Simply Connected Constant Mean Curvature Surfaces in $\mathbb{H}^2 \times \mathbb{R}$

BARBARA NELLI & HAROLD ROSENBERG

1. Introduction

In [9] Meeks proved that, if M is a properly embedded simply connected surface of constant mean curvature $H \neq 0$ in \mathbb{R}^3 , then M is a round sphere. In particular, M cannot be topologically \mathbb{R}^2 . More generally, he proved there is no properly embedded H-surface of finite topology in \mathbb{R}^3 with exactly one end. Afterwards, in [7] a different proof of Meeks's theorem was found, and in [6] it was extended to the hyperbolic space \mathbb{H}^3 .

In this paper we consider this problem in $\mathbb{H}^2 \times \mathbb{R}$. There are properly embedded *H*-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ that are topologically \mathbb{R}^2 ; there are entire graphs (vertical graphs over \mathbb{H}^2) for each $H, 0 \le H \le 1/2$ (see [10; 11]). We will prove that such a surface cannot exist for $H > 1/\sqrt{3}$. More generally, we prove the following statement.

THEOREM 1.1. For $H > 1/\sqrt{3}$, there is no properly embedded H-surface in $\mathbb{H}^2 \times \mathbb{R}$ with finite topology and one end.

Hsiang and Hsiang showed that any compact *H*-surface embedded in $\mathbb{H}^2 \times \mathbb{R}$ is a rotational sphere and has mean curvature greater than 1/2 (see [5; 11]). Abresch and Rosenberg proved that, if the surface is simply connected, then the same result holds for compact *H*-surfaces immersed in $\mathbb{H}^2 \times \mathbb{R}$ (see [1]).

It is interesting to consider to what extent Theorem 1.1 holds in other homogeneous 3-manifolds (for some constant other than $1/\sqrt{3}$). In $\mathbb{S}^2 \times \mathbb{R}$ there is no properly embedded *H*-surface with one end. To see this, observe that an end of such a surface *M* would have to go up or down (but not both), since *M* is proper. Hence one can assume *M* is bounded below by height 0, say. Then Alexandrov reflection with respect to the "planes" $\mathbb{S}^2 \times \{t\}$ coming up from t = 0 allows us to conclude that the part of *M* below any $M \times \{t\}$ is a vertical graph. This contradicts the height estimates for such graphs (see [4]), so no such *M* exists in $\mathbb{S}^2 \times \mathbb{R}$.

The other homogeneous 3-manifolds (beside the space forms) are the Berger spheres, Heisenberg space, and $\widetilde{PSL}(2,\mathbb{R})$. Since the Berger spheres are compact, the question is interesting only for the Heisenberg space and $\widetilde{PSL}(2,\mathbb{R})$. Another

Received April 5, 2005. Revision received January 19, 2006.

interesting question in Heisenberg space is whether the only embedded compact *H*-surfaces are the rotational spheres of constant mean curvature.

Theorem 1.1 has the following straightforward consequence.

COROLLARY 1.1. A simply connected H-surface properly embedded in $\mathbb{H}^2 \times \mathbb{R}$, $H > 1/\sqrt{3}$, is a rotational sphere.

We remark that Theorem 1.1 and Corollary 1.1 do not hold if $H \le 1/2$. In fact, for any $H \in (0, 1/2]$ there exists an entire rotational vertical *H*-graph (cf. [11]).

Theorem 1.1 is a consequence of the following fact.

THEOREM 1.2. Let $H > 1/\sqrt{3}$ and let M be a properly embedded H-surface in $\mathbb{H}^2 \times \mathbb{R}$ with finite topology and one end. Then M is contained in a vertical cylinder of $\mathbb{H}^2 \times \mathbb{R}$.

Our proof of Theorem 1.2 holds in \mathbb{R}^3 , as well.

The proof of Theorem 1.2 depends on the key result of the plane separation lemma (see Section 2). The analogue of this lemma in \mathbb{R}^3 and \mathbb{H}^3 was proved in [9] and [6], respectively.

Theorem 1.2 in $\mathbb{H}^2 \times \mathbb{R}$ does not hold without the "one end" hypothesis. In fact, there are examples (see [8]) of constant mean curvature cylinders lying in the tubular neighborhood of a horizontal geodesic. We conjecture that Theorem 1.1 holds for H > 1/2; the bound $H > 1/\sqrt{3}$ seems due only to technical reasons.

We would like to thank IMPA for their kind hospitality during the preparation of this paper.

2. Four Key Lemmas

Let *L* be the stability operator for a *H*-surface in a Riemannian 3-manifold N^3 . For the notion of stability, see [11] and [3]. The next result is classic: we state and prove it for the sake of completeness.

