
Collaborative Model-Driven Software Engineering:
reflections on the past and visions of the future

Mirco Franzago1, Davide Di Ruscio1, Ivano Malavolta2, Henry Muccini1
1DISIM Department, University of L’Aquila, Italy
2Vrije Universiteit Amsterdam, The Netherlands

1{firstname.lastname}@univaq.it, 2i.malavolta@vu.nl

ABSTRACT
The adoption of Model-driven Software Engineering (MDSE),
to develop complex software systems in key application do-
mains such as automotive and aerospace, is being supported
by the maturation of model-driven platforms and tools. How-
ever, empirical studies show that challenges to a wider adop-
tion of MDSE technologies still exist. One limiting factor is
related to the limited support for collaborative MDSE.

This NIER paper makes an overview of collaborative MDSE
approaches by considering three peculiar aspects, i.e., model
management, collaboration, and communication means. Re-
flections on emerging results about such dimensions are given
and research directions together with related opportunities
and challenges are drawn.

1. INTRODUCTION
Terms like the Internet-of-Things, petascale datacenters,

Industry 4.0, Autonomous Vehicles continuously pop up in
the media. All those terms are proxies for software systems
with millions of lines of code, running everyday, 24 hours a
day. Said that, it is understandable that the growing com-
plexity and ubiquity of software systems give place to a num-
ber of development and management issues that necessarily
have to be addressed. In software engineering, software com-
plexity has been addressed from many perspectives, ranging
from static or dynamic software verification, domain-specific
programming languages, advanced testing techniques, etc.

One of the most pursued strategies for taming complexity
in a realistic manner is to use appropriate methods of ab-
straction [20]. Model-driven software engineering (MDSE)
[5, 16] is one of the proposed approaches aiming at taming
the complexity of software systems. In MDSE models are
considered as first-class entities, which are employed both for
descriptive and prescriptive purposes. Many are the success
stories of MDSE, ranging from the development of large-
scale enterprise Web applications, to clinical data manage-
ment, and to public authority data interchange [9, 16].

On a different line of research, the prominence of agile
methods, open source software projects, and global software
development techniques allows software development teams
(but also external and non-technical stakeholders like cus-
tomers and end users) to seamlessly collaborate to engineer
complex systems. Such techniques belong to the domain of
collaborative software engineering (CoSE) [23].

The focus of this paper is on collaborative model-dri-
ven software engineering, which can be positioned as the
intersection between MDSE and CoSE. Collaborative MDSE
is gaining a growing interest in both academia and indus-

try [6, 18]. A number of research initiatives are being run to
enable large teams of modelers to work on (large) models in
a collaborative manner [18], each of them proposing different
building blocks and perspectives about collaborative MDSE.
Among many, Morsa1 is a NoSQL-based model repository
aimed at client scalability with querying capabilities; EMF-
Collab2 is a light-weight solution to let multiple users edit a
single model concurrently; GenMyModel3 supports the de-
sign and sharing of design diagrams in real-time.

In this paper we elicit and explore the main constituent el-
ements of collaborative MDSE. In particular, Section 2 and
Section 3 provide the (main) elicited building blocks synthe-
sized from (i) a systematic mapping study on collaborative
MDSE [11, 13], (ii) a through discussion occurred during a
dedicated workshop4 held at the 19th International Confer-
ence on Model Driven Engineering Languages and Systems
(MODELS 2016), and (iii) the interaction with industrial
partners about collaborative MDSE. Section 4 elaborates
on visions of the future of collaborative MDSE by discussing
emerging needs, challenges, and open issues about the surely
intriguing synergies between CoSE and MDSE. Section 5
concludes the paper.

2. COLLABORATIVE MDSE
Model-Driven Software Engineering (MDSE) provides suit-

able techniques and tools for specifying, manipulating, and
analyzing software modeling artifacts including metamodels,
models, and transformations. Collaborative MDSE focuses
on those approaches in which several distributed technical
and/or non-technical stakeholders collaborate to produce
models of a software system, working in a local or remote
shared workspace, either synchronously or asynchronously.
Collaborating stakeholders can include, but are not limited
to, technical figures (modelers, designers, developers), do-
main experts, non-technical managers, customers, and users
of software systems.

