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SOME REMARKS ON COMPACT CONSTANT MEAN 

CURVATURE HYPERSURFACES IN A HALFSPACE OF H n+l 

Barbara Nelli and Beate Semmler 

We consider embedded compact hypersurfaces M in a halfspace of hyperbolic space with 
boundary  OM in the boundary geodesic hyperplane P of the halfspace and with non-zero 
constant mean curvature. We prove the following. Let {M=} be a sequence of such hypersur- 
faces with 0M~ contained in a disk of radius r~ centered at a point ~ E P such that r~ ~ 0 
and that  each Mn is a large H-hypersurface, H > 1. Then there exists a subsequence of 
~ / ~ }  converging to the sphere of mean curvature H tangent to P at cr. In the case of small 
rl-hypersurfaces or H < 1, if we add a condition on the curvature of the boundary, there 
exists a subsequence of-~M~) which are graphs. The convergence is smooth on compact 
subset of H 3 \ ~r. 

KEYWORDS: Killing and Geodesic Graph, Mean Curvature, Large Hypersurfaces, Alexan- 
drov Reflection Technique 

MATH. SUBJ. CLASSIFICATION: 53 A 10, 53 C 42 

i INTRODUCTION 

Let P be a hyperplane in hyperbolic space H ~+: and let H n+: be one of the two halfspaces + 
determined by P;  we consider compact embedded H-hypersurfaces (i.e. hypersurfaces of con- 
stant mean curvature H) M C H% +1, with boundary 0M = F a codimension one embedded 
submanifold of P. 

There is little known about the geometry and the topology of such M in terms of that of 
F. In the Euclidean case of dimension three, some interesting results are obtained in [5]. 
Let M be a compact embedded H-surface in R~_ = {z3 >_ 0} and OM = F C {a3 = 0} a 
convex Jordan curve; Rosenberg and Ros proved, for example, that if H is sufficiently small 
(in terms of the curvature of F), then M has genus zero. 

In this paper, we make some progress on understanding this situation in hyperbolic space. 
Our main result is a compacity theorem for H-hypersurfaces. 
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After submitting this paper, the second author has obtained in [6] a result on the genus of 
a compact H-surface in H 3, similar to that mentioned above. 

We warmly thank Harold Rosenberg for suggesting the problem to us and for useful discus- 
sions. 

2 T H E  MAIN RESULT 

In the following an H-surface will always be a hypersurface of H ~+1 of constant mean cur- 
vature H. 

DEFINITION 2.1 A Geodesic Graph is a graph in the following system of coordinates: Let 
be a domain in a hyperplane P and let u be a real function that each point p E ~ associated 
with the point on the geodesic % through p, orthogonal to P, at hyperbolic distance u(p) 
from P. 

DEFINITION 2.2 Let H > 1 be a constant; we say that an H-surface M is small if there 
exists a ball of mean curvature bigger than H that contains M. We say that M is large if it 
is not small. 

REMARK 2.3 If M is a small H-surface, then M C N~B~ where B~ denotes the family of 
balls B(q, p) of radius p < arctanh~, centered at q E H TM, and 0M C B(q,p). 

THEOREM 2.4 Let {Mm} be a sequence of H-surfaces in H~. +1 such that ~M,~ = F,~ C 
D(r,~) C P, where D(rm) are the disks of radius r,~ centered at a point or, and rm ~0. 

Let ]~OMm be the smallest value of the mean curvature of OM,~. 

(i) H > 1. If  the M,~ are large H-surfaces, then there exists a subsequence of Mm that 

converges to the sphere SH of radius arctanh(-~) tangent to P at cz; the convergence is 

smooth on compact subsets of ]HI ~+1 \ ~r. If  kOM.~ > H, then there exists a subsequence 
converging to SH as above or there is a subsequence which are geodesic graphs over ~m 
(a~ C P, aa~ = r~) .  

(ii) H <_ 1. There exists a subsequence of M,~ that converges smoothly on compact subsets 
of H n+l \ ~. I f  kOM~ > 1, then each Mn of the subsequence is a geodesic graph over .qm. 

3 BASIC PROPERTIES 

Let us give some definitions. 

