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Abstract. InH? x R one has catenoids, helicoids and Scherk-type surfaces. A Jenkins-
Serrin type theorem holds here. Moreover there exist complete minimal grafifs in
with arbitrary continuous asymptotic values. Finally, a graph on a domdilf ocannot

have an isolated singularity.
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1 Introduction

In this paper we consider minimal surfacesHA x R; particularly, surfaces
which are vertical graphs over domainsHi. When a convex domaif» c H?
isbounded by geodesicards, ... A, B, ..., B, together with strictly convex
arcsCy, ..., Cy, we obtain necessary and sufficient conditions (in terms of the
lengths of the boundary arcsDf which assure the existence of a unique function
u defined inD, whose graph is a minimal surfaceldf x R, and which takes the
values+oo on the arcAy, ... A, —oo on the arcsBy, ..., B,, and arbitrary
prescribed continuous data on the afgs. . ., C;. INR? x R, this is the theorem
of Jenkins and Serrin [JS].

For example, leD be a domain whose boundary is a regular geodesic octagon
with sidesA;, By, ..., A4, B4, and suppose the interior angles greOur theo-
rem yields a functiom in D, whose graph is minimal, taking the valueso on
eachA;, and—oo on eachB;. The graph of: is bounded by the eight vertical
geodesics passing through the verticegof Rotation of eaci? x {t}, by =
about each vertex dd x {¢}, extends the graph of to a complete embedded
minimal surface inH? x R (one continues the rotation about all the vertical
geodesics that arise). One can take the quotieH’ot R by various Fuchsian
groups to obtain interesting quotient surfaces. For example, one can obtain an
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264 BARBARA NELLI AND HAROLD ROSENBERG

8-punctured sphere in the quotient of total curvatdde?rr; with four top ends
and four bottom ends.

One also obtains graphs over ideal polygons with vertices at infinity. For
example, consider the polygon which is the boundary of the convex hull of the
n roots of unity,n even and at least four. Then, there is a minimal graph over
the interior of this polygon taking the values plus and minus infinity on adjacent
edges (cf. Figure 2(b)).

We prove the existence of entire minimal graphs d&é(Bernstein’s theorem
fails here). In the model0 < x? + x2 < 1} of H2, the asymptotic boundary
of H? x R is {x? + x2 = 1} x R. For any Jordan curvE in the asymptotic
boundary ofti2 x R that has a simple projection dn? + x5 = 1}, there is a
minimal graph ovef? havingI" as asymptotic boundary.

In [DN], the existence of such minimal graphs is established whénthe
boundary value of a function with very smalf-norm on the disk.

Finally, we prove a theorem for minimal graphs defined over a punctured disk
in H? : the graph extends smoothly to the puncture.

2 Preiminaries

In the three dimensional manifoldi? x R, we take the disk model fdfl2. Let

x1, X2 denote the coordinates i? andx; the coordinate ifR. The metric in

H2 x Ris

2 dx? + dx?
B F

Fo 1—x%—x§ 2
2

The graph of a functiom defined over a domain iH? has constant mean cur-
vatureH if and only if u satisfies the following equation:

div (V”> —2H 1)
Ty

wherer, = /1 + F|Vu|? and the divergence is the divergenceRifi We list
the principal steps for the computation of (1).
The Christoffel symbols for the metrits? are the following:

do + dx3

where

2 2 X1
Fil = r‘12 = le = ﬁ
2 1 1 X2
[, =T=T5= ﬁ
2 X2 1 X1
= _ﬁ» I3, = _ﬁ
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MINIMAL SURFACES IN H? x R 265

The otherl“fj are identically zero.

Let e1, ez, e3, be the canonical basis & and sete; = +/Fe1, e2v/Fey,
£3 = es, SO thatey, &5, €3 is an orthonormal basis fd? x R. Finally letV be
the connection of the metri¢o2. We have:

<

0161 = —X282, Vg, = —X161,

Ve 82 = X261, Ve,61 = x182.

The coordinate vector fields on the graphofare X; = \/ifsl + uq€s,

Xo = \/AFSZ +usez andN = ‘L'il(—u]_\/fel — sz/f&“z +&3) isthe upward unit
normal.
The induced metric on the graph is:

1 2 1 2
811 = 7 +uy, gi2=uiuz, g2 = 7 + us.

The coefficients of the second fundamental form are:

— 1 X1U1 XoUo

b= (Vy, X1, Ny = = [ -2 4 222

11 = (Vx, X1, N) r( iz ﬁ—l-un)
— 1 XoU1 X1U2

bi» = (Vx,Xo, N) = = (2222 _ 1112

12 = (Vx, X2, N) r( Nia ﬁ—l—ulz)
- 1 X1U1 XoU2

bas = (Vx, X2, N) = = -

22 = (Vx,X2, N) r(ﬁ ﬁ—i-uzz)

where(, ) is the scalar product for the metwe 2.
Equation (1) is obtained by substituting the quantities just calculated in the
following identity:

_ b11gao + b2og11 — 2b12812

2H 5
811822 — 812

3 Catenoidsand Helicoids

Catenoids. We construct a family of minimal rotational surfacesHif x R
(see also [PR]).

Let 7 be a vertical geodesic plane containing the origin ang Ibé a curve
in 7. Assumey to be a graph over the; axis. Letr be the Euclidean distance
between the point gf at heightt and thexs axis: r = r(¢) is a parametrization
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266 BARBARA NELLI AND HAROLD ROSENBERG

of the curvey. Consider the surface of revolutidrobtained by rotating about
thexz axis. S is minimal if and only ifr = r(¢) satisfies the following differential
equation:

A ()" (t) — &' )2 — (L—r()h =0. )
A first integral for equation (2) is

r2 14t _

dJ(1)
dt

14,4
r'=4,/Cr? — —;r 4)

The allowed values fo€ andr are

whereC is a positive constant.g. = 0 along the curve).