Collaborative MDSE is gaining growing interests in both
academia and practice, and during the last few years several
studies scattered across different independent research areas
have been exploring the“building blocks”, which are required
to support collaborative MDSE. Modeling editors, model
repositories, model versioning systems, and model differenc-
ing are only few examples of techniques and tools that are

1http://modelum.es/trac/morsa
2http://qgears.com/products/emfcollab
3https://www.genmymodel.com
4http://cs.gssi.infn.it/commitmde2016



Figure 1: Collaborative MDSE dimensions

required when employing collaborative MDSE approaches.
Starting from this body of knowledge, it is possible to iden-
tify the following three complementary dimensions, which
can be considered as the peculiar aspects building up a col-
laborative MDSE approach (see Figure 1) [13]:
. model management infrastructures for managing the life
cycle of models (e.g., modeling tools, modeling repositories);
. collaboration means for allowing involved stakeholders to
work on the modelling artifacts collaboratively (e.g., model
versioning systems, model merging mechanisms, systems for
visualizing and managing model conflicts);
. communication means for allowing involved stakeholders
to be aware of what the other stakeholders collaborating
with them are doing (e.g., chat, social network, wiki, asyn-
chronous messaging system, issue tracker).

In the following, after an overview and some reflections
on emerging results about the three dimensions shown in
Fig. 1, research directions and related opportunities that we
envision about this topic are drawn.

3. REFLECTIONS ON THE PAST
How are stakeholders involved in the collaborative spec-

ification of modeling artifacts? What are the technological
means currently available for supporting collaborative pro-
cesses? How can collaborating stakeholders communicate
about the changes to be performed on the model being de-
veloped? This section answers such questions by drawing an
overview of the techniques and tools currently available to
support collaborative MDSE.

3.1 Model Management
Model management provides the infrastructure for man-

aging the life cycle of models. It includes a (possibly dis-
tributed) repository for managing the persistence of the mod-
els and their related metadata, a modelling tool [6] for cre-
ating, editing, or deleting models, interchange formats for
sharing models across projects and organizations, etc.

In the last few years the modeling community started to
face several model management challenges, especially from
a collaborative point of view. One of these challenges is to
lower the technical entry barriers to the modeling process:
embedding the modeling environment into the web-browser,
for instance, is one of the proposed solutions [22, 25], so
there is no need to install software. There are also ap-
proaches that try to involve non-technical stakeholders even
into the metamodeling activity, like FlexiSketch [28] and Col-
laboro [17]. In particular, FlexiSketch gives the users the
possibility to sketch free-form diagrams and to formalize
later the drawings by means of metamodel inference mech-
anisms. Collaboro allows the collaborative construction of
DSMLs through example-driven techniques.

Beside these initial explorations of the model management
dimension, several challenges due to the emergence of delo-

calized users working on shared resources still remain to be
properly addressed. Examples of such issues are security, us-
ability, scalability, management of multi-view specification,
etc. We detail our vision about these aspects in Section 4.

3.2 Collaboration
The kinds of collaboration that stakeholders can employ

to work on shared resources can be twofold [10]: (i) syn-
chronous, multiple users share one or more modeling arti-
facts and concurrent edit operations performed on the same
artifacts are propagated to all participants immediately, in a
(near) real-time fashion; (ii) asynchronous, multiple users
share one or more modeling artifacts, changes are not prop-
agated in real-time to other users, who instead have to ex-
plicitly update their local copies similarly to what happens
in textual versioning systems like SVN and GIT.

Both kinds of collaboration share relevant issues related
to the management of conflicting changes, which necessar-
ily have to be detected and reconciled. In the last decade,
both industry and academia have invested a lot of effort on
conflict management and on model versioning systems es-
pecially employed in asynchronous collaborative scenarios.
For an exhaustive model versioning approaches survey and
details of the different aspects, please refer to [1].

Different attempts to deal with specific synchronous col-
laboration issues have been also investigated: further than
conflict management aspects, it is relevant to manage the
propagation of editing operations by considering also possi-
ble network problems. Locking mechanisms [25] or notifica-
tion systems [22] are just two possible tentative solutions for
a still open research problem.

3.3 Communication
Collaboration intrinsically implies involvement of a (po-

tentially heterogeneous) set of stakeholders that need com-
munication support to be aware of each others’ work and
to coordinate their own editing actions. Communication
dimension has two main aspects: (i) workspace aware-
ness, defined as the up-to-the-moment understanding of
other stakeholders’ interaction with a shared workspace [15],
and (ii) communication means, the set of support mecha-
nisms and associated tools for the unstructured natural lan-
guage communications between stakeholders [27]. Histori-
cally, software engineers have adopted a wide range of com-
munication tools and technologies, such as telephone, tele-
conferences, voice mail, instant messaging, VoIP, etc. [27].