DEFINITION 3.1 Geodesic Cylinder. Let f~ be a domain in a geodesic hyperplane P. For 
each p E ~ let % be the unique geodesic through p orthogonal to P. The geodesic cylinder 
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over f~ is the set (see Figure 1) 
c(a)-- 

DEFINITION 3.2 Killin9 Cylinder. Let ~ be a domain in a geodesic hyperplane P. Let 
p E ~2 and let % be the unique geodesic through p orthogonal to P; let q be any point of fl 
and 7/p(q) the orbit through q of the hyperbolic translation along % (i.e. the integral curve 
of the Killing vector field associated with the hyperbolic translation). The [filling cylinder 
over ~ with respect to % is the set (see Figure 2) 

z,'(n, = U ,dq) 
qEfl 

DEFINITION 3.3 A Killing Graph with respect to a geodesic Vp is a graph in the following 
system of coordinates: let f~ be a domain in P and let u be a real function that each point 
q E ~ associated with the point on ~p(q) at hyperbolic distance u(q) from P. 

REMARK 3.4 Let Pup be the family of hyperplanes orthogonal to %. We remark that for 
each q E f~ the orbit ~b(q) is orthogonal to each Pup and a Killing graph over P is a Killing 
graph over each Pup. 

P 

Figure I 

~7 

8H n+1 

Figure 2 
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This last notion of a Killing graph arises naturally from the Alexandrov reflection technique 
(cf. [1]). This technique will be one of our main tools, so let us explain an application of it. 

We work in the upper halfspace model: 

n + l  

P = {(xl , . . . ,x~+l)  E R~_ +1 I E x ~  = 1) 
i=1 

and 
n + l  

H; = X +l) R;+ll > 1) 
i=1 

H =+1 with boundary OM = F a codimension Let M be a compact embedded H-surface M C + , 
one embedded submanifold of P. Let B be the compact component of H~. +1 bounded by M 
and by the domain ~ C P such that 0~ = cOM. We orient M by its mean curvature vector 
H and F by the orientation of M. 

Let q E M be a point at maximal distance d from P and let 7"be the geodesic through 
q orthogonal to P. Consider the family P~(t) C H~ +~ of hyperplanes orthogonat to 7 
parametrized such that t = dist(P~(t), P). We want to prove that the part of M lying above 
P~(~) is a Killing graph with respect to 7. I f t  > d, P~(t) NM = ~, and q E P~(d) N M; when 
we decrease t slightly, the part of M (that we denote by M(t) +) above P~(t) is a Killing 
graph over P and no point of M(t) + has the normal vector orthogonal to the Killing direction 
at the point. Let M(t) -  be the hyperbolic reflection with respect to P~(t) of M(t)+; M(t)-  
is contained in B, has mean curvature H and its mean curvature vector is the reflection 
of the mean curvature vector of M(t) +. Now, continue to decrease t and consider the first 

'P.~(T) where one of the following conditions fails to hold: 

1) int(M(T)-)  C int/3, 

2) M(~-) + is a Killing graph over P~(r) and no point of M(r)  + has the normal vector 
orthogonal to the Killing direction at the point. 

If 1) fails first, one applies the maximum principle to M and M(T)- at the point where 
they touch to conclude that P~(~-) is a plane of symmetry of M. If 2) fails first, then the 
point where the normal vector to M(T) + becomes orthogonal to the Killing direction is on 
cO(M('r) +) C P~(T); hence we can apply the boundary maximum principle to M(~')- and to 
the part of M below _P~(r) to conclude that P~(T) is a plane of symmetry of M. 

Both cases are impossible for ~- > ~ since cOM is on P, so the result follows. 

In the following lemma we establish some basic properties of an H-surface. 

LEMMA 3.5 Let M be a compact embedded H-surface of H~ +1, with boundary OM = F a 
codimension one embedded submanifold of P. Let H be the mean curvature vector of M and 
Y the unit vector field orthogonal to P, pointing towards E~_ +1. Then: 

(i) H points towards U = ~ U [C(a) n (H~+I \ H~§ 

(ii) Each point q E M at maximal distance from P is contained in the geodesic cylinder 
c(a). 
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(iii) Let 7 be any geodesic orthogonal to P passing through a point of ~; if M is contained 
in K ( ~ ,  7) then M is a Killing graph with respect to 7. 

(iv) I f  for each point q E OM, (H(q) ,Y(q))  < O, then M is a Killing graph with respect to 
any geodesic orthogonaI to P passing through a point of ~l; therefore M is a geodesic graph. 

