

Errata: "Minimal Surfaces in $\mathbb{H}^2 \times \mathbb{R}$ ", [Bull. Braz. Soc., 33 (2002), 263-292]

Barbara Nelli and Harold Rosenberg

Abstract. In $\mathbb{H}^2 \times \mathbb{R}$ one has catenoids, helicoids and Scherk-type surfaces. A Jenkins-Serrin type theorem holds here. Moreover there exist complete minimal graphs in \mathbb{H}^2 with arbitrary continuous asymptotic values. Finally, a graph on a domain of \mathbb{H}^2 cannot have an isolated singularity.

Keywords: minimal graph, hyperbolic plane. **Mathematical subject classification:** 53A10.

1 Errata Corrige

In the following we will use the notation of the article "Minimal Surfaces in $\mathbb{H}^2 \times \mathbb{R}$ ".

1. Page 264 in [4]. Formula (1) should be replaced by

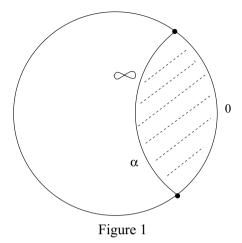
$$\operatorname{div}\left(\frac{\nabla u}{\tau_u}\right) = \frac{2H}{F}$$

- 2. Page 267. Theorem 1 in [4]. Minimal catenoids C_t in $\mathbb{H}^2 \times \mathbb{R}$ exist only for $t \in (0, \frac{\pi}{2})$ (see Proposition 5.1 in [3], Theorem 15 in [8]).
- 3. In the proof of Step 1 of Theorem 3 in [4], there was a mistake: page 276 lines 6-14 and Figure 7(b).

We need to prove that the sequence $\{u_n\}$ is uniformly bounded on compact subsets of D.

Given a complete geodesic α in \mathbb{H}^2 , E one of the components of $\mathbb{H}^2 \setminus \alpha$, there exists a minimal graph h defined on D, asymptotic to $+\infty$ on α and

to zero on $\partial_{\infty}(E)$ (see Figure 1 in the disk model of \mathbb{H}^2). This function was found independently by U. Abresch and R. Sa Earp (see [6]).



In the halfspace model of \mathbb{H}^2 with $E = \{x > 0, y > 0\}$:

$$h(x, y) = \ln\left(\frac{\sqrt{x^2 + y^2} + y}{x}\right) \ x > 0, \ y > 0$$

Let K be a compact subset of D. Let α be a complete geodesic, disjoint from the geodesic containing A, intersecting C in two points, such that the region of D bounded by α and A is disjoint from K. The geodesic α separates the circle at infinity in two arcs; let B denote the arc at infinity such that the disk E, bounded by $\alpha \cup B$, contains K. Let h be the minimal graph on E which is $+\infty$ on α and on B it is the maximum of f on $K \cap C$. By the maximum principle, each u_n is bounded by h on K. Then, the sequence $\{u_n\}$ converges to a minimal solution u on D.

The existence of Scherk's type surface in a triangle, guarantees that u takes the right boundary values, as in [1].

- 4. Now we improve Theorem 4 in [4].
 - (a) One can relax the hypothesis on the regularity of the curve Γ . It is enough to assume that it is rectifiable instead of C^0 . Let us prove it. Assume that one has proved Theorem 4 for differentiable boundary values. Then, consider two families of differentiable curves approximating Γ , constructed as follows. For any $\varepsilon > 0$, let $\Gamma_{\varepsilon}^+ \subset \partial_{\infty} \mathbb{H}^2 \times \mathbb{R}$

be a differentiable vertical graph above Γ , such that the vertical distance between Γ and Γ_{ε}^+ is at most ε . Then, let $\Gamma_{\varepsilon}^- \subset \partial_{\infty} \mathbb{H}^2 \times \mathbb{R}$ be a differentiable vertical graph below Γ , such that the vertical distance between Γ and Γ_{ε}^- is at most ε .

For any $\varepsilon > 0$ there exist a minimal graph M_{ε}^{+} (M_{ε}^{-}) with asymptotic boundary Γ_{ε}^{+} (resp. Γ_{ε}^{-}).

By the maximum principle, each surface M_n in the proof of Theorem 4 in [4] is above M_{ε}^- and below M_{ε}^+ , hence also the limit surface M. Now, let ε go to zero: as both Γ_{ε}^+ and Γ_{ε}^- converge to the curve Γ , the boundary of M must be Γ .

- (b) The method of the proof in [4] is correct. There is a mistake in our boundary barrier, given by the graph of the function g. Instead of the graph of the function g, we use the Abresch-Sa Earp graph.
- 5. In Section 7 of [4], we neglegted some references. The original idea of the proof of Theorem 5 is from [7]. A removable singularities Theorem analogous to Theorem 5, for prescribed mean curvature graphs in Euclidean space and hyperbolic space is proved in [5] and [2] respectively.

References

- [1] H. Jenkins and J. Serrin. *Variational Problems of Minimal Surfaces Type II. Boundary Value Problems for the Minimal Surface Equation*. Arch. Rational Mech. Anal., **21** (1966).
- [2] B. Nelli and R. Sa Earp. *Some Properties of surfaces of prescribed mean curvature* in \mathbb{H}^{n+1} . Bul. Soc. Math. de France, **6** (1996).
- [3] B. Nelli, R. Sa Earp, W. Santos and E. Toubiana. *Uniqueness of H-surfaces in* $\mathbb{H}^2 \times \mathbb{R}$, $|H| \le 1/2$, with boundary one or two parallel horizontal circles. Preprint (2007), http://arXiv.org/abs/math/0702750.
- [4] B. Nelli and H. Rosenberg. *Minimal Surfaces in* $\mathbb{H}^2 \times \mathbb{R}$. Bull. Braz. Soc., **33** (2002) 263–292.
- [5] H. Rosenberg and R. Sa Earp. *Some Remarks on Surfaces of Prescribed Mean Curvature*. Pitman Monographs and Surveys in Pure and Applied Mathematics, **52** (1991), 123–148.
- [6] R. Sa Earp. *Parabolic and hyperbolic screw motion surfaces in* $\mathbb{H}^2 \times \mathbb{R}$. Preprint, http://www.mat.puc-rio.br/ earp/preprint.html.
- [7] J. Serrin. *The Dirichlet problem for surfaces of constant mean curvature*. Proc. London Math. Soc., **21** (1970), 361–384.
- [8] R. Sa Earp and E. Toubiana. *Screw Motion Surfaces in* $\mathbb{H}^2 \times \mathbb{R}$ *and* $\mathbb{S}^2 \times \mathbb{R}$. Illinois Jour. of Math., **49**(4) (2005) 1323–1362.

Barbara Nelli

Dipartimento di Matematica Pura e Applicata Universitá di L'Aquila ITALY

E-mail: nelli@univaq.it

Harold Rosenberg

Institut de Mathématiques Université Paris VII FRANCE

E-mail: rosen@math.jussieu.fr