In the context of collaborative MDSE, besides these “tra-
ditional” communication means, the concept of workspace
awareness plays a key role: with the term workspace we refer
to the modelling environment provided by the collaborative
MDSE approach (e.g., the editor in which stakeholders cre-
ate and modify models) and all its additional facilities like
shared dashboards, integration with wiki-based engines, or
special notification areas in the adopted tool. As discussed in
the next section, additional effort is required in the context
of collaborative MDSE to properly integrate communication
means with workspace awareness.

4. VISIONS OF THE FUTURE
In this section we make an overview of the needs, chal-

lenges, and open issues we envision for the future of collabo-
rative MDSE. Such findings are built on top of academic
knowledge and the analysis of current practices (coming



from the systematic study, the workshop, and the analy-
sis of ongoing projects and initiatives). In the following we
details the envisioned aspects with respect to the three col-
laborative MDSE dimensions, concluding with (one of) the
main orthogonal findings.

4.1 Model Management
Modeling one single small model by means of a stand-

alone tool is surely a thing from the past. In the future we
envision a distributed modeling environment in which mul-
tiple stakeholders of different types (e.g., developers, end
users, sales) edit models, possibly in real-time. This sce-
nario opens for many challenges, such as the support of light-
weight, Web-based modeling environments (it is unthinkable
to ask a team member to install a modeling environment
locally today), accessible by following a multi-device experi-
ence, which facilitates collaboration in mobility.

High-volumes of data are generated by everything around
us everyday, meaning that models of this data (potentially
generated at run-time) will follow the same trend in the very
recent future. Even if there are some approaches advocating
the capability of managing large scale models [2, 19], we
will need more advanced techniques to store, maintain, and
edit models in a scalable manner, and cloud-based services
for manipulating or dynamically extracting parts of them
(loading and editing a full model on the client side is just a
thing from the past).

Initial steps in these directions include: partial loading of
models [26], model pre-fetching [8], incremental model trans-
formations [24], browser-based model editors with cloud ser-
vices [14], etc. A good point of inspiration in a different
domain is the Eclipse Che project5. It is an on-demand,
Web-based collaborative IDE where the tools, code depen-
dencies, and the workspace can be dynamically provisioned.
It has a microservice-based backend and a plug-in based ar-
chitecture.

4.2 Collaboration
More than ten years ago we all have been amazed by

the real-time collaborative features of Google Docs. In the
future, we envision a similar revolution in MDSE: differ-
ent stakeholders will collaborate either in real-time or in an
asynchronous manner on shared models, which will belong
to shared ecosystems of modeling artifacts. Models in those
ecosystems will be queried, edited, mapped to each other,
transformed in a light-weight manner, or even injected into
the running system (e.g., via model interpretation or com-
pilation). In this scenario it will be fundamental to have
inconsistency-tolerant environments for making collabora-
tion smooth, model repositories with extraordinary capacity
and performance, advanced engines for detecting and resolv-
ing inconsistencies, branching and merging capabilities, pos-
sibly with as much automation as possible.

Interesting initial steps in this directions include: inconsis-
tency management via process transformation, access con-
trol rules at the model element level [4], incremental bidirec-
tional model transformations [24], model indexing and effi-
cient querying [7], NoSQL databases for model repositories
with nearly instant read/write time [3].

Also, when talking about collaborative modeling we are
implicitly bringing up the concept of multi-view modeling,
where multiple stakeholders may be working on multiple

5http://www.eclipse.org/che

views of the same system at the same time. In turn, multi-
view modeling brings up the well-known tension between
the projective and the synthetic multi-view principles. If
on one side projective approaches may simplify collabora-
tion (mainly because the common metamodel is the only
source or target for the enactment of editing operations),
synthetic approaches may introduce accidental complexity
(mainly due to the potentially large number of interdepen-
dences among modeling artifacts). In any case, each multi-
view principle may be embraced for many other reasons,
either organizational or technical, thus additional scientific
effort must be devoted to both of them, even by suitably
combining them. As an example, first results in this di-
rection have been proposed with the orthographic modeling
paradigm at the basis of the Vitruvius approach [21].