Proof. (i) Consider the family of hyperplanes {P(t))teR+ C H~_ +1 obtained from P by 
hyperbolic translations along the vertical geodesic orthogonal to P,  parametrized such that  
P(0)  = P;  if t is big enough, then P(t) N M = (3; decrease t and consider the first plane 
P(~-) tha t  touches M: At the first point of contact between P(~-) and M, H points down, 
i.e. towards N, hence the same is true at each point of M.  

(ii) Let d = d(q,P) and let 7 be the geodesic through q orthogonal to P.  Suppose, by 
contradiction, that  q r C(f~) so 7 N P is not in ~2. Consider the family P~(t) of hyperplanes 
orthogonal to 7, such that P~(0) = P; we can do Alexandrov reflection up to the hyperplane 
P.~(~) without an accident and the symmetry of the part  of M above P.y(~) with respect to 
P~(~) is contained in B so the points where it touches P are in f~. This is a contradiction, 
since the symmetry  of q is on 7 N P,  which is not in f~. 

(iii) In this case we can do Alexandrov reflection with the family of hyperplanes orthogonal 
to 3' till P without any accident, so M is a Killing graph over P.  

(iv) Let 7 be a geodesic through a point of f~ and let P~(t) be the family of hyperplanes 
orthogonal to 3'. The hypothesis implies that  near OM, M is contained in K(f t ,  7); we claim 
that  M C K(gt, 7). If not, we would find a Killing orbit r] in OK(f l, 3') that  contains at 
least two points of M. Applying Alexandrov technique with the family P~(t) we find a ~- 
such that  the symmetry of the part of M above Pv(r) with respect to P~(7) touches M at 
an interior point (that lies on r]), so that Pv(~-) is a hyperplane of symmetry for M. This is 
a contradiction. Applying (iii), the first result follows. This means that  on each 7 there is 
only one point of M, hence M is a geodesic graph too. 

[l 

Estimates of height, area and curvature for a geodesic graph are a basic tool in the proof of 
our main result. In order to obtain them, it is more convenient to work in the Minkowski 
model for H TM. Consider IR ~+2 with the Lorentz metric 

n+2 

i=2 

The hypersurface of R ~+2 

= c R I xl > 0 ,  = - 1 }  

with the Riemannian metric induced by Q is the Minkowski model for H n+l. Let M be 
an H-surface,  let X be its position vector and let n be the unit normal to M such that  
<n, H> = - H  _< 0. Then we have (cf. [4]): 

A X  = nX - nHn, 
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A n  = n H X  - IA]2n, 

where A is the Laplacian on M and A is the second fundamental form of M. Now suppose 
that  M is a geodesic graph over a domain f~ C P = {x,+2 = 0} n IE T M  with boundary in 
this hyperplaneplane of H"+I; so 

i(  ) �9 
n 

X(p) = (z~ cosh p , . . . ,  x~ cosh p, x~ - E x~ - 1 cosh p, sinh p) 
i=2 

Ploa = 0 

where p is the distance from the plane P. From previous equations we obtain 

A X n +  2 = n X n +  2 - -  nHnn+2, 

An~+2 = nHz~+~ - IAl2n:+2 
where n~+2 _> 0. This yields 

/ x ( H x = + =  - n=+2)  = n=+=(IAI  ~ - n H  2) _> o 

By the maximum principle, 

Hx~+2 -- nn+2 ~ (Hx~+2 -- n,~+2)lOM <-- 0 (1) 

In the case H > 1, (1) and Alexandrov reflection yield height estimates so that the maximum 
distance between M and P is smaller than arctanh(~) (cf. Lemma 3.3 of [4]). 

To obtain height estimates in the case H _< 1, we proceed in the following way. 

Consider the upper halfspace model and let P be a vertical hyperplane; OM C P .  Let Eo be 
the equidistant sphere with respect to P contained in H~_ +~ such that 
dist(P, E0) = arctanh(sin0). Eo forms an angle 0 with P.  The mean curvature vector 
of Eo points towards P and H(Eo)  = sin 0, so by the maximum principle M cannot touch E~ 
for 0 >_ arcsinH (since the contact is at an interior point). This implies that the maximum 
of the distance between M and P is smaller than arctanhH. 