Hence we obtain:

c 1
>_
2

2C —VAC2-1<r?<1<2C+4C2 -1

\/2C+1 \/20—1< L
in = — < 1.
rmtn 2 2 _r

Remark that a€—>% thenr,,;,—>1 hence the curve disappears at infinity,
while asC — oo thenr,,;,—0.
We can write equation (4) as follows:

t 2
S ©)
dr VACr2 — (14r%)

In order to study the curve we can choose the positive sign in (5), ite> 0.
In fact by the symmetries of equation (4) and (5), the cynfer ¢ < 0 will be
the reflection with respect to the plarg= 0 of the curvey for ¢ > 0. With the
choice of the positive sign, we have the following properties.

0] j—j > 0 hence is an increasing function of.

(i) Forr = ryi, we have% = o0, i.e. the tangent to the curve at the point
r = rmin i parallel to thexs axis and this is the only point where this
happens.
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MINIMAL SURFACES IN H? x R 267

(i) As r—1, we have:

dt_) V2
dr J2C =1

Hence, wherf varies betweeé and+oo the asymptotic angle of varies
betweens and 0.

(iv) % < 0, hence the concavity does not change.
(v) Consider the change of variables= r?. Equation (5) becomes
dw

dt =+
\/w(ZC +VAC2 —1—w)(w—2C ++/4C2-1)

(6)

Hence

t(w)::l:/w <s(2c+\/4c2—1—s)(s—2c+\/m))f ds
2c-/4C2-1

NI

Thisis an elliptic integral. By the properties of elliptic functions dim,, 7 (w)
is independent ofw. For every value of the constadt we haver(4C —
v/4C2 — 1) = 0, hence for the limit valu&€ = oo, the surface is a horizon-
tal plane (doubly covered).

Using (i)-(v) we have the following theorem (see Figure 1).

o

rmin

Figure 1

Theorem 1. LetI'.(r) be the two circles at infinity ol x R defined by
(24+x2=1, x3==t}.

Then, for each > 0 there exists a rotational surface (catenoidjz), whose
asyptotic boundary i§,(¢) UT_(#). Ast—>0, C(¢) converges to the doubly
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268 BARBARA NELLI AND HAROLD ROSENBERG

covered planél? with a singularity at the origin. As—s oo, C () diverges to

the asymptotic boundary &f° x R. Furthermore for any angle <]0, Z[ there

is a C(r) whose asymptotic normal vector at boundary points forms an angle
equal toa with thexs axis.

Helicoids. Leta be ahorizontal geodesic passing throughdlexis. Consider
the surfaceE obtained by translating vertically and rotating it around the;
axis. A parametrization foE is the following:

X(u,v) = (vcosh(u), vsind(u), u)

v e (=1,1),u € Randd : R—R is aC? function representing the angle
betweenx and thex; axis at the level.
E is a minimal surface if and only if

6,, =0.
Hence the solutions are:

(i) 6(u) = a, a € R. In this caseE is a vertical plane forming an angte
with thex; axis.

(i) 6(u) = au, a € R\ {0}. In this case the surfacE is congruent to the
Euclidean helicoid.

4 Scherk type surfaces

Let P be a regular 2-gon in H? with (open) edgesiy, B, ..., A;, By (see
Figure 2(a)k = 2). We will construct a minimal grapk over the domairD
bounded byP such that the boundary values are alternativedy on the edges
A; and—oo on the edges;. = will be called a Scherk type surface. Also, the
Scherk surface exists if the vertices 4f and B; are at infinity; so thaf is a
ideal polygon whose vertices are therdots of unity (see Figure 2(b},= 2).

Choose one edge 6f where the desired valuedsoo and call itA. Let B and
C be the two geodesic arcs passing through the cent@rasid the vertices of
A. LetT be the (open) triangle with sides B andC. LetI'(n) be the curve
obtained by the union of the following geodesics aiBsC together with the arc
obtained by raisingi to heightz, and the vertical geodesics joining the vertices
of the raisedd with the vertices ofA.

Let X, be a solution of Plateau’s problem fbi(n). Rado’s theorem is true
in H? x R, since vertical translation is an isometry, heigis the graph of a
functionu,, defined in the triangl@ and

Unia = +n, Unp = Unic = 0.
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MINIMAL SURFACES IN H? x R 269

(a) Geodesic 4 — gon (b) Ideal 4 —gon

Figure 2

Theorem 2. The sequencg,} converges to a minimal solutiondefined in
T such that

Ua = +o00, up = uc = 0.

Moreover, the gradient af diverges as one approaches the sile

Proof. The sequencg,} is non decreasing and positive. Hence, to show that
the functionu exists, we will prove that the sequeng } is uniformly bounded
on compact subsefts of T.

We start by constructing a barrier over the graph ofithen K.

Py

P2

Figure 3

The following construction is represented in Figure 3.

Let o be the horizontal geodesic containing the sideDenote byg; andg.
the vertices ofA. Fori = 1, 2, let p; the point onx \ A at a distance > 0 from
g;- Denote bya, the geodesic arc between and p,. Let r be the horizontal
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270 BARBARA NELLI AND HAROLD ROSENBERG

geodesic orthogonal to the edgepassing through the mid-point df (in order
to simplify Figure 3 we assume thaipasses through the origin BF). Let p.,
be the point at infinity ot contained in the same halfplane&slefined by.

Finally denote bys, the horizontal geodesic through andp., and byy, the
horizontal geodesic throughy and p..

Consider a horizontal geodediorthogonal tor and letps = 6 N B, ps =
8 N y.. Calld the geodesic arc ahbetweenps and p4, b, the geodesic arc on
B. betweenp; and ps andc, the geodesic arc op. betweerp, and p,. We can
chose|b. || and||c.|| large enough such that the quadrilateral with edges,,
¢, d contains the triang|& .

