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1. Introduction

In [9] Meeks proved that, ifM is a properly embedded simply connected surface
of constant mean curvature H �= 0 in R

3, then M is a round sphere. In particu-
lar,M cannot be topologically R

2. More generally, he proved there is no properly
embeddedH-surface of finite topology in R

3 with exactly one end. Afterwards, in
[7] a different proof of Meeks’s theorem was found, and in [6] it was extended to
the hyperbolic space H

3.

In this paper we consider this problem in H
2 ×R. There are properly embedded

H-surfaces in H
2 × R that are topologically R

2; there are entire graphs (vertical
graphs over H

2) for each H, 0 ≤ H ≤ 1/2 (see [10; 11]). We will prove that such
a surface cannot exist for H > 1/

√
3. More generally, we prove the following

statement.

Theorem1.1. ForH > 1/
√

3, there is no properly embeddedH-surface in H
2×R

with finite topology and one end.

Hsiang and Hsiang showed that any compact H-surface embedded in H
2 × R is a

rotational sphere and has mean curvature greater than 1/2 (see [5; 11]). Abresch
and Rosenberg proved that, if the surface is simply connected, then the same result
holds for compact H-surfaces immersed in H

2 × R (see [1]).
It is interesting to consider to what extent Theorem 1.1 holds in other homoge-

neous 3-manifolds (for some constant other than 1/
√

3 ). In S
2 × R there is no

properly embedded H-surface with one end. To see this, observe that an end of
such a surfaceM would have to go up or down (but not both), sinceM is proper.
Hence one can assume M is bounded below by height 0, say. Then Alexandrov
reflection with respect to the “planes” S

2 × {t} coming up from t = 0 allows
us to conclude that the part of M below any M × {t} is a vertical graph. This
contradicts the height estimates for such graphs (see [4]), so no such M exists in
S

2 × R.

The other homogeneous 3-manifolds (beside the space forms) are the Berger
spheres, Heisenberg space, and P̃SL(2, R). Since the Berger spheres are compact,
the question is interesting only for the Heisenberg space and P̃SL(2, R). Another
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interesting question in Heisenberg space is whether the only embedded compact
H-surfaces are the rotational spheres of constant mean curvature.

Theorem 1.1 has the following straightforward consequence.

Corollary 1.1. A simply connected H-surface properly embedded in H
2 × R,

H > 1/
√

3, is a rotational sphere.

We remark that Theorem 1.1 and Corollary 1.1 do not hold ifH ≤ 1/2. In fact, for
any H ∈ (0,1/2] there exists an entire rotational vertical H-graph (cf. [11]).

Theorem 1.1 is a consequence of the following fact.

Theorem 1.2. Let H > 1/
√

3 and let M be a properly embedded H-surface in
H

2 × R with finite topology and one end. ThenM is contained in a vertical cylin-
der of H

2 × R.

Our proof of Theorem 1.2 holds in R
3, as well.

The proof of Theorem 1.2 depends on the key result of the plane separation
lemma (see Section 2). The analogue of this lemma in R

3 and H
3 was proved in

[9] and [6], respectively.
Theorem 1.2 in H

2 ×R does not hold without the “one end” hypothesis. In fact,
there are examples (see [8]) of constant mean curvature cylinders lying in the tubu-
lar neighborhood of a horizontal geodesic. We conjecture that Theorem 1.1 holds
for H > 1/2; the bound H > 1/

√
3 seems due only to technical reasons.

We would like to thank IMPA for their kind hospitality during the preparation
of this paper.

2. Four Key Lemmas

Let L be the stability operator for a H-surface in a Riemannian 3-manifold N 3.

For the notion of stability, see [11] and [3]. The next result is classic: we state and
prove it for the sake of completeness.

Lemma 2.1. LetM be a compactH-surface in a Riemannian 3-manifold N 3 that
is transverse to some Killing vector field of N 3. ThenM is stable.

Proof. Let 〈·, ·〉 be the scalar product on the tangent space of N 3 induced by the
Riemannian structure on N 3, and letX be the Killing vector field of N 3. Because
M is transverse to X, one can choose a unit vector field N normal toM such that
〈N,X〉 is positive onM. Then 〈N,X〉 is a positive Jacobi function onM andM is
stable.

The following lemma was proved in [11].

Lemma 2.2 (distance lemma). LetM be a stableH-surface in H
2×R withH >

1/
√

3. Then, for any p ∈M,

distM(p, ∂M) <
2π√

3(3H 2 − 1)
.
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Remark 2.1. If the distance lemma were true for H > 1/2, then Theorem 1.1
would follow for H > 1/2.