LEMMA 2.1. Let M be a compact H-surface in a Riemannian 3-manifold N^3 that is transverse to some Killing vector field of N^3 . Then M is stable.

Proof. Let $\langle \cdot, \cdot \rangle$ be the scalar product on the tangent space of \mathcal{N}^3 induced by the Riemannian structure on \mathcal{N}^3 , and let *X* be the Killing vector field of \mathcal{N}^3 . Because *M* is transverse to *X*, one can choose a unit vector field *N* normal to *M* such that $\langle N, X \rangle$ is positive on *M*. Then $\langle N, X \rangle$ is a positive Jacobi function on *M* and *M* is stable.

The following lemma was proved in [11].

LEMMA 2.2 (distance lemma). Let M be a stable H-surface in $\mathbb{H}^2 \times \mathbb{R}$ with $H > 1/\sqrt{3}$. Then, for any $p \in M$,

$$\operatorname{dist}_{M}(p,\partial M) < \frac{2\pi}{\sqrt{3(3H^2 - 1)}}.$$

REMARK 2.1. If the distance lemma were true for H > 1/2, then Theorem 1.1 would follow for H > 1/2.

Rosenberg [12] generalized Lemma 2.2 to the case of an ambient manifold that is homogeneously regular.

LEMMA 2.3. Let P be a vertical plane in $\mathbb{H}^2 \times \mathbb{R}$. Let S be a compact embedded H-surface with boundary on P and $H > 1/\sqrt{3}$. Then the distance of S from P is bounded above by the constant $c_0 = 4\pi/\sqrt{3(3H^2 - 1)}$.

Proof. Let $p \in S$ be a furthest point from the plane P and let γ be a minimizing ambient geodesic in $\mathbb{H}^2 \times \mathbb{R}$ from the point p to the plane P. Denote by h the length of γ . Let P(t) be the family of vertical planes, orthogonal to γ , obtained by translating P along γ by the isometry of $\mathbb{H}^2 \times \mathbb{R}$ that is translation along γ , parameterized such that P(0) = P and $p \in P(h)$. We perform Alexandrov reflection of S with the family P(t), starting at P(h), and conclude that the part of S on one side of P(h/2), say S^+ , has no point where S is orthogonal to one of the planes P(t), $h/2 \leq t \leq h$. Hence the Killing vector field obtained from γ is transverse to S^+ , since it is orthogonal to the family of planes P(t). By Lemma 2.1, S^+ is stable. Therefore, by the distance lemma, $h < c_0$.

In [5], Hsiang and Hsiang computed the explicit form of the profile curve of a rotational *H*-surface. The vertical diameter and the horizontal diameter of a rotational *H*-surface are

$$\frac{4H}{\sqrt{4H^2-1}} \tan^{-1} \frac{1}{\sqrt{4H^2-1}}$$
 and $2 \sinh^{-1} \frac{4H}{4H^2-1}$,

respectively. We will see that, in order to prove the plane separation lemma, the minimum distance between the two vertical planes must be the horizontal diameter of a rotational *H*-surface.

LEMMA 2.4 (plane separation lemma). Let H > 1/2, and let P_1 and P_2 be two disjoint vertical planes in $\mathbb{H}^2 \times \mathbb{R}$. Denote by P_1^+, P_2^+ the two disjoint half-spaces determined by these planes. Let $c_1 = 2 \sinh^{-1}(4H/(4H^2 - 1))$. If the distance between P_1 and P_2 is greater than c_1 then, for any properly embedded H-surface M with finite topology and one end, either $P_1^+ \cap M$ or $P_2^+ \cap M$ consists entirely of compact components.

Proof. Assume by contradiction that both $P_1^+ \cap M$ and $P_2^+ \cap M$ contain noncompact components. Then there are two proper arcs $\alpha_1 \colon [0, \infty) \to P_1^+ \cap M$ and $\alpha_2 \colon [0, \infty) \to P_2^+ \cap M$.

Since *M* has finite topology, it follows that the end of *M* is topologically an annulus; hence we can assume that both $\alpha_1(t)$ and $\alpha_2(t)$ lie in the annular end of *M* for *t* sufficiently large. Set $\alpha_1(0) = p_1$ and $\alpha_2(0) = p_2$. One can choose an embedded arc β on *M* from p_1 to p_2 such that the arc $\delta = \alpha_1 \cup \beta \cup \alpha_2$ bounds a simply connected domain on *M* (see Figure 1).