Let 4 be a positive number and cal(i) each object obtained by translating
vertically to height: an object ofH? x {0}. Consider the following curves (see
Figure 4):

b, (h)
c. (h) .
P,
b
h
Ly 2z~ €
ps/ P,
¢

Figure 4

LY = b, U (p1 x [0,h]) Ub,(h) U (p3 x [0, h]),
L% =c. U (p2 x [0, h]) Uc.(h) U (ps x [0, h]).

We claim that there exists a least area, hence stable, minimal annulus bounded
by L4 U L%, if ||b|| is sufficiently large. A sufficient condition is given by
the Douglas criteria for the Plateau problem: if there is an annulus bounded by
LU L} with area smaller than the sum of the areas of the flat geodesic domains
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MINIMAL SURFACES IN H? x R 271

bounded byL" and L4, then there exists a least area minimal annulus bounded

by L4 U L%
By a straightforward computation we obtain that the sum of the areas of the flat
geodesic domains bounded by and L% is equal to 2. ||k (as||c.|| = ||be|]).

Now, consider the annulus that is the union of the four geodesic domains
bounded by the following quadrilaterals (see Figure 5):

Q1 =a, U (p1x[0,h]) Ua.(h) U (p2 x [0, h]),
Q2 =d U (p3 x [0, h]) Ud(h) U (pa x [0, h]),
O3=a, Ub,UdUc,,

Q4 =ae(h) Ubs(h) Ud(h) U c(h).

Q4

\

Q

Q

)

The area of the annulus is at most 2 2||a. ||k, as the area of a hyperbolic
triangle is always smaller than.
Then, in order to satisfy the Douglas condition, we need:

21 + 2||ac||h < 2||bg||h

that is verified as soon as we choose the ebigl®ng enough. Hence, there
exists a least area minimal annul#é bounded by and L}, for anyi. By the
maximum principleA” is contained in the convex hull @f! U L4.

For each: the annulusA” is above the surfacg, (the graph ofi,); by above
we mean that if a vertical geodesic meets both surfaces, then the paiptief
below the points ofA”.

Figure 5
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272 BARBARA NELLI AND HAROLD ROSENBERG

To see this, translate verticall to heightn (so, every point ofA” is above
heightn). Then lower the translated” back to height zero. By the maximum
principle, there is no interior contact point betweg¢hand =, before returning
to the original position ofA”. Moreover, ife > 0, the boundaries of the two
surfaces do not touch. Letting— 0, we conclude thatj = A" is abovex,
and, by the boundary maximum principle at each interior point of the vertical
geodesicsy, x [0, 7] andg, x [0, 4] the tangent plane td” is “outside” the
tangent plane t@, (i.e. the angle between the tangent planetoand the
geodesic plane containing eithe} or L% is bigger than the angle between this
last plane and the tangent plane4®).

The barrierA” shows that the sequenge,} is uniformly bounded on compact
subsets of T such thatk is contained in the horizontal projection af. The
idea is to show that the horizontal projectionsAdfexhaustl’ ash—s oo.

Fork > h, one can usel” as barrier to solve the Plateau problem to find a
stable annulug\* with boundaryL!, L4. So, translatingl” vertically, one sees
that the two surfaces are never tangent (neither at interior points, nor at boundary
points). Hence as— oo, the angle the tangent plane 4f makes along the
vertical boundary segments is controlled by thanbf

Now, for eactw let M" be the surfacel? translated down a distanee As
eachM, is stable, one has local uniform area bounds and uniform curvature
estimates (see [Sc]). So, a subsequend@fi converges to a minimal surface
M®°. By the maximum principle, one can translaté up to +oco and down
to —oo without ever touchingZ®. Then, there is some componewtof M
whose boundary is the union of the two vertical geodegics R andg, x R.
Furthermore the distance betwed@nandA x R is bounded. In fact this distance
is uniformly bounded.

Now, we have to prove tha = A x R.

In H?, consider the family of equidistant circl¢€,},~o defined as follows:
Co = «, each(; is the circle equidistant from the geodesicwhose curvature
vector points towards the halfplae determined by, containing the triangle
T (see Figure 6).

The family of surface€’, x R foliates P, x R. Whenr is large one has

(C,xR)yNM =49.

Now decrease : By the maximum principle, one cannot have a first point of
contact betweeM andC, x R beforer = 0. ThenM = A x R and we are
through.
Thus{u,} has a subsequence converging to a minimal solutidefined on
T. The convergence is uniform on compact subsetg.ofFurthermore, as we
desired:
Uag =00, Up=Uc= 0.
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Figure 6

The last assertion of Theorem 2 follows from a more general fact proved in
Lemma 1 of next section.

Remark 1. We notice that our construction can be done for any angle, smaller
thansw, between the two geodesic arcs where the boundary value is zero. In
a Z-gon P as above, such angles afe k = 2,3,.... Then, we make the
symmetry of the graph af with respect to one of the two geodesic arcs where

u is zero and keep on going with such symmetries in order to close the surface.
The surface thus obtained is the Scherk type suriaoghich we were looking

for.

Also one can show that the Scherk solutiongn T converge to a Scherk
solution in the ideal trianglgd* obtained as limit of the triangleE when the
length of the sidesB and C tend to infinity. Reflection then gives a Scherk
surface graph over the interior of &-gon?.

Remark 2. When interior angles of are choosen to bg, (k > 2), thenX
extends to a complete embedded minimal surfaéir R. In fact the surfac&

is bounded by theRvertical geodesic through the verticesiand one extends
> by rotation ofr about all the vertical geodesics that arise.