Now, we come ba& to the Minkowski model and use (1) to obtain area estimates for M far 
from its boundary. 

Let 6 be a small positive constant and let M6 be the part of M at distance from P greater 
than or equal to arcsinh6. For a geodesic graph we have 

(cosh p)2 

~ + ~  = ~/(coshp)~ + (EL1 p ~ , ) ~  ~ ~ - Pl + ~ i = 2  P~ 

ap / = 1 , . . ,  n. Furthermore, if glj are the coefficients of the induced metric on where Pl =- az---7, 
M, we have 

~ = (cosh/)),+1 

2 _  1 
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We remark tha t  the area element of f / i s  

hence 

dAn = 
dxl...dx~ 

2 1' 
v / ~  - G %  ~ - 

f a  r , / r z~  Area(f~) area(M~) = (c~ < ,.~1t1~; 
nn+2 

where C~(H) is a positive constant depending on H (by height estimates) and the last 
inequality follows from (1). 

As we remark in the Appendix, in order to obtain curvature estimates for M on compact 
subsets of ~t we only need to estimate the gradient of p. By (1) we have 

(coshp)~ + (~;,x,)~ - d + ~ d  < (eosh p)~ 
i=1 ~=2 - H sinh p 

so, if x=+2 > arcsinhS, since we have height estimates (i.e. estimates for coshp), we easily 
obtain [ 

C2( H___~) < 
i----1 - -  6 

4 PROOF OF THE MAIN RESULT 

In this section we give the proof of Theorem 2.4. 

We will use the upper halfspace model, and we fix the notations of Section 3 ; so we take 

n n + l  

{~ ~ < tanh ~r~, ~ ~ i} D ( T ~ )  = zi  _ z~ = 

i=1  i=1  

and o" = ( 0 , . . . ,  O, 1). 

(i) H > 1. First we prove that  almost all parts of M,~ are geodesic graphs. 

It follows from height estimates that  all the M,~ are contained in a fixed compact set 7( 
of H T M .  Consider a point of M,~ at maximal distance from P and let 7m be the unique 
geodesic orthogonal to P passing through that  point. Let P.y~(t) C H$ +1 be the family of 
planes orthogonal to 7,~, parametrized such that  t is the distance between P~,~(t) and P (see 
Figure 3). 

By the Alexandrov reflection technique we have that  the part  of Mm above 
P~m(arctanh~) is a Killing graph with respect to 7-~ over a domain ~,~ in the plane 
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P~m(arctanh-~) and the hypothesis of Lemma 3.5 (iv) are satisfied, hence it is a geodesic 
graph over f ~ .  Then, one has uniform area and curvature estimates for the part of Mm 
above the plane P~m(arctanh(~) + 5), 5 > 0 (for each m the area of P.,m(arctanh(-~) + 5) n K 
is bounded by the geometry of K). 

Let r > 0, then for ra large, OM~ C D(r). For each geodesic/3 on P with initial point cr we 
consider the family of planes orthogonal to/3; let Q~ be the plane of this family tangent to 
0D(r) (see Figure 3). Denote by Mm(/3, r) the part of M lying in the halfspace determined by 
Q~, which does not contain cOM. The Alexandrov reflection technique shows that ]i , fm(13 , r) 
is a Killing graph with respect to /3 over a domain in Q~. We prove that Mm(/3, r) is a 
geodesic graph. 

Let Y be the unit vector field orthogonal to Q}, pointing towards the halfspace determined 
by Q5 that contains Mm(/3, r) and let H be the mean curvature vector of M,~(/3, r). We 
claim that for each p S cOM~(/3, r), (Y(p),H(p)) < 0. The fact that Mm(/~,r) is a Killing 
graph over a domain in Q5 and (i) of Lemma 3.5 guarantee that (Y(p), H(p)} _< 0, so the 
only problem may be that there exists a point p e OMm(fl, r) such that (Y(p),H(p)) = 0. 
The reflection of M~(/3, r) with respect to Q~ would be tangent to Mr~ at such a point; 
the fact that each point of OM,~(/3,r) is an interior point of Mm gives a contradiction by 
the maximum principle. So, we can use (iv) of Lemma 3.5 to conclude that M,~(/3,r I is a 
geodesic graph over a domain in Q}. 