Figure 1

Let *P* be a vertical plane between P_1 and P_2 at equal distance from P_1 and P_2 . Let *B* be a geodesic ball of $\mathbb{H}^2 \times \mathbb{R}$ containing β , and let *C* be a circle in the plane *P* such that:

- $C \cap B = \emptyset$, and B has nonempty intersection with the disk in P bounded by C;
- the tubular neighborhood T of C of radius $c_1/2$ is embedded, and $T \cap B = \emptyset$.

We remark that T is contained in the closed slab between P_1 and P_2 (see Figure 2).

Now let B_1 be a geodesic ball containing $B \cup T$. There exist $x_1 \in \alpha_1 \setminus B_1$, $x_2 \in \alpha_2 \setminus B_1$, and an arc γ from x_1 to x_2 , embedded in M, such that the following statements hold.

- (1) $\gamma \cap B_1 = \emptyset$.
- (2) If we denote by ρ the subarc of δ between the points x_1 and x_2 , then $\rho \cup \gamma$ is a simple closed curve with linking number ± 1 with the circle *C*.
- (3) $\rho \cup \gamma$ bounds a compact disk *U* on *M*.

Therefore, $T \cap U$ contains a disk E such that $\partial E \subset \partial T$ and such that the linking number between ∂E and the circle C is ± 1 .

540

Figure 2

Next we let $\Pi: \tilde{T} \to T$ be the universal Riemannian covering space of T. The disk E lifts to a compact disk $\tilde{E} \subset \tilde{T}$. Topologically, T is $D^2 \times \mathbb{S}^1$ and E is isotopic to some $D^2 \times \{\text{point}\}$. Then \tilde{T} is topologically $D^2 \times \mathbb{R}$ and \tilde{E} is isotopic to some $D^2 \times \{\text{point}\}$. In particular, \tilde{E} separates \tilde{T} into two noncompact connected components. Call \tilde{W} the *mean convex* component.

Let \tilde{C} be the curve in \tilde{T} that projects to C by Π . For each point $p \in C$ there is a spherical *H*-surface, say $S_H(p)$, that is invariant by rotation about the vertical geodesic through p. It is clear that, if the radius of C is sufficiently large, then each $S_H(p)$ is contained in T. For any point $\tilde{p} \in \tilde{C}$, denote by $\tilde{S}_H(\tilde{p})$ the compact surface that projects to $S_H(p)$ by Π , where $\Pi(\tilde{p}) = p$.

One can find a point \tilde{q} on \tilde{C} such that $\tilde{S}_H(\tilde{q})$ is contained in \tilde{W} and is disjoint from \tilde{E} . Now move \tilde{q} along \tilde{C} toward \tilde{E} until the first point \tilde{q}_1 at which $\tilde{S}_H(\tilde{q}_1)$ and \tilde{E} are tangent. Then $\tilde{S}_H(\tilde{q}_1)$ is contained in \tilde{W} and, at the tangent point, both \tilde{E} and $\tilde{S}_H(\tilde{q})$ have curvature equal to H. Hence, by the maximum principle, they should coincide—a contradiction.

REMARK 2.2. The plane separation lemma holds (and the proof is the same) for horizontal planes P_1 and P_2 . The distance between P_1 and P_2 must be larger than the vertical diameter of a rotational *H*-surface. Notice that the proof of the plane separation lemma works also in the Heisenberg space and in $\widetilde{PSL}(2, \mathbb{R})$.

3. *M* Cylindrically Bounded

We restate Theorem 1.2 here for the reader's convenience.

THEOREM 1.2. Let $H > 1/\sqrt{3}$ and let M be a properly embedded H-surface in $\mathbb{H}^2 \times \mathbb{R}$ with finite topology and one end. Then M is contained in a vertical cylinder of $\mathbb{H}^2 \times \mathbb{R}$.

Proof. We can assume that the point $\sigma = (0, 0)$ belongs to M, where **0** is an origin of \mathbb{H}^2 . Let $\gamma : [0, r] \to \mathbb{H}^2 \times \mathbb{R}$ be any horizontal geodesic starting at σ and parameterized by arc length, and denote by P(r) the vertical plane passing through $\gamma(r)$ orthogonal to γ . We claim that there exists a constant c_2 (independent of the geodesic γ) such that, if $r > c_2$, then the half-space determined by P(r) that does not contain the point σ is disjoint from M. This clearly implies that M is contained in the vertical cylinder with axis $\mathbf{0} \times \mathbb{R}$ and radius c_2 .

Let us prove the claim. We choose $R > \max\{c_0, c_1\}$, where c_0 and c_1 are the constants given by Lemmas 2.3 and 2.4, respectively. Denote by $P(R)^+$ the half-space determined by P(R) containing the point σ and by $P(2R)^+$ the half-space determined by P(2R) not containing the point σ . By the plane separation lemma applied to the surface M, one of the following statements holds:

(i) $M \cap P(R)^+$ has only compact components; or

(ii) $M \cap P(2R)^+$ has only compact components.