Remark 3. Let? be the regular2-gon with7 angles. Consider the symmetry
of P about each of its vertices. This producédsrzw Z-gons isometric taP,
each having a vertex in common wifh Consider the hyperbolic isometries
identifying alternate sides aP (that is the translation along the edge between
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274 BARBARA NELLI AND HAROLD ROSENBERG

the two chosen sides). The quotient of the surfadey these translations gives
a zk-punctured sphere whose total curvature-#r (1 — k).

Remark 4. There is another natural way to obtain a complete surface from
%, when the interior angles @P are equal to5 (%, is the graph of, over

the triangleT). Assume that the polygof® has % sides. Do the symmetry

of X, about all the geodesic arcs of its boundary. Then continue extending the
surface by symmetry in the geodesic arcs of the boundary. This yields a complete
embedded minimal surface i x R that is invariant by vertical translation by

2n. The quotient of the surface by this translation gives a compact surface of
genusk.

5 Jenkins-Serrin typetheorems

We give necessary and sufficient conditions to solve the Dirichlet problem for
the minimal surface equation #i® x R, over a convex domain df?, allowing
infinite boundary values on some arcs of the boundary of the domain.

Let us fix some notation.

We consider an open bounded convex domainhose boundaryD contains
two sets of (open) geodesic ards, ..., A, and By, ..., B, with the property
that no twoA; and no twoB; have a common endpoint. The remaining part of
9D is the union of open convex ar¢y, ..., C, and all endpoints.

We want to find a solution of the minimal surface equation iR such that

Uja;, = +090, ujp; = —00,

i=1...,k, j=1,...,1 andu takes assigned continuous data on each arc
Cy,s=1,...,h.

The existence of such a solution depends on a relation between the lengths of
the geodesic arcs of the boundary and the perimeter of polygons inscri@@d in
whose vertices are chosen among the vertice$; oB;.

Let 2 be such a polygon and let

o= Z 1A, B= Z [|Bj|l, y = Perimete(P).

A;CP B;CcP
Theorem 3. LetD be a domain as above and I¢gt : C,—> R be continuous
functions. If{C,} # @, then the Dirichlet problem irD with boundary values
Up, = +00, up, = —00, Uic, = fs
has a solution if and only if

20 <y, 28 <y (9)
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for each polygorP as above. IfC;} = @ the result is the same except that if
P = 3D, then condition(9) should be replaced hy = 8.

If it exists, the solution is unique; in the cafg;} = @ uniqueness is up to a
constant.

Remark 5. We notice that two convex areg, may have a common endpoint
p; there may be a discontinuity of the daté at p. It will be clear from the
proof of Theorem 3 that the minimal surface obtained in this case will contain the
vertical segment through, between the two limit values at, of the continuous
boundary data.

This result is analogous to that of Jenkins and Serrin for minimal gragk$ in
(cf. [IS)).

We prove Theorem 3 in 6 steps. Each step, especially 1 and 3, is an interesting
result on its own.

Step 1. Existence wheldD contains only one geodesic at¢ and one strictly
convex araC. The functionf : C—R is continuous and positive.

Step 2. Existence wher®D contains geodesic arcsy, ..., A; and strictly
convex arc<y, ..., C,. The functionsf* : C;,—R are continuous and posi-
tive.

Step 3. The same as Step 2, wiffl, ..., C, convex arcs (not necessarily

strictly convex).

Step 4. Existence wherdD contains geodesic arc$,, ..., Ay, B1,..., B

and convex arc€4, ..., C, with i > 1.
Step 5. Existence whenda?D contains only geodesic arcdg,..., Ag,
By,..., By

Step 6. Uniqueness.

Proof of Step 1. Letu, : D—R be the minimal solution with boundary
values
Unja = +N, Uy c = Min(n, f)

(Figure 7(a)). Let us prove tha, exists. Defind (n) to be the union of the
following geodesic arcs: the geodesic arcaised to height, the graph of the
function min(n, ) and the vertical geodesic arcs joining the endpoints of the
curves just described. Lé&l(n) be the solution of the Plateau problem for the
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curveI’(n). By Rado’s theoremx (n) is the graph of a function, defined in
D, with the desired boundary values. By the maximum principle} is an
increasing sequence.

@)

(b)

Figure 7

We now prove that the sequeneg } is uniformly bounded on compact subsets
of D. Let A be a horizontal geodesic triangle containiPgwith sidesa, b, c,
such that the side containsA in its interior. Letp, be the Scherk type solution
equal to+oo, ona, and zero orb andc (Figure 7(b)).

Let K be a compact seti U C. OndK we have

O<u, <maxf +
= n_Kme P+

By the maximum principle, the previous inequality holdkin Hence{u,,} is
uniformly bounded inK, and{u,} converges to a minimal solutianin every
compact subset ab U C. As {u,} is an increasing sequencaetfakes the right
boundary values.

Remark 6. Let C be a strictly convex arc and denote byC) the (open)
convex hull ofC. Letu be a minimal solution irC(C) with bounded values on
C. As aresult of the previous proaf,is bounded on every compact set@iC)
depending only on the values @fon C and on the distance of the compact set
to the boundary of (C).

Assertion. If u is a minimal solution that is unbounded @6h thenu is un-
bounded inC(C).

This assertion implies that for solving the Dirichlet problem one can not assign
infinite data on a strictly convex arc of the boundary of the domain.

For the proof of the assertion we use a modification of the argument of step
1. Let A be the geodesic arc in the boundaryi"). For eachn € IN, define
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the functioru,, = min{n, u}. Let A be a horizontal geodesic triangle containing
C(C) with sidesa, b, ¢, such that the side containsA in its interior. Lety, be
the Scherk type solution equal 4eco, ona, and zero o andc.

Let K be a compact seti@(C) U C. OndK we have

minu, < u, < Maxu,
Imcu =t = Imcu t e+
By the maximum principle, the previous inequality holdskn Letting
n—> 00, one sees that is unbounded o€’ (C).

For the proof of Step 2, we need several preliminary results.

