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Abstract. We discuss global properties of constant mean curvature surfaces
(H-surfaces) in H2 ×R : maximum principle at infinity, halfspace type theorem,
non existence of simply connected surfaces with one end.

1 Introduction

In last years, there has been work on H-surfaces in homogeneous 3-manifolds, in
particular in product spaces M2×R, where M2 is a Riemannian surface: new ex-
amples were produced and many theoretical results as well (see the bibliography
for an overview about the subject).

In this survey, we describe some of our contributions to the theory of constant
mean curvature surfaces in H2 × R where H2 is the hyperbolic plane ([27], [28],
[30]).

In H2 × R, the mean curvature H = 1
2

plays the same role as the mean
curvature zero in R3 and one in H3 ([7]). It will be clear in the following that the
behavior of H-surfaces is quite different depending on H greater or smaller than
1
2
. For example, there is no entire graph with constant mean curvature H > 1

2
,

while, for any H ∈ (0, 1
2
) there exists an entire rotational graph with constant

mean curvature H ([39], [31], [30]). Furthermore, there is no compact embedded
surface with constant mean curvature H < 1

2
, while for any H > 1

2
, there exists

a compact sphere with constant mean curvature H ([16], [5]).

2 The Maximum Principle at Infinity

Theorem 2.1. ([27]) Let M1, M2 be two disjoint H-surfaces in H2×R complete,
properly embedded, without boundary, with H > 1√

2
. Then M2 cannot lie in the
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mean convex side of M1.

By mean convex side of M1, we mean the following. As M1 is properly
embedded, it separates H2×R into two connected components. The mean convex
side of M1 is the component of H2 × R \M1 towards which the mean curvature
vector of M1 points.

For H ≤ 1
2
, Theorem 2.1 is false, in fact rotational, entire vertical graphs are

counterexamples to the result of the Theorem ([31], [30], [36]). We believe that
Theorem 2.1 holds for H > 1

2
.

The analogue of the previous Theorem in the Euclidean case is proved in [35].
An analogous result in H3 is proved in [12], provided the curvature of M1 and
M2 is bounded.

A key tool for the proof of Theorem 2.1 is the distance estimate established
in the following Lemma.

Lemma 2.2. (Distance Lemma) ([27]) Let M be a stable H-surface in H2×R
with H > 1√

3
. Then, for any p ∈ M

distM(p, ∂M) <
2π√

3(3H2 − 1)
(1)

The hypothesis H > 1√
3

seems to be due only to technical reasons. Actually,

we believe that a similar estimate can be proven for H > 1
2
. The proof of Lemma

2.2 is a modification of Fisher-Colbrie’s method ([11]).
In [34], Lemma 2.2 was extended to any homogeneously regular three man-

ifold, provided the curvature H is great enough with respect to the sectional
curvature of the ambient manifold.

Let us give an idea of the proof of Theorem 2.1.
The proof is by contradiction: assume that M2 lies in the mean convex side

of M1.
We first prove that neither M1 nor M2 can be compact. If M1 were compact,

then the mean convex side of M1 would be compact too and M2 would be properly
embedded in a compact set. Hence M2 would be compact. Moving M1 towards
M2, by an isometry of the ambient space, yields a first contact point where the
mean curvature vectors of M1 and M2 are equal. This gives a contradiction by
the standard maximum principle. Hence M1 cannot be compact. If M2 were
compact, then, by moving M2 towards M1 as before, one obtains a contradiction
by the standard maximum principle. So, M1 and M2 are both non compact and
moving M1 towards M2, by an isometry of the ambient space, the first contact
point cannot be a finite one, by the standard maximum principle. So we are left
with the case in which the first contact point is at infinity. This explains the
name ”maximum principle at infinity”.
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In this case, we define W to be the closure of the component of H2 × R \
(M1 ∪M2) satisfying ∂W = M1 ∪M2. The boundary of W is not connected and
the mean curvature vector of M1 points towards W.

Let S be a relatively compact domain in M1 such that ∂S = Γ is a smooth
curve. One can prove that there exists a stable H-surface Σ in W with boundary
Γ and homologous to S (for the definition of stability see [6], [28]). The proof of
this fact is quite delicate and uses results by geometric measure theory. Then, by
taking the domain S in M1 larger and larger, one finds points of Σ very far from
its boundary Γ. This gives a contradiction by the fact that the distance between
a point of a stable H-surface and its boundary is bounded by Lemma 2.2.

As a Corollary of Lemma 2.2, we have the following result.

