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SOME REMARKS ON POSITIVE SCALAR
AND GAUSS-KRONECKER CURVATURE

HYPERSURFACES OF R^1 AND IT^

by B. NELLI and H. ROSENBERG

1. Introduction.

We shall discuss isolated singularities of hypersurfaces of R714"1

and HP"1'1 with constant positive scalar curvature and hypersurfaces
of R71"1"1 with bounded positive Gauss-Kronecker curvature.

In M3 the scalar curvature is the Gauss curvature and in this case
we are able to prove that a graph of positive Gauss curvature over a
punctured disk extends continuously to the puncture. The same holds when
the ambient space is M71"^1 and the graph has positive Gauss-Kronecker
curvature and a strictly convex point.

We will prove that a graph over a punctured disk, with constant
positive scalar curvature in R77'"1'1 or El71"1"1 (in hyperbolic space for n > 3)
is bounded.

There are examples of rotational surfaces in R3 with positive constant
Gauss curvature that are not C1 (cf. [Sp]), so the regularity of our extension
result is optimal.

An interesting problem is to decide if a graph over the punctured
disk in R714'1, n > 3, of constant positive scalar curvature extends to the
puncture.

Key words: Scalar and Gauss-Kronecker curvature — Isolated singularity — Maximum
principle.
Math. classification: 53A10 - 35J99.
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2. Statement of the theorems.

THEOREM 2.1. — Let fl, be a domain in R71, p € f2. Let f : ̂  \ {?} -^ R
be a (72 function such that the graph of f in R714'1 has positive Gauss-
Kronecker curvature and has a strictly convex point. Then f extends to a
continuous function on St.. When n = 2, Gauss-Kronecker curvature bigger
than 0 means every point of the graph is strictly convex.

THEOREM 2.2. — Let ^ be a domain in R71 (IF1, n > 3), p C ^, S a
positive constant. Let f : fl, \ {p} —>- R be a C2 function such that the graph
off has scalar curvature equal to S in R71"1"1 (respectively in W1'^1), then f
is bounded.

This is a first step in order to prove that / extends to p (see the case
of constant mean curvature in [RSa] and [NSa]).

We must precise what we mean by a graph in hyperbolic space. In
fact there are several notions of graph (cf. [NSa], [NSe], [NSp]) and here,
the opportune one is the following.

Killing Graph with respect to a geodesic 7p. — Let 0 be a domain in
a geodesic hyperplane P and let p € f2; let q be any point of Q, and r]p(q)
the orbit through q of the hyperbolic translation along 7p (i.e. the integral
curve of the Killing vector field associated to the hyperbolic translation).
Let u be a real function that at each point q € ^2 associates the point
on r]p(q) at hyperbolic distance u(q) from P.

We call Killing cylinder over ^2 with respect to ^p the set

K(^p) = \J rjp(q).
qW

3. Isolated singularities of hypersurfaces of IR7^1

with Sn > 0.

Proof of Theorem 2.1.

We use an elementary geometric method. We can assume that Q. \ {p}
is the disk of radius one, punctured at the origin, D* C {a*n+i = 0}.

Denote by a^(P), i = 1,... , n+1, the coordinates of a point P G W1^1

and set p = (a-i(P),... ,a;n(P)); denote by S* the graph of / and set
F(p) = (?,/(?)).
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Figure 1

We achieve the proof in four steps.

1. Let po C D*, Po = (po, f(po)) and Tp^S* be the tangent space to 5*
at Po; then 5* lies in one of the two halfspaces determined by Tp^S*.

2. |V/|2 is bounded in a neighbourhood of 0.

3. The function / is bounded on D*.

4. There exists L € M such that, for each path 7: [0,1] —> D, 7(1) = 0,
the limit lim f(^(t)) exists and it is equal to L.

This means that the function /: D —> M defined by f(p) = f(p) for
each p € -D* and /(O) = L is a continuous extension of /.

First step. — The Gauss-Kronecker curvature Sn of a hypersurface
ofR71"^1, is the product of the principal curvatures of the hypersurface. Since
we are assuming there is at least one strictly convex point, the hypersurface
can be oriented so that all the principal curvatures are positive at this
point. Since Sn > 0, they are positive at every point.

The signed distance d from a point Q = F(p) to the tangent
space TpoS'* is given by d = (F(p) - F(po),n{Po)} where

n(p ) = ( ~^^0) -fn(Po) 1 \

W1 + |V/(Po)|2 " " ' v/1 + |V/(po)|2 ' V'1 + |V/(po)|27

is the unit normal vector to the surface at Po (see Figure 1).
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Let (^ be the half (n - l)-plane passing through the origin and po
and let

^={Qe5*|Q=F(p),pe^nD*}.

We prove that d has constant sign on S*\L^.