4.3 Communication
As discussed in Section 3, in the past the vast majority of

collaborative MDSE approaches assumed that only techni-
cal stakeholders collaborate on models. However, software
modelling will be performed by a team consisting of several
members each with very different technical knowledge and
background. Without proper communication means, this sit-
uation may lead to mismatches in the used language, under-
standing of the to-be system, additional design and devel-
opment iterations, thus resulting in (unforeseen) waste of
resources, budget and time.

Under this perspective, we see a big research gap in terms
of support for collaboration between technical and non- tech-
nical stakeholders. This trend will be more evident in do-
mains where soft skills are more needed; for instance, stake-
holders that are typically involved in the development of mo-
bile applications include user experience designers, graphic
designers, information architects, developers, users, and cus-
tomers [12].

So far many collaborative MDSE approaches are perform-
ing well in terms of workspace awareness, however there is
still room for improvement here, especially for synchronous
approaches, where modeling elements cannot simply disap-
pear or move within the editing environment. In the fu-
ture we will see advanced facilities for workspace awareness
in terms of who is performing an editing operation (e.g.,
role-based editing) on what model or modeling element (e.g,
real-time model updates), and why the change has been per-
formed (e.g., quick recording of design decisions and their
rationale). As an example, WebGME [22] supports well the
what dimension via tool status notifications and real-time
updates in the modelling editor, but those updates just ”ap-
pear” in the editor without any indication about who made
those updates on which parts of the models.

Finally, it will be fundamental to ensure traceability be-
tween the design decisions discussed in communication- ori-
ented contents (e.g., the text of a chat, the page of a Wiki,
or a recorded design decision) and modeling artifacts (e.g.,
a model, a specific model element, or even previous ver-
sions of a model). Indeed, those (potentially typed or struc-
tured) links will be a precious asset for reusing technical and
non-technical knowledge about the models developed within
large software organizations.

4.4 Main Orthogonal Challenge
During the previously described analysis and reasoning we

came across a common future challenge, which is orthogonal



Flexibility aspects

Support for importing, linking, and editing models con-
forming to several and integrated domain-specific model-
ing languages
Pluggable external editors to edit modelling artifacts
(e.g., models, metamodels)
Support for including an open set of plug-ins provid-
ing vertical functionalities (e.g., for performing a specific
type of analysis)
Traceability engines for external artifacts, possibly with
links at the model element level
Concrete syntax redefinition or customization
Pluggable domain-specific conflict detection/resolution
engines
Pluggable domain-specific consistency checkers, both
within and across models

Table 1: Flexibility aspects for future collaborative
MDSE approaches

to all the dimensions previously discussed: flexibility shall
be a cornerstone of any collaborative MDSE approach. It is
difficult to figure out a totally generic collaborative MDSE
approach that perfectly fits any application domain (e.g.,
automotive vs Web apps), any organization (large corpo-
rates vs startup-like companies), any development process
(certification-oriented development vs SCRUM-based agile
development), etc. In this respect, Table 1 shows the iden-
tified emerging types of flexibility.

Modular and plugin-based architectures will surely play a
role when architecting a collaborative MDSE tool. We en-
vision flexible and agile modeling infrastructures where any
stakeholder will be able to add, customize, or remove the
functionalities of the modeling environment at wish, thus
adapting it to the (ever-changing) specific project and orga-
nizational needs.

5. CONCLUSIONS
Collaborative MDSE envisions a new way to develop com-

plex systems by putting in synergy collaborative software
engineering and model-driven software engineering. Even
though the benefits related to the adoption of collaborative
MDSE are evident, it is far from clear about how to get the
best out of it. In this paper, we analyzed three peculiar as-
pects underpinning collaborative MDSE, identified related
opportunities and challenges.

References
[1] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on

model versioning approaches. Int. Journal of Web Informa-
tion Systems, 5(3):271–304, 2009.

[2] F. Basciani et al. MDEForge: an Extensible Web-
Based Modeling Platform. In Procs. of the 2nd Cloud-
MDE@MoDELS, pages 66–75, 2014.

[3] A. Benelallam et al. Neo4emf, a scalable persistence layer for
emf models. In European Conf. on Modelling Foundations
and Applications, pages 230–241. Springer, 2014.

[4] G. Bergmann et al. Query-based access control for secure
collaborative modeling using bidirectional transformations.
In Procs of the 19th Int. Conf. on MoDELS. ACM, 2016.

[5] J. Bézivin. On the unification power of models. Softw Syst
Model, 4(2):171–188, may 2005.