Theorem 2.3. ([27]) In H2 × R there is no non compact complete stable H-
surface with H > 1√

3
either with compact boundary or without boundary.

On the other hand, we obtain a bound on the topology of a stable compact
H-surface, provided H > 1√

2
.

Theorem 2.4. ([27]) Let M be a compact weakly stable H-surface in H2 × R
with H > 1√

2
. Then the genus g of M satisfies g ≤ 3.

3 Simply Connected Surfaces

The distance Lemma is also a key point in the proof of the following result.

Theorem 3.1. ([28]) For H > 1√
3
, there is no properly embedded H-surface in

H2 × R with finite topology and one end.

In [23], Meeks proved that if M is a properly embedded simply connected
surface of constant mean curvature H 6= 0 in R3, then M is a round sphere. In
particular, M can not be topologically R2. More generally, he proved there is
no properly embedded H-surface of finite topology in R3, with exactly one end.
Afterwards, in [22], a different proof of Meeks’ Theorem was found and, in [21],
it was extended to the hyperbolic space H3.

Theorem 3.1 answers to this problem in H2×R. There are properly embedded
H-surfaces in H2 ×R that are topologically R2; there are entire graphs (vertical
graphs over H2) for each H, 0 ≤ H ≤ 1

2
([27], [30], [31], [36], [39]). We prove

that such a surface can not exist for H > 1√
3
. In [9] our result is extended to the

case H > 1
2
.

It is interesting to consider to what extent Theorem 3.1 holds in other ho-
mogeneous 3-manifolds (for some other constant than 1√

3
). In S2 × R, there is

no properly embedded H-surface with one end. To see this, notice that an end
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of such a surface M would have to go up, or down (but not both), since M
is proper. So one can assume M is bounded below say by height zero. Then,
do Alexandrov reflection with respect to the ”planes” S2 × {t} coming up from
t = 0, to conclude that the part of M below any M × {t}, is a vertical graph.
This contradicts the height estimates for such graphs (see [17]). So, no such M
exists in S2 × R.

The other homogeneous 3-manifolds (beside the space forms) are the Berger

spheres, Heisenberg space and P̃SL(2,R). Since the Berger spheres are com-
pact, the question is interesting in the last two spaces: Heisenberg space and

P̃SL(2,R).
Another interesting question in Heisenberg space is whether the only embed-

ded compact H-surfaces are the rotational spheres of constant mean curvature.
Theorem 3.1 has the following straightforward consequence.

Corollary 3.2. ([28]) A simply connected H-surface properly embedded in H2×
R, H > 1√

3
is a rotational sphere.

The proof of Theorem 3.1 follows from the fact that for H > 1√
3
, a properly

embedded H-surface in H2 ×R with finite topology and one end is contained in
a vertical cylinder (Theorem 1.2 in [28]).

Theorem 3.1 in H2 × R does not hold without the one end hypothesis. In
fact, there are examples of constant mean curvature cylinders lying in the tubular
neighborhood of a horizontal geodesic (cf. [24]).

4 A Halfspace Theorem for H = 1
2

D. Hofmann e W. Meeks proved a beautiful theorem on minimal surfaces, the
so-called ”Halfspace Theorem” in [18]: there is no non planar, complete, minimal
surface properly immersed in a halfspace of R3. A halfspace theorem for minimal
surfaces in H2 × R is false, in fact there are many minimal surfaces in H2 × R
that have bounded third coordinates ([27], [40]). It is natural to investigate
about halfspace type results for surfaces of constant mean curvature H = 1

2
in

H2 × R. We are able to prove the following result.

Theorem 4.1. ([30]) Let S be a simply connected rotational surface with con-
stant mean curvature H = 1

2
. Let Σ be a complete surface with constant mean

curvature H = 1
2
, different from a rotational simply connected one. Then, Σ can

not be properly immersed in the mean convex side of S.

In [20] L. Hauswirth, H. Rosenberg and J. Spruck prove a halfspace type
theorem for surfaces on one side of a horocylinder.
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The result in [20] is different in nature from our result because in [20], the
”halfspace” is one side of a horocylinder, while for us, the ”halfspace” is the
mean convex side of the rotational simply connected surface.

Let us state a conjecture (Strong Halfspace Theorem) that would generalize
Theorem 2.1 to surfaces with constant mean curvature H = 1

2
.

Conjecture. ([30]) Let Σ1, Σ2 be two complete properly embedded surfaces
with constant mean curvature H = 1

2
, different from the rotational simply con-

nected one. Then Σi can not lie in the mean convex side of Σj, i 6= j.
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