By Taylor's formula, for points p = (a-i,...,^) ^ ^o, (^o is the
(n - l)-plane that contains £^) we have

n

F(p) = F(po) + ̂ ^(Po)(^ - ̂ (Po))
^=l

+ J E ^(C)(^ - ̂ (Po)) (^ - ̂ -(Po))
^=1

where C = (Ci? • • • ? Cn) is a point of the segment from po to p. We remark
that i f j?e4, then C may be the origin and F is not defined there. It follows
that:

n

d = ̂ {Fi(po),n(Po)}(xi - a-.(Po))
»=1

+ J E ̂  (0, n(^o)) (^ - x, (Po)) (a;, - x, (Po)).
»,.»'=!

As n(Po) ± P, for z = 1,..., n, we have

n

d = jnn+i E /z,(C)(^ - Xi(Po)) (xj - x,(Po))
ij=l

= J^n+1 [(^1 - ̂ l(Po), . . . , Xn - Xn(Po)) [^(/)(C)]

X '(^1 - ̂ l(Po), . . . ̂ n - ̂ n(Po))]

where 77^+1 is the last coordinate of the unit normal vector to 5* and H ( f )
is the Hessian matrix of the function /.

Since all the points of 5* are strictly convex, we can assume that H(f)
is negative definite; so, as rin+i > 0, d is negative.

It follows that all the points Q e 5* \ L^ are contained in one of the
two halfspaces determined by Tp^S*. By continuity, all the points of L^ are
contained in the same halfspace.
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Since / € (^(D*), no tangent space to 5* is vertical (except eventually
on 95*). Thus we can say that 5* lies under each tangent space, hence / is
bounded above.

Second step. — By contradiction, there exists a sequence {pm} C jD*
such that pm —^ 0 and |V/(pm)| —^ oo, as m —^ oo. Hence nn+i(pm) —> 0
and Tp^5* tends to a vertical plane.

Let

Sm = min{^+i(Q) | Q = (^n+i(Q)) G Tp^*, q € 9D};

then, Tp S* tends to a vertical hyperplane if and only if lim Sm = —oo.m m—>oo

Set M = min /(p), then there exists m(M) such that for each
p^QD

m > m(M)

Sm< M = minf(p) < f(q)
p^dD

where Q € Tp^S* and q € <9D; this last inequality is a contradiction,
because the surface 5* is under each tangent space by the first step.

Third step. — By the remark at the end of the first step / has an
upper bound, so we have only to prove that / has a lower bound. If not,
there exists a sequence {pm} ^ D* such that pm —^ 0 and /(pm) —^ —oo?
as m —>• oo.

Passing to a subsequence, we can assume that:

(i) /(Pm) —> -oo decreasing and /(pm+i) < -c + /(pm) where c is a
positive constant;

(ii) |pm - Pm+il < 3(2-(m+l)) (we choose pm in the disk of radius 2~m

centered at 0);

(iii) the origin does not belong to the segments ^(pm+i — Pm) +Pm5
t e [0,1] for each m C N; it is enough to choose all the pm m a set as
in Figure 2.

Figure 2
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Let gm : [0,1] -> R be the C1 function defined as follows:

9m(t) = f(t(pm-^l -Pm) + Pm) •

This function is well defined because t(pm-^-i - pm) + Pm ^ 0 for each
te[0, l] .

Then there exists a to e (0,1) such that

9m(fo} = Pm(l) - ̂ n(O) = /(^+l) - /(pm).

Furthermore

|̂ 0)| = |<V/(t(^+i -p^) +P^),(p^+i -P^)>|

^ |V/(^(p^+i -R^) +Pm)| • bm+1 -Pm|

<|V/(^^-^)+^)|^<|g

where the last two inequalities depend on (ii) and on step 2, respectively.
Hence, for each m e N

Q/^l

0<c<\f(p^)-f(p^)\<^

where the second inequality follows from (i); a contradiction.

Fourth step. — By contradiction, there exists a path 7 satisfying
the hypothesis such that \imf(^(t)) does not exist; then there exist two
sequences {syn}, {tm}, Sm.tm -^ 1 as m -^ oo, such that

Jm^(^))=L, Jnn^(^))^

and L = (, + c where c is a positive constant.

Let pm = 7(^m) and Qm = 7(5m).