The first depends on the fact that the tangent plane to the graph of a minimal
solution is almost vertical at points near to a geodesic arc of the boundary where
the solution diverges to infinity. Let us be more precise.

Denote bysS the graph of a minimal solutiom : D— R and let

W = ((VDu> V2)u, (vV3)y)

be the inward unit conormal to the boundarySof
Let (x1(s), x2(s), x3(s)) be an arc length parametrization of the boundary of
S. A straightforward computation yields:

axluz 8)62141
(Vg)y = ——=— + —=—.
0s T 0s T

Then|(v3),| < 1and(v3), isintegrable on arcs éfD regardless of the boundary
behaviour of: on such arcs. The behaviour of the flux(of), on geodesic arcs
of the boundary is established in the following Lemma.

Lemmal. LetD be adomain and lef be a geodesic arc of the boundary of
D.

(i) Letu : D— R be a minimal solution such that, = co. Then
| s = iai
A

(i) Let{u,} be a sequence of minimal solutionsZincontinuous i U A. If
{u,} diverges uniformly to infinity on compact subsetsicdnd remains
uniformly bounded in compact subsetgafthen

lim f(ve,)nds — 1Al
A

n—-00

where(vs), is the third component of the unit conormal to the boundary
of the graph of,.
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If {u,} diverges uniformly to infinity in compact subsetgbfind remains uni-
formly bounded on compact subsetsiothen

jim /<v3>nds — _JlA]L.
A

n—-oQ

Proof. (i) First we prove that the tangent planeSat points(z, u(z)) with z
next to A is almost vertical. LetV = (N3, N2, N3) be the upward unit normal

to S, then|(v3),| = /1 — NZ at boundary points. We exteng to the interior

points of D by setting|(v3),| = ,/1 — N2 and choosing the sign that makes

continuous at the boundary (where it is already defined).

At points where the tangent plane is almost vertidgalapproaches zero, hence
(v3), approaches one. In other words the tangent plane at p@inisz)) with
z next toA is almost vertical if and only for any > 0 there is a neighborhood
of A in D such that

|(v3)ul > 1—¢ (10)

at each point of the neighborhood.

A minimal graph is stable, so one has Schoen’s curvature estimates for the
surfaceS : let p be a point ofS and letD(p, R) be a disk contained i
centered ap of intrinsic radiusr, then

R
|A(@)| <k Vg €D (p, 5) (11)

whereA is the second fundamental form $fndk is an absolute constant (see
[Sc)).

Now, assume by contradiction that there is a sequence of pipisn D
approachingA (i.e. u,(z,,) — oo asm — o0) such that (10) does not hold.
Then, there is a radiuR independent om: such thatD(p,,, R) C S, where
pm = (zm, u(z,)). Hence, by the curvature estimate (11), around ggcthe
surfaces is agraph over adiskR (p,,, r) of the tangent plane at,, and the graph
has bounded distance from the diBKp,,, ). The radius of the disk depends
only on R, hence it is independent of. It is clear that, ifz,, is close enough
to A, then the horizontal projection @ (p,,, r) and thus of the surfacgis not
contained inD. Contradiction. Hence (10) holds in a neighborhoodiof

Now, fix ¢ > 0 and lets < ¢. Letgqs, g» be the points ofd at distance’
from the endpoints ofA and callAs the subarc ofA bounded by, ¢go. We
construct a neighborhood ofs in D (see Figure 8). Let be a horizontal
geodesic orthogonal ta passing through the mid-point @f. We can assume
that  passes through the origin. Fore= 1, 2, letw; be a horizontal geodesic
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throughg; forming an angle of; with A. Finally, letg be the horizontal geodesic
orthogonal tar, at distanceé from A and callgs = B N a1, g4 = B Nay. Denote
by Q; the geodesic quadrilateral having vertices at pajpig2, g3, ga-

\

T B

Figure 8

The form(v3),ds is exact, hence:

(va),ds + / (v3),ds.
05\ As

Then, ife is small enough, using (10) we obtain:

As

(va)uds > —2¢ + (1 — &)||As]|.
As

Letting ¢ (and so$) tend to zero yields:

/(V3)uds > |IAll.
A
The opposite inequality is obvious, so (i) follows.
For the proof of (ii) one makes the obvious modifications of the arguments in
(). O
Let us prove another useful result.

Lemma?2. Letu : D—R be a minimal solution continuous on a convex arc
C of the boundary o). Then:

f<v3>uds <Jicil.
C
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Proof. It is enough to prove the result for a closed subar€ psayC. Then
we can assume thatis defined in a convex seb with continuous boundary
data. Denote by the solution of the Dirichlet problem ifv such that:

lef)\é =Uu, ve=1u +a
wherea is a constant to be fixed later. Let= v — u, then
Waine =0, we =a
By the maximum principlev is uniformly bounded irD.

Using Stokes’ theorem (together with a standard approximation argument at
the points of discontinuity) we obtain:

/ wl(va), — (v3),1ds = f / [wl (ﬂ . ﬂ) + wy (2 — E) dxydxs.
9D D T T T, T/

The argument of the last integral is equal to the following expression:

T+ Ty ui vy 2+ U Uy 2+ 1/1 1\?]
2 T, T T, T F\tu, 1
Hence, it is non negative and not identically zerdin Then we have:

a /~[(U3)M - (US)U]dS > 0.

C
choosing alternatively = +1 we obtain the result. O

Remark 7. We point out that the results of Lemma 1 and 2 hold for non convex
domains as well.

Proof of Step 2. We prove that the first condition in (9) is sufficient and nec-
essary for existence. We start by sufficiency.
Letu, : D—> R be the minimal solution with the following boundary values

M”|Ai = +n, M"|Cs = mln(n, fs)

By Remark 6,{u,} is uniformly bounded in compact sets contained in each
of the convex hull€(Cy), s = 1, ..., h. Hence, passing to a subsequerigg}
converges on compact subsets of

U'_,C(Cy)

to a minimal solution: defined in an open séf containingJ’_, C(C,). Further-
morefu, } diverges uniformly on compact subsetd®{ U andu is a countinuous
function with values iR U oo.