Rosenberg [12] generalized Lemma 2.2 to the case of an ambient manifold that is
homogeneously regular.

Lemma 2.3. Let P be a vertical plane in H
2 × R. Let S be a compact embedded

H-surface with boundary on P and H > 1/
√

3. Then the distance of S from P is
bounded above by the constant c0 = 4π/

√
3(3H 2 − 1).

Proof. Let p ∈ S be a furthest point from the plane P and let γ be a minimiz-
ing ambient geodesic in H

2 × R from the point p to the plane P. Denote by h the
length of γ. Let P(t) be the family of vertical planes, orthogonal to γ, obtained
by translating P along γ by the isometry of H

2 × R that is translation along γ, pa-
rameterized such that P(0) = P and p ∈P(h).We perform Alexandrov reflection
of S with the family P(t), starting at P(h), and conclude that the part of S on one
side of P(h/2), say S+, has no point where S is orthogonal to one of the planes
P(t), h/2 ≤ t ≤ h. Hence the Killing vector field obtained from γ is transverse
to S+, since it is orthogonal to the family of planes P(t). By Lemma 2.1, S+ is
stable. Therefore, by the distance lemma, h < c0.

In [5], Hsiang and Hsiang computed the explicit form of the profile curve of a rota-
tionalH-surface. The vertical diameter and the horizontal diameter of a rotational
H-surface are

4H√
4H 2 − 1

tan−1 1√
4H 2 − 1

and 2 sinh−1 4H

4H 2 − 1
,

respectively. We will see that, in order to prove the plane separation lemma, the
minimum distance between the two vertical planes must be the horizontal diame-
ter of a rotational H-surface.

Lemma 2.4 (plane separation lemma). Let H > 1/2, and let P1 and P2 be two
disjoint vertical planes in H

2 ×R. Denote by P +
1 ,P +

2 the two disjoint half-spaces
determined by these planes. Let c1 = 2 sinh−1(4H/(4H 2 −1)). If the distance be-
tween P1 and P2 is greater than c1 then, for any properly embeddedH-surfaceM
with finite topology and one end, either P +

1 ∩M or P +
2 ∩M consists entirely of

compact components.

Proof. Assume by contradiction that both P +
1 ∩M and P +

2 ∩M contain noncom-
pact components. Then there are two proper arcs α1 : [0, ∞) → P +

1 ∩ M and
α2 : [0, ∞)→ P +

2 ∩M.
SinceM has finite topology, it follows that the end ofM is topologically an an-

nulus; hence we can assume that both α1(t) and α2(t) lie in the annular end ofM
for t sufficiently large. Set α1(0) = p1 and α2(0) = p2. One can choose an em-
bedded arc β on M from p1 to p2 such that the arc δ = α1 ∪ β ∪ α2 bounds a
simply connected domain onM (see Figure 1).



540 Barbara Nelli & Harold Rosenberg

1
2

2

1

2

γ

T

β

BB1

P P P
1 2

α
x

p
p

x

α
1

Figure 1

Let P be a vertical plane between P1 and P2 at equal distance from P1 and P2.

Let B be a geodesic ball of H
2 × R containing β, and let C be a circle in the plane

P such that:

• C ∩B = ∅, and B has nonempty intersection with the disk in P bounded by C;
• the tubular neighborhood T of C of radius c1/2 is embedded, and T ∩ B = ∅.
We remark that T is contained in the closed slab between P1 and P2 (see Figure 2).

Now let B1 be a geodesic ball containing B ∪ T. There exist x1 ∈ α1\ B1, x2 ∈
α2 \B1, and an arc γ from x1 to x2 , embedded inM, such that the following state-
ments hold.

(1) γ ∩ B1 = ∅.
(2) If we denote by ρ the subarc of δ between the points x1 and x2 , then ρ ∪ γ is

a simple closed curve with linking number ±1 with the circle C.
(3) ρ ∪ γ bounds a compact disk U onM.

Therefore, T ∩ U contains a disk E such that ∂E ⊂ ∂T and such that the linking
number between ∂E and the circle C is ±1.
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Next we let � : T̃ → T be the universal Riemannian covering space of T. The
disk E lifts to a compact disk Ẽ ⊂ T̃. Topologically, T is D2 × S

1 and E is iso-
topic to some D2 × {point}. Then T̃ is topologically D2 × R and Ẽ is isotopic to
some D2 × {point}. In particular, Ẽ separates T̃ into two noncompact connected
components. Call W̃ the mean convex component.