The equation of the tangent space to 5* at a point Qm = (9m, /(<7m)) is

<^(0m), (^1 - ̂ l(Qm), . . • ,Xn - ̂ n(Qm)^n+l - /(9m))) = 0

that is
n

^ fi(qm.)(xi - Xi(Qm)) - Xn+l + f(qm) = 0.
t=l



ISOLATED SINGULARITIES OF POSITIVE SCALAR CURVATURE GRAPHS 1215

The intersection of this hyperplane with the Xn-^-i axis is the point (0, a%_i)
given by

that

<+1 - /(9m) = - Y, fi{qm)Xi(Qm).
1=1

As |V/| is bounded on D*, there exists a positive constant C such

n

1^+1 -/(9m) \^C ^Xi(Qm)
i=l

hence lim \x^ - f(qm)\ = 0.
771—>00' '

Let e > 0. By the fact that the tangent space to 5* is not "too vertical"
(step 2), there exists a neighbourhood of the origin in J9, say C/e, such that
for every p e Ue, the point P e TQ^S* such that P = (p, Xn-^-i(P)) satisfies

(1) |^+i(P)-^|<e.

Now, let m(e) such that for each m > m(e), we have pm € £/e and

(2) |/(^) - ̂ J < e, |/(<^) - ̂ | < e, |/(p^) - L| < e.

For any m > m(e), let P € TQ^^* such that (^i(P),... ,^n(P)) = Pm =
7(^). Then

^+i(P) < ^+1 + e < /(g^) + 2 e < ^ + 3 e = L - c + 3 e < /(p^) + 4c - c

where inequalities are given by (1), and (2) respectively.

If 6 < \c the point (pm?/(pm)) ^ 5* lies above the hyperplane
TQ^S'*; a contradiction by step 1.

Analogously one proves that two paths with different limits do not
exist. D

4. Isolated singularities of hypersurfaces
with S^ > 0.

As remarked in [R] (see also [ACC]), S^ > 0 yields an elliptic equation
on any hypersurface in a space form. We briefly recall the proof of this fact.
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Let A == {ctij} be the second fundamental form of a positive scalar
curvature hypersurface M and let A = ( A i , . . . , \n) C M71 be its eigenvalues

n n

list. Let 62 = S ^^j ana 5i = S ̂ j- Then for each j = 1,.. . , n,
i<j=l j=l

512=^AJ2+252>A^
J=l

Hence Si — Xj = {QS^/QXj) > 0 and the matrix {9S^/9\j} is positive
definite on M. So M satisfies the maximum principle (cf. Theorem 1.3.4
of[N]).

Also the previous equation clearly implies that the sign of the mean
curvature function of a positive scalar curvature hypersurface is constant.

An important tool in the proof of Theorem 2.1 is the classification
of rotational hypersurfaces with constant scalar curvature. Leite classifies
such hypersurfaces in space forms of dimension bigger than three {cf. [L]).
We recall the part of her result that we need.

THEOREM 4.1. — Let n >_ 3. -For any constant S > 0, there exists a one
parameter family of complete embedded rotational hypersurfaces of M71"^1

(resp. H71"1"1) with constant scalar curvature 5, (resp. computed in the
metric of El714"1) all periodic and cylindrically bounded, which converges to
a stack of geodesic spheres i.e. a sequence of spheres, tangent two by two.

Classically such hypersurfaces are called Delaunay hypersurfaces.

In the following, where there is no ambiguity, we will refer to
hyperplanes as planes and to hypersurfaces as surfaces etc.

Proof of Theorem 2.2.

The proof in M3 is a particular case of Theorem 2.1. Let us restrict
to n > 3.

The technique of the proof in hyperbolic space clearly yields the result
in Euclidean space.

Let ^ be a domain in the geodesic plane P of HI714"1 and let -7? be
the geodesic through p orthogonal to P. Consider the family of rotational
surfaces around 7p with constant scalar curvature S.

Each Delaunay surface divides hyperbolic space into two connected
components and its mean curvature vector points towards the component il
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containing the geodesic 7p. Furthermore, we can find a geodesic disk DR
in P centered at p, of radius R contained in fl. such that there exists a
portion Deig of a Delaunay surface with the following properties:

(A) Delg. has scalar curvature 5;

(B) Deig is a Killing graph over the annulus Ag = Dp \ D^\

(C) De\e is tangent to the Killing cylinder over 9De.

Consider the family of hyperbolic translation {^}teK along 7p. The
function / is bounded on Ag, hence we can assume that, by increasing ^,
Ht(De\e) is disjoint from the graph of /. Now decrease t in order to find a
first point of contact between the two surfaces. The mean curvature vector
of any ^(Delg.) points towards U, hence so does the mean curvature vector
of the graph of / at the point where they first touch. Then, by the maximum
principle, the first point of contact cannot be interior. If it is on the internal
Killing cylinder (the Killing cylinder over 9De) then by (C), the graph of /
must be tangent to the cylinder there and this is a contradiction by the fact
that / is a C2 Killing graph over the punctured disk.

So, the first contact point is on the Killing cylinder over QDp. This
gives a bound on /. D

Remark. — The same technique cannot work in the space form of positive
constant curvature, i.e. the sphere. In fact by the classification theorem
(cf. [L]) the family of rotational surfaces with positive constant scalar
curvature in the sphere is at most countable.
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