LetV = D\ U. We claim thatV = ¢J. We start by showing thatV has a
very special structure, wheWt is not empty.
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Lemma3. With the notation above, one has:
(i) 9"V consists only of geodesic chordsiofand parts of the boundary a9;
(i) two chords o6V cannot have a common endpoint;

(iii) the endpoints of chords 6fV are among the vertices of the geodesic arcs
A

(iv) a component oV cannot consist only of an interior chord @f.

Proof. Itis clear by Remark 6 that each arcad¥ must be geodesic and that
no vertex ofdV lies in D, then (i) follows. Now assume by contradiction that
(i) does not hold. Letk;, K, be two arcs obV having a common endpoint
g € 0D. Choose two pointg; € K; andg, € K> such that the triangl& with
verticesy, q1, g2 lies inD. We have:

(v3),ds =0

aT

where(vs), is defined as in Lemma 1 at interior pointsiof The trianglel’ may
be either iU or in V. Assume the former is true, then, by the first equality in
(i) of Lemma 1, choosing correctly the orientation, we have:

im [ (va)uds = |ggall. im | (auds =17zl (12)

"= Jaqn " Jazg

Herex indicates the geodesic arc between two points@agyl is defined as in
Lemma 1 at interior points ab.
On the other hand:

< llq142ll. (13)

/ (V3)nds
az

(12) and (13) together with the triangle inequality give a contradiction.

If T c "V, we make the same reasoning using the second equality in (ii) of
Lemma 1.

(i) and (iv) are proved with analogous arguments, using Lemma 1. We leave
this to the reader. O

Now, we come back to the proof of Step 2. Assume by contradiction\that
not empty. The convex hull of each is contained irll, and each component of
"V is bounded by a geodesic polyg#nwhose vertices are among the endpoints

oftheA;. Denote byA,- those edges of; that are contained i®. In the notation
of Theorem 3||P|| = vy, Y_||Ai|| = a.
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For eachu, we have:

0= [oands = [ oands+ [ s,
P UA; T\UA[

By (ii) of Lemma 1, we infer:

lim / (W3)pds = —(y — ).
n—oo ?\UA,—

For everyn, |(v3),| < 1, SO

[ o) < Y iidil =
UA;

Hencex > y — «, that contradicts the assumed conditions.

We are left with the proof of the necessity of the conditien2 y. Letu be
the minimal solution with the given boundary values andAdie a polygon as
in the hypothesis of Theorem 3. We have:

/ (v3)uds +/ (l)g)uds =0.
UAA!' /P\UAA,'

Furthermore(vs),| < 1 on? \ UA;, hence

/ N (U3)uds
P\UA;

and by (i) of Lemma 1, we have:

/A (v3)uds =«
UA;

Hence & < y. ]

<y -«

Proof of Step 3. Let {u,} be defined as in Step 2. First we prove that} is
bounded at some point @. Assume that this is not the case, thén= D and

we have:
OZ/ (v3)nds +/ (v3),ds.
UA; uG;

(i) of Lemma 1 implies

lim / Wahuds = — Y |ICill < —(y — ).
n—00 Jyc,
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Herey = ||0D|| anda = )_ || A;]]-
On the other hand, a¢vs3),| < 1 for everyn, we have

(a)uds| < 3 IlAill =a.
J ot <

Thena > y — «a, a contradiction.

Hence the sequenée,} is bounded at some point @1. In fact we will prove
that there is a disk itD of radius independent onwhere eaclx,, is uniformly
bounded.

Up to an isometry, we can assume that} is bounded at the origia e H?.
We remark that by the maximum principle eaghis positive in the domain of
definition.

Letm, = u,(0). We assert that the gradientf ato is bounded depending
only on the constant,,. In order to prove it, we will compare the gradientgf
with that of a Scherk type surface.

Up to a rotation of¢1, x, coordinates, we can assume that

ou, ou,

™ (o) >0,

(o) =0.
X2

Let A(n) be a geodesic triangle containedZnwith edgesu, b, ¢ such that
thex; axis bisects the edgeorthogonally andA (n) is symmetric with respect
to thex, axis (see Figure 9).

Figure 9

Letya(,) denote the Scherk type surface oxgr) with value+oo ona, value
0 onb, c andga, (o) = m, (we allow translations ofA (n) along thex; axis
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in order to find such a Scherk type surface). Defii@:,) = [Voau(o)]. We
claim that:

Vi, (o) < C(my). (14)

In fact, assume by contradiction that (14) does not hold. Then, the symmetries
of OAn) Imply
u, QA M) uy @A(n)

axl(ff)> oy (0), 8XZ(G)

()—

Now, we moveA (n) by hyperbolic translations along the axis, pushing the
edgex towardso. ASga ) anda%f’) diverge as one approaches the sidhere
is a position ofA (n) such that:

Un(0) < Qam (o)

and

ou, APA®n ouy 90 n
0) = —"(5), —(6) = —
9x1 0x1 X2

Definew = ¢aw) — u,. We have:

()—

w(o)=x >0, Vw()=0.

Then, there are at least four level lineswf= yx througho ([CM],[Se]).
These level lines divide every small neighborhood of at least four domains
in which w is alternately greater than and less than\e prove that this yields
a contradiction (our argument is analogous to [Se], we give it for the sake of
completeness).

Let G be the subset ok (n) whose points are at distance less tadrom the
boudary ofA(n). The functionu, has bounded continuous gradientArn),
hence, using the form of the graphwf{,,, one has that the sétis divided into
two components by the conditions

w>x, w<y,

for suitably smalk.