Let C̃ be the curve in T̃ that projects to C by �. For each point p ∈ C there
is a spherical H-surface, say SH (p), that is invariant by rotation about the verti-
cal geodesic through p. It is clear that, if the radius of C is sufficiently large, then
each SH (p) is contained in T. For any point p̃ ∈ C̃, denote by S̃H (p̃) the compact
surface that projects to SH (p) by �, where �(p̃) = p.

One can find a point q̃ on C̃ such that S̃H (q̃) is contained in W̃ and is disjoint
from Ẽ. Now move q̃ along C̃ toward Ẽ until the first point q̃1 at which S̃H (q̃1)

and Ẽ are tangent. Then S̃H (q̃1) is contained in W̃ and, at the tangent point, both
Ẽ and S̃H (q̃) have curvature equal to H. Hence, by the maximum principle, they
should coincide—a contradiction.

Remark 2.2. The plane separation lemma holds (and the proof is the same) for
horizontal planes P1 and P2. The distance between P1 and P2 must be larger than
the vertical diameter of a rotational H-surface. Notice that the proof of the plane
separation lemma works also in the Heisenberg space and in P̃SL(2, R).
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3. M Cylindrically Bounded

We restate Theorem 1.2 here for the reader’s convenience.

Theorem 1.2. Let H > 1/
√

3 and let M be a properly embedded H-surface in
H

2 × R with finite topology and one end. ThenM is contained in a vertical cylin-
der of H

2 × R.

Proof. We can assume that the point σ = (0, 0) belongs toM, where 0 is an origin
of H

2. Let γ : [0, r] → H
2 × R be any horizontal geodesic starting at σ and pa-

rameterized by arc length, and denote by P(r) the vertical plane passing through
γ (r) orthogonal to γ. We claim that there exists a constant c2 (independent of the
geodesic γ ) such that, if r > c2 , then the half-space determined by P(r) that does
not contain the point σ is disjoint fromM. This clearly implies thatM is contained
in the vertical cylinder with axis 0 × R and radius c2.

Let us prove the claim. We choose R > max{c0, c1}, where c0 and c1 are the
constants given by Lemmas 2.3 and 2.4, respectively. Denote by P(R)+ the half-
space determined by P(R) containing the point σ and by P(2R)+ the half-space
determined by P(2R) not containing the point σ. By the plane separation lemma
applied to the surfaceM, one of the following statements holds:

(i) M ∩ P(R)+ has only compact components; or
(ii) M ∩ P(2R)+ has only compact components.

If (i) is true then, by Lemma 2.3, the distance between the plane P(R) and the
point σ ∈M ∩ P(R)+ must be at most c0. This is a contradiction with our choice
of R, so (ii) must be true. Then, again by Lemma 2.3, the maximum distance be-
tweenM ∩ P(2R)+ and the plane P(2R) is at most c0; henceM is disjoint from
the half-space determined by P(2R + c0) not containing the point σ.

As a result, choosing the constant c2 = 2 max{c0, c1} + c0, the claim is proved.

We now establish our main result.

Theorem 1.1. For H > 1/
√

3, there is no properly embedded H-surface in
H

2 × R with finite topology and one end.

Proof. Assume by contradiction that there exists an H-surface M satisfying the
hypothesis. Let Q(t) be the horizontal geodesic plane at height t in H

2 × R. By
Theorem 1.2,M is contained in a vertical cylinder and, since it has only one proper
end, M is bounded either above or below. We can assume thatM is bounded be-
low and that the lowest points ofM lie in the planeQ(0). Because reflections with
respect to the planesQ(t) are isometries of H

2 × R, we can apply the Alexandrov
reflection method with the planes Q(t) to the surface M. Since M is contained
in a cylinder it follows that no accident can occur moving Q(0) up: there is no
smallest t such that M becomes orthogonal to Q(t) at some point; otherwise, by
Alexandrov,Q(t) would be a plane of symmetry forM. Hence, for any t > 0, the
part ofM belowQ(t) is a vertical graph and there are no points ofM belowQ(t)
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whereM is orthogonal to one of the planesQ(t). Since ∂
∂t

is a Killing vector field
by Lemma 2.1, the part ofM below the plane Q(t) is stable. But one can choose
t larger than the constant of the distance lemma—a contradiction.

Added in proof. In [2] the authors prove optimal vertical height estimates for com-
pact constant mean curvature surfaces in H

2 × R and S
2 × R, with boundary on a

slice.
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