P (arctanhI/H) 

o; 

Figure 3 

We remark that there are some parts of Mm which are not necessarily geodesic graphs, so 
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we do not have uniform area and curvature est imates,  and for this reason we do not have 
convergence in N ~+i. When rn---*eo, F,~----~r, i.e. r goes to 0; hence 7m converges to a 
vertical geodesic through ~r (in the following we will denote it by 7) and Q~ converges to 
a vertical plane containing o- (here we use (ii) of Lemma 3.5). Then the parts of M,~ that  
are not necessarily geodesic graphs are near thesegment  I = [1, arctanh(~)]  on 7, hence a 
standard compacity technique yields a subsequence (which we also call)M,~ that  converges 
on compact  subsets of N ~+i \ I. The limit is either empty or a compact immersed surface 
M of mean curvature H. 

First we analyse the case of an empty limit. 

In this case, for m large, M,~ is uniformly close to I. Then M~ is a small H-surface, and this 
is impossible. 

Now, suppose that  ]~0Mm • "[2T" Consider the codimension one halfsphere S + C N% +i centered 
at G of radius arctanh(-~). We make a hyperbolic translation along 3' such that  the image 
of S + is disjoint from K. Then, by decreasing the Killing coordinate, we come back down; 
for m large, P~ is near ~, so the image of S + cannot touch M~ before it arrives at P again, 
i.e. Mm is below S +. If M,~ is not a geodesic graph then, by (iv) of Lemma 3.5 there exists 
a point q E OM~ such that  < H(q) ,Y(q)  > 2  0, where H is the mean curvature of Mm. So, 
by the fact that  ]%M.~ > H we can do isometrics of S +, moving its center on P,  until S + 
touches M,~ either at an interior point (case of strict inequality) or at the boundary point q, 
being tangent to it (case of equality). In both cases, by the maximum principle, we obtain 
M,~ = S + which is impossible. Hence M,~ is a geodesic graph over f ~ .  

Next we assume that  {/Vim} converges to M on H n+i \ I.  

For each c > 0 the planes Q} can be moved up to 8D(r)  and the symmetries of M with 
respect to these planes do not touch M (since this holds for M~, m large). By continuity, 
this works up till r = 0 and so M is a rotational surface about 7 which can have self- 
intersections at most on 7. M is compact so it is not a Delaunay surface; M is not a stack 
of spheres, since it has height at most 2arctanh(-~). Hence, by [2], M is the sphere SH of 
radius p = arctanh(-~). 

We have only to prove that  the convergence is uniform on compact subsets of N ~+1 \ c~. 

Let s > 0, there exists r > 0 such that, for m large 

M..  N C { D ( r ) ,  [~p + 1, oo)} = M..  n C { D ( r ) ,  [2p + 1 - e, oo)} (2) 

where C{D(r ) ,  [a, b]} is defined in the following way. Let P( t )  C H~_ +'  be the family of planes 
orthogonaI to ~/parametrized such that  P(0) = P; C{D(r), [a, b]} is the slice of U(D(r) ,  ~/) 
between .P(a) and P(b). Furthermore, the intersection in (2) is a Killing graph above D(r) .  
Coming down with planes _P(t) from t = 2p - e to t = p, we obtain by Alexandrov reflection 
that  

M.. N C{D(r), [2(t - p) + c, 2p - e]} = 

So, in particular for t = p + 1 

M ~  n C {O(~ ) ,  [~, 2p - e l }  = 
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This gives uniform area and curvature estimates for M,~ on compact subsets of H ~+1 \ c~, 
not just on compact subsets of H ~+1 \ I. The result follows. 

(ii) H _< 1. As in the previous case, almost all parts of M,~ are geodesic graphs and we have 
height, area and curvature estimates, so there exists a subsequence of {M,~} that converges 
smoothly on compact subsets of H ~+1 \ or. 

We prove that  the limit is empty. Here, it is more convenient to assume that  M,~ C H~_ +1. 
Let 

am = inf{x~+l I (x~,... ,xn+l) e cgMm}, bm = inf{xn+l [ (Xl,. . .  ,Xn+l) e Mm} 

Since Fm ~c~, we have that  lira am = 1. If bm< am the horosphere {x=+l = b,~} touches 
m - - - ~ o o  

Mm at an interior point and this is a contradiction by the maximum principle; hence 

M.~ C {(xl, . . .  ,x~+l) E H~_ +1 l a,~ ~ x~+l ~ 1} 

and this implies that  the limit is empty. 

