‖H∗ , and it is anti-linear, i. e. σ(f + λg) = σ(f) + λσ(g) for all

f, g ∈ H∗ and all λ ∈ C.

(d) Provide an example of an infinite dimensional separable Hilbert space. Provide an

example of a countable orthonormal base for such a space. [3]

Solution.

For instance one can take the sequence space `2 with the inner product

(x, y)`2 =

+∞∑
i=1

xiyi .

Such a space is a separable Hilbert space. A countable orthonormal base is {ei}i
with

(ei)n =

1 if n = i

0 otherwise .



(3) (a) Let E,F be Banach spaces. Provide the definition of compact linear operator T :

E → F . [1]

Solution.

A linear operator T : E → F is called compact if T (BE) has compact closure in the

strong topology of F . Here BE is the closed unit ball in E.

(b) Explain the meaning of the expression λ ∈ σ(T ) (λ is an element of the spectrum

of T ). [1]

Solution.

λ ∈ σ(T ) means that λI− T does not have a continuous inverse.

(c) Let T : E → F be linear and compact and let λn ∈ σ(T ) \ {0} with λn → λ ∈ R as

n→ +∞. Prove that λ = 0. [6]

Solution.

We know from a previous result that the λn’s are eigenvalues. Let en 6= 0 such that

(A − λnI)en = 0. Let En = span[e1, . . . , en]. Clearly En ⊂ En+1. We claim that

En 6= En+1 for all n. To see that, it suffices to show that the vectors en are all

linearly independent. We prove that by induction on n. Assume this holds up to n

and suppose en+1 =
∑n

i=1 αiei. Then

A(en+1) =

n∑
i=1

αiA(ei) =

n∑
i=1

αiλiei.

On the other hand,

A(en+1) = λn+1en+1 =
n∑
i=1

λn+1αiei.

The two above identities imply αi(λi−λn+1) = 0 for all i = 1, . . . , n since e1, . . . , en

are linearly independent. Since the eigenvalues are all distinct, we have αi = 0 for

all i = 1, . . . , n, a contradiction with λn+1 6= 0. By Riesz’s lemma, we construct a

sequence un ∈ E such that un ∈ En for all n ∈ N, ‖un‖ = 1, and dist(un, En−1) ≥

1/2 for all n ≥ 2. For 2 ≤ m < n we have

Em−1 ⊂ Em ⊂ En−1 ⊂ En.

On the other hand, (A − λnI)En ⊂ En−1. Indeed, let y ∈ (A − λnI)En, i. e.

y = (A− λnI)(gn−1 + αen) for some gn−1 ∈ En−1. We have

y = (A− λnI)(gn−1) + α(A− λnI)(en) = (A− λnI)(gn−1),



and the last term above is an element of En−1 (because A(gn−1) is a linear combi-

nation of vectors in En−1). Therefore, we can write∥∥∥∥A(un)

λn
− A(um)

λm

∥∥∥∥
=

∥∥∥∥(A(un)− λnun)

λn
− (A(um)− λmum)

λm
+ un − um

∥∥∥∥ ≥ dist(un, En−1) ≥ 1/2.

Now, assume by contradiction that λn → λ 6= 0. Then, {A(un)}n has a convergent

subsequence because A is a compact operator. Therefore, A(un)
λn

has a convergent

subsequence too, but that contradicts the above inequality.

(d) Consider the Volterra integral operator T : L2([0, 1])→ L2([0, 1])

(Tf)(x) =

∫ x

0
f(y)dy .

Prove that λ = 1 is not an eigenvalue of T . [4]

Solution.

Assume λ = 1 is an eigenvalues. Then, there exists f ∈ L2([0, 1]) such that∫ x

0
f(z)dz = f(x) , for all x ∈ [0, 1] .

Hence, for x, y ∈ [0, 1] with x ≤ y one has

|f(x)− f(y)| =
∣∣∣∣∫ x

0
f(z)dz −

∫ y

0
f(z)dz

∣∣∣∣ ≤ ∫ y

x
|f(z)|dz

and Hölder’s inequality implies∫ y

x
|f(z)|dz ≤

(∫ y

x
|f(z)|2dz

)1/2(∫ y

x
dz

)1/2

≤ ‖f‖L2 |x− y|1/2 .

Hence, f is continuous. But then, the assumption
∫ x
0 f(z)dz = f(x) and the funda-

mental theorem of calculus imply that f has a continuous derivative. By differenti-

ating the latter expression on [0, 1] we get

f ′(x) = f(x) ,

and clearly

f(0) =

∫ 0

0
f(x)dx = 0 .

Hence, the solution of the differential equation above gives

f(x) = f(0)ex = 0 ,

and f cannot be an eigenvector.