The first component is adjacent to edgewhile the second is adjacent ko
andc and the components themselves are separated by two levellireg
exiting from the vertices ofi. By the maximum principle, each component of
the setw > x must extend to the boundary af(n). It follows that the set
w > x consists of one component. Then, any two regions aiegherew > x
can be joined by a simple Jordan &'t along whichw > x. Analogously any
two regions neas wherew < y can be joined by a simple Jordan @it along
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Figure 10

whichw < x. Then, the curve€, andC_ mustintersect (see Figure 10). This
is a contradiction.

Now let M = sup,.,y un(0). Asm, < M, with the same reasoning used
for proving (14), one has that(m,) < C(M). Hence the sequende,} has
uniformly bounded gradient at.

Now, by Schoen’s curvature estimates (see (11)), one has that in a neighbor-
hood of the pointp,, = (o, u,(c)) the surface is a graph of bounded height and
slope over a diskD(p,, R) of the tangent plane to the surfacepgt of radius
R independent of. As |Vu,(o)| is uniformly bounded, the projection of each
D(p,, R) on the horizontal plane contains a disk of fixed radius fafd is uni-
formly bounded there. Then, there exists an operisietwhich {u, } converges
uniformly. Now we can apply the same reasoning as in Step 2, in order to prove
thatu = D. O

Proof of Step 4. By the previous arguments we can find a minimal solution
ut : D—>R such that
u+|Ai = 00, uﬂBj =0, uﬂcs = max0, f°}.
Furthermore we can find a minimal solution : D— R such that
u 4, =0, u"|p, =—00, u ¢, =min{0, f*}.

Then, define for eackt

—n if S <-—n
(fIn=1f i 1fl<n
n if f%>n
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and letu,, : D—R be the minimal solution such that
Unja; =N, Ung; = —N, Upicy = (fn-
By the maximum principle:
u- <u, <utin D.

Hence, the sequenda,} is uniformly bounded on compact subsets7of
and there exists a subsequence converging to a minimal solution that takes the
prescribed boundary values.

This proves existence under condition (9). The necessity of condition (9) is
proved as in Step 2. O

Proof of Step 5. We remark that in this case the number of edgess equal
to the number of edgeB;, sayk. We need to construct some auxiliary sets and
minimal solutions.

Letv, : D—>R be the minimal solution such that

v”|Ai =n, Uysp =0.
Forc €]0, n[, we introduce the following subsets of:
E.={v,>c}ND, F.={v, <c}ND.

Let E! be the component df, whose closure contains the edgeand letF,/
be the component af. whose closure contains the edBg By the maximum
principle E, = Uf_, E! andF, = U*_, F!. We choose close enough ta such
that theE! are disjoint and we define:

pn(n) = limsuplc €10,n[ | EENE! =@ i # j}.
Of course there is at least one pai such that
E'yiny VET yoy # 0

and this implies that for any giveR’ oy the setF/{(n) is disjoint from it.
For eachn, we define the following minimal solution i :

Uy, = v, — u(n).

In order to prove that the sequengs,} is uniformly bounded on compact
subsets ofD, let us define two auxiliary minimal solutions .
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Letu;" andu;~ be the minimal solutions i with the following boundary
values:
w4, =00, Ui o\, =0

ui g, = —00, j#FIi, i yp\u;.8 =0

Foreveryi = 1,...,k, u;* andu; ™ exist by previous steps.
Finally, for anyz € D we define:

+(,) — + (7Y = min{y.—
w(2) = maxu;” (@)}, u ()= min{u;" ()}

We claim that at any point dD:

u" <u, <u'. (15)

Let p € D such thatu,(p) > 0, thenp belongs toE! = for somei. On

. )
3Ef4<n> one has, < ul.*, then this inequality holds i&* and

u(n)?

un(p) < u; (p) <u™(p).
Sinceu~ is non positive, the left inequality in (15) is obvious at the pgint

The proof of (15) at points wherg, is negative is analogous, using the set
Fwy-
Hence{u, } has a subsequence converging to a minimal solutio® — R.
Let us prove that takes the right boundary values.

Recall that:

Upja; =n — p(n), upp = —p(n),

so we must prove that the sequenégsn)} and{n — u(n)} both diverge to
infinity. We prove it for the sequendg. (n)}; the proof will be analogous for the
latter sequence.

The assumption thdjt(n)} does not diverge will give a contradiction to the
hypothesisx = 8. By contradiction, take a subsequence (still denote¢ihy)
such thatu(n) tends to a finite limifug. Then:

u,—>oo on A;, u,— — g On B;.
Then, for the limit functiornt we have:
Ujpg; = 00, U|g; = —HMo-

Let (v3), be the unit inward conormal to the boundary of the graph.diVe

finally obtain:
04 :/ (V3)uds = _/ (V3)uds > _IBa
UA; UB;

where the first equality is given by (i) of Lemma 1. This is a contradiction.
The necessity of the conditian= g is proved as in Step 2. d
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Proof of Step 6 (Uniqueness). Letu andv be two minimal solutions assuming

values+oo on eachd;, —oo on eachB; and the same data on each geodesic arc
C,.
Let M be a large constant and define:

M fu—-v<-M
Yv=qu—v flu—vl<M
M fu—v>M

Let 0 < § < ¢ and denote byD;, the subset of> whose distance fror@D is
greater thard and whose distance from the vertex of eaghand B; is greater

thane. Itis clear that the boundaiy of D, consists of bounded ares, B;, C,
adjacentto thel;, B;, C, and circular arcs adjacent to the vertices\pf B;. Let
(v3), and(vs3), be defined as in Lemma 1 for the functionandv respectively.
Consider the following integral:

/ W[(V3)u - (VB)U]dS.
r

For é small enough, we have:

/~ YUl(v3)y — (v3)ylds < 2[~ Wl <28 [IGI.
UG, UCs

C.