If (i) is true then, by Lemma 2.3, the distance between the plane P(R) and the point $\sigma \in M \cap P(R)^+$ must be at most c_0 . This is a contradiction with our choice of R, so (ii) must be true. Then, again by Lemma 2.3, the maximum distance between $M \cap P(2R)^+$ and the plane P(2R) is at most c_0 ; hence M is disjoint from the half-space determined by $P(2R + c_0)$ not containing the point σ .

As a result, choosing the constant $c_2 = 2 \max\{c_0, c_1\} + c_0$, the claim is proved.

We now establish our main result.

THEOREM 1.1. For $H > 1/\sqrt{3}$, there is no properly embedded H-surface in $\mathbb{H}^2 \times \mathbb{R}$ with finite topology and one end.

Proof. Assume by contradiction that there exists an *H*-surface *M* satisfying the hypothesis. Let Q(t) be the horizontal geodesic plane at height t in $\mathbb{H}^2 \times \mathbb{R}$. By Theorem 1.2, *M* is contained in a vertical cylinder and, since it has only one proper end, *M* is bounded either above or below. We can assume that *M* is bounded below and that the lowest points of *M* lie in the plane Q(0). Because reflections with respect to the planes Q(t) are isometries of $\mathbb{H}^2 \times \mathbb{R}$, we can apply the Alexandrov reflection method with the planes Q(t) to the surface *M*. Since *M* is contained in a cylinder it follows that no accident can occur moving Q(0) up: there is no smallest *t* such that *M* becomes orthogonal to Q(t) at some point; otherwise, by Alexandrov, Q(t) would be a plane of symmetry for *M*. Hence, for any t > 0, the part of *M* below Q(t) is a vertical graph and there are no points of *M* below Q(t)

where *M* is orthogonal to one of the planes Q(t). Since $\frac{\partial}{\partial t}$ is a Killing vector field by Lemma 2.1, the part of *M* below the plane Q(t) is stable. But one can choose *t* larger than the constant of the distance lemma—a contradiction.

Added in proof. In [2] the authors prove optimal vertical height estimates for compact constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$, with boundary on a slice.

References

- U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature surfaces in S² × ℝ and H² × ℝ, Acta Math. 193 (2004), 141–174.
- [2] J. A. Aledo, J. M. Espinar, and J. A. Galvez, *Height estimates for surfaces with positive constant mean curvature in* $M^2 \times \mathbb{R}$, Illinois J. Math. (to appear).
- [3] J. L. Barbosa, M. do Carmo, and J. Eschenburg, *Stability of hypersurfaces of constant mean curvature in Riemannian manifolds*, Math. Z. 197 (1988), 123–138.
- [4] D. Hoffman, J. de Lira, and H. Rosenberg, *Constant mean curvature surfaces in* ¹ ² × ℝ, Trans. Amer. Math. Soc. 358 (2006), 491–507.
- [5] W. T. Hsiang and W. Y. Hsiang, On the uniqueness of isoperimetric solutions and embedded soap bubbles in non-compact symmetric spaces, I, Invent. Math. 98 (1989), 39–58.
- [6] N. Korevaar, R. Kusner, W. Meeks, and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1–43.
- [7] N. Korevaar, R. Kusner, and B. Solomon, *The structure of complete embedded surfaces with constant mean curvature*, J. Differential Geom. 30 (1989), 465–503.
- [8] R. Mazzeo and F. Pacard, Foliations by constant mean curvature tubes, Comm. Anal. Geom. 13 (2005), 633–670.
- [9] W. Meeks, *The topology and geometry of embedded surfaces of constant mean curvature*, J. Differential Geom. 27 (1988), 539–552.
- [10] B. Nelli and H. Rosenberg, *Minimal surfaces in* $\mathbb{H}^2 \times \mathbb{R}$, Bull. Braz. Math. Soc. (N.S.) 33 (2002), 263–292.
- [11] ----, *Global properties of constant mean curvature surfaces in* $\mathbb{H}^2 \times \mathbb{R}$, Pacific J. Math. (to appear).
- [12] H. Rosenberg, Constant mean curvature surfaces in homogeneously regular 3-manifold, Bull. Austral. Math. Soc. 74 (2006), 227–238.

B. Nelli	H. Rosenberg
Dipartimento di Matematica Pura	Institut de Mathématiques
e Applicata	Université Paris VII
Universitá di L'Aquila	Paris
L'Aquila	France
Italy	rosen@math.jussieu.fr
nelli@univaq.it	