If kOM m > l, the result follows by the same argument as in (i), using a compact halfsphere 
of curvature smaller than koM.~. 

REMARK 4.1 The first result of (i) and (ii) in Theorem 2.4 remains true, if one assumes that  
Fm C B(r,~), a bail of radius rm centered at ~ (for example Fm contained in a horosphere). 
Here Mm is an H-surface such that  Mm gl H ~+1 \ B(r~)  C H$ +1 and F,~ ,c~ as m----,oc 

One does the same argument as in Theorem 2.4 with geodesic planes e-tilted from planes 
orthogonal to P.  For e > 0 one can choose r,~ small enough so that Alexandrov reflection 
works with e-tilted planes coming from 0% up till the plane reaches OB(rm). 

5 A TOPOLOGICAL RESULT 

Using the previous arguments it is very easy to prove a result about the topology of H- 
surfaces. 

THEOREM 5.1 Let M be a compact H-surface embedded in H ~+~ such that F OM C P. + = 
Then 

(i) if H > 1  and if M is a small surface and kr > H, then M is a geodesic graph. 

(ii) I f  H <_ 1 and if kr > 1, then M is a geodesic graph. 

In both cases M is topologically a disk of dimension n. 

Proof. (i) Sinqe kr > H,  we can find an n-disk D H on P such that  OD H is a codimension two 
sphere of mean curvature H and F C D H. Consider the unique codimension one compact 
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sphere S H ofmean curvature H such that P N S H = OD H, i.e. the centers of S H and 
D H coincide and S H N H ~+1 is a halfsphere (see Figure 4). Since M is small, the ball + 

with boundary S n contains M (cf. Remark 2.3). Then, we are in the same situation as 
in Theorem 2.4 (case of empty limit) and we can conclude by the same argument as in the 
proof of Theorem 2.4.. 

(ii) M C N$ +1 is compact, hence there exists a compact sphere SH, with center on P, mean 
curvature H / < hr, such that the bali bounded by SH, still contains M. We conclude by the 
same argument as in (i). 

[] 

REIvIAttK 5.2 Barbosa and Sa Earp in [2] proved that an H-hypersurface immersed in IN ~+1 
satisfying the hypothesis (i) and (ii) of Theorem 5.1 is a graph in the system of coordinates: 
hyperplane - orthogonal horocycles. They used an analytic method. 

..... s H  

D H 

Figure 4 

6 APPENDIX 

In the Minkowski model, the equation of a geodesic graph over the hyperplane {z~+.o = 0}. 
of mean eurwture H is: 

d i v ( ~  / = n c o s h p ( -  H + ~ ~ 1  z~Pi + sinhpc~ p)T; 

where p is the hyperbolic distance from the plane {zn+~ = 0}, 
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- l)pl + ~ x1~ipi I i=2 

Vhp = i 
(z 2 + 1)pj + ~ xjz~p~ 

I ~ i#j 

j = 2 , . . .  ,n + 11 T~ = (cosh p) 2 + [Vhpl 2 and div is the standard divergence in R ~. 

For the solution of such equation, Schauder theory guarantees that C ~,~ estimates depend 
only on C O and C 1 estimates ( cf. [3]). As Tp is bounded away from 0, C 2'~ estimates for # 
imply curvature estimates for its graph: 

For the sake of completeness, we give the equation of a geodesic graph of mean curvature 
H in the upper halfspace model. If {x~ = 0} is the plane where the graph is defined, the 
position vector is 

X(p) = (x l , . . . ,  x~-l, X~+l tanhp, X~+l 
cosh p '  

and the unit normal vector to the graph is 

__ Xn+l ( n c o s h p ~  Xn+lPl,...,X,~+lp~-l,X,~+lp,~+l - 1,sinhp d Xn+lfln+l~ 
cosh p J 

Op 2 2 where p = p ( ~ , . . .  ,~-1,z~+1) ,  z, = ~x,' and W; = (r p)~ + ~+~lvz l  ~. 

Hence the equation of a geodesic graph is 

Vp n f sinh p 
div ( - - ' ~  H - 

\WpJ - x~+l~osh p \ "~; /t 

where H = (H,  n}. 
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