We recall that next to boundary arcs where the solution is infinggyis almost
one, hence:

/~w%n—%MM=/:wwm—nm—/~mmn—mm
UA; UA; UA;
<2eM Y |IAl|
In the same way we obtain:
[ viow, — wolds < 2em 311
UBj

By summing the previous inequalities, we infer:

/mwn—mme%EMWm+mMm+mmw+
r
+ 4rsinh(e)M (k + 1)

(16)
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where the last term is the contribution of the circular arcs next to vertices.
On the other hand, integrating by parts, we obtain:

f YI(va)y — (v3),lds = f / [wl (ﬂ - ﬂ) + v (E - @>] dxydx,
r T, T T, T

where the double integral is taken over theBgiN{|u —v| < M}. The argument
of the last integral is non-negative and it is zero only at points wRere= Vv
(see Lemma 2).

Then, lettinge—0 in (16), we obtain:

wl(ﬂ_ﬂ)WZ(%_E) _o
Ty Ty Ty Ty

at points whergu — v| < M. HenceVu = Vv in D, sinceM can be taken
arbitrarily large.

It follows thatu = v + const in D. If the family of boundary convex arcs
{C,} is empty, this proves the result. If not, the constant must be zero by the
boundary condition od’;. O

6 Existence of complete minimal graphs

Theorem4. LetI be a continuous Jordan curvedn,H? x R, that is a vertical
graph. Then, there exists a minimal vertical graphHshavingI” as asymptotic
boundary. The graph is unique.

Proof. Inthe modelD = {0 < x{ + x5 < 1} for H?, the curvel is a graph
over the circlexf + x22 = 1. Consider an exhaustion of by disksD,, centered
at the origin, of Euclidean radius 4 % For eachn, let ', be a verticalC?
graph ovel D, converging td" asn—>o0. We choose the curvés, contained
in the convex hull of". The curved", may be taken as the trace 8, x R
of the function whose graph is @ extension ofl" inside D. Let M, be the
Plateau solution with boundaty,; by Rado’s theorend, is a vertical graph
of a C? functionv, : D,—R. The sequencéy,} is uniformly bounded on
compact subsets dp, hence there is a subsequence converging to a minimal
solutionv : D— R, uniformly on compact subsets &f. Let M be the graph
of the functionv. We have only to prove that the asymptotic boundaryfois
I". By definition of M, one has thal' C d,,M. In order to prove the converse,
we show that any poinp ¢ I' is not contained irfb,,M. Let p such a point
and assume that it lies beldWw(the reasoning is analogous, wheiiies above
I'). We construct a surface that separates the pofndbm theM,’s, with mean
curvature vector pointing upwards (a barrier, see Figure 11).
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Graph
ofg

Figure 11

We can assume that the first two coordinates of the poame(1, 0). Consider
a family of circlesC; in the plangxz = 0}, with Euclidean radius, centered at
a fixed point(c, 0, 0), ¢ > 1. If t > ¢ — 1, such circles intersect the hyperbolic
plane{xs = 0} in equidistant circles with curvature = /1 — (sin,)2, where
B, is the angle betweai, anda D. EachC, divides the hyperbolic plane into two
components: the curvature vecto®fpoints towards the component containing
the origin. Consider the functiondefined as follows:

g(x1, x2) = expla(tg — 1)) —k, (x1,x2) € C;, t € [tg,c—1]

a, fo, k, positive constants to be fixed later. The functis constant on each
C; and
8ic, = —k, g(1,0) =expla(to — c+ 1)) —k,

Using equation (1), one obtains that the mean curvature of the gragplvidi
respect to the upward unit normal vector is:

2 _
H(xy, xp) = % exp(a(fo — 1)) {“ ﬁex'ot(a(to O\ JF 4+ x1c— 1] +a — %} .

We can choose andz, such that the mean curvaturgis positive. Then we
chooser andk such thag (1, 0) is larger than the third coordinate of the pojnt
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and such that the graph gfdoes not interesect the cunés, for n large. Then,
as forn large, the boundary o7, lies above the graph @f, so does the surface
M,, ( by the maximum principle). Hence the asymptotic boundary/qthat is
the limit of the sequencgV, }) does not contain the poinpt

Unigueness follows by the maximum principle.

Theorem 4 is proved. O

7 |Isolated singularities

Theorem 5. LetD7 be a punctured disk of radiys in H?. Letu : Dy —R

be aC? function such that the graph afis minimal inH? x R. Thenu extends
C? to the puncture.

Proof. Firstwe prove that is bounded orD}. Up to isometry, we can takey,
centered at the origin @f2. Lete < p and consider the annulus = D, \ D.
Let C, the half catenoid that is a graph oJéf \ D, with waist ondD,. The
functionu is bounded o, hence there is a vertical translation@fthat does
not touch the graph af. Now translate verticall¢', towards the graph of. By
the maximum principle the first contact point is &, x R.
Lettinge—0, C, tends to a plane, hence:
mMinu < u < maxu
3D, 3D,
Now, letv : D,— R be the minimal solution with boundary valuesp,. We
will show thatu = v in D*.
Consider the forn® deﬁned inD7 by:

0=w—v) (E—ﬂ)dxz— (E—g)dxl
Ty Ty Tu Ty

/ 9:/ 9:/ 4
9D, 0A; Ag

where the first equality depends on the fact that v on 9D, and the last
equality is by Stokes’ theorem.

The form6 is bounded orD* becauser, |u;|z, ™, |v;|z,”* are bounded for
i =12 Then:

We have:

f 0—0 ase—0 an
IAe

Asin Lemma 2, we obtain th&p is non negative and itis 0 if and onlyuif = v;,
fori =1, 2. Lettinge—> 0 we obtainvVu = Vv and sou = v on fD;. O
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