[6] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven soft-
ware engineering in practice, volume 1. Morgan & Claypool
Publishers, 2012.

[7] G. Daniel, G. Sunyé, and J. Cabot. Mogwäı: a framework to
handle complex queries on large models. In IEEE Int. Conf.
on Research Challenges in Information Science, 2016.

[8] G. Daniel, G. Sunyé, and J. Cabot. Prefetchml: a frame-
work for prefetching and caching models. In Procs of the
ACM/IEEE 19th Int. Conf. on MoDELS. ACM, 2016.

[9] D. Di Ruscio, R. F. Paige, and A. Pierantonio. Guest Edito-
rial to the Special Issue on Success Stories in Model Driven
Engineering. Sci. Comput. Program., 89(PB):69–70, 2014.

[10] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: Some
issues and experiences. Commun. ACM, 34(1), Jan. 1991.

[11] M. Franzago et al. Protocol for a Systematic Mapping Study
on Collaborative Model-Driven Software Engineering. Tech-
nical Report TR-001-2016, DISIM - University of L’Aquila,
2016. URL https://arxiv.org/pdf/1611.02619.pdf.

[12] M. Franzago, H. Muccini, and I. Malavolta. Towards a
collaborative framework for the design and development of
data-intensive mobile applications. In Procs of MOBILESoft
2014, Hyderabad, India, pages 58–61, 2014.

[13] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini.
Collaborative model-driven software engineering: a classi-
fication framework and a research map. IEEE Transac-
tions on Software Engineering, PP(99):1–1, 2017. URL
https://tinyurl.com/ya5srlvd.

[14] J. Gray and B. Rumpe. The evolution of model editors:
browser-and cloud-based solutions. Software & Systems
Modeling, 15(2):303–305, 2016.

[15] C. Gutwin and S. Greenberg. A descriptive framework of
workspace awareness for real-time groupware. Computer
Supported Cooperative Work (CSCW), 2002.

[16] J. Hutchinson, M. Rouncefield, and J. Whittle. Model-driven
engineering practices in industry. In 2011 33rd Int. Conf. on
Software Engineering (ICSE), pages 633–642. IEEE, 2011.

[17] J. L. C. Izquierdo et al. Engaging end-users in the collabo-
rative development of domain-specific modelling languages.
In Int. Conf. on Cooperative Design, Visualization and En-
gineering, pages 101–110. Springer, 2013.

[18] D. S. Kolovos et al. A Research Roadmap Towards Achiev-
ing Scalability in Model Driven Engineering. In Procs of
the Workshop on Scalability in Model Driven Engineering,
BigMDE ’13, New York, NY, USA, 2013. ACM.

[19] D. S. Kolovos et al. MONDO: scalable modelling and model
management on the cloud. In Joint Procs of the Doctoral
Symposium and Projects Showcase at STAF 2016, 2016.

[20] J. Kramer. Is abstraction the key to computing? Commu-
nications of the ACM, 50(4):36–42, 2007.

[21] M. E. Kramer, E. Burger, and M. Langhammer. View-centric
engineering with synchronized heterogeneous models. In
Procs of the 1st Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling, page 5. ACM, 2013.

[22] M. Maróti et al. Next generation (meta) modeling: Web-
and cloud-based collaborative tool infrastructure. In MPM@
MoDELS, pages 41–60, 2014.

[23] I. Mistŕık et al. Collaborative software engineering: Chal-
lenges and prospects. In Collaborative Software Engineering.
Springer, 2010.

[24] O. Semeráth et al. Iterative and incremental model gener-
ation by logic solvers. In Int. Conf. on Fundamental Ap-
proaches to Software Engineering. Springer, 2016.

[25] C. Thum, M. Schwind, and M. Schader. Slim: A lightweight
environment for synchronous collaborative modeling. In Int.
Conf. on Model Driven Engineering Languages and Systems,
pages 137–151. Springer, 2009.

[26] R. Wei et al. Partial loading of xmi models. In Procs of the
ACM/IEEE 19th Int. Conf. on MoDELS. ACM, 2016.

[27] J. Whitehead, I. Mistŕık, J. Grundy, and A. Van der Hoek.
Collaborative software engineering: concepts and techniques.
In Collaborative Software Engineering. Springer, 2010.



[28] D. Wuest, N. Seyff, and M. Glinz. Flexisketch team: Col-
laborative sketching and notation creation on the fly. In
IEEE/ACM 37th ICSE, 2015.


