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THE STATE OF THE ART OF “BERNSTEIN’S

PROBLEM”

Barbara Nelli Marc Soret

Abstract

Whether the only minimal stable complete hypersurfaces in Rn+1
,

3 ≤ n ≤ 7, are hyperplanes, is an open problem. We describe its historical

motivations and our results obtained by exploring it.

1 Historical Background

A minimal hypersurface in Rn+1 is a critical point of the area functional with

respect to compact support variations. In 1776, Meusnier discovered a geo-

metrical interpretation of a minimal surface in terms of the mean curvature: a

minimal surface has mean curvature H ≡ 0 at each point. Meusnier’s result

holds in any dimension.

Consider a hypersurface of Rn+1 described as a graph of a C2 function f :

Ω−→R, Ω ⊂ Rn. In this case the area functional is

A(f) =

∫

Ω

√

1 + |∇f |2dv,

where dv is the volume element on Rn. By definition, the graph of f is minimal

if and only if f is a critical point of A. It is straightforward that a minimal

graph is a minimum of A.

Furthermore, the graph of f is minimal if and only if f satisfies the Minimal

Surface Equation:

(1 + |∇f |2)
n

∑

i=1

fii −
n

∑

i,j=1

fifjfij = 0 (1)
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The following result is known as Bernstein’s Theorem:

A complete minimal C2 graph in R3 is a plane.

Bernstein’s Theorem was proved by Bernstein in [2] (see also [16] for a different

approach). Then he stated Bernstein’s conjecture:

If f : Rn−→R is a solution of the minimal surface equation (1) in Rn then

f is a linear function.

Bernstein’s conjecture has been a longstanding problem and it was proved

to be true for n ≤ 7 and false for n ≥ 8. We recall the main steps of the proof.

A minimal hypersurface is stable if it is a local minimum of the area func-

tional with respect to compactly supported deformations. A minimal graph is

a global minumum for the area functional, hence it is stable.

Fleming [9] gave a new proof of Bernstein’s Theorem, using geometric mea-

sure theory. He showed that the existence of a non flat complete minimal graph

in R3, yields the existence of a minimal stable non trivial cone in R3. He then

proved that such a cone does not exist.

Fleming’s results were extended by Almgreen [1] in R4 and by Simons [17]

in Rn+1, for n ≤ 6. In the same paper, however, Almgreen founded non flat

minimal stable cones of codimension one in R2m, for m ≥ 4. De Giorgi [6]

extended the non existence result to Rn+1, n ≤ 7, proving that the existence

of a complete minimal graph in Rn+1 implies the existence of a minimal stable

cone in the lower dimensional space Rn.

Finally Bombieri, De Giorgi and Giusti [3] showed the existence of com-

plete minimal graphs in Rn+1 for n ≥ 8. In fact they constructed a calibration

from Simons’ minimal cones [17] and deduced from it the existence of complete

minimal graphs.

2 Some Extensions of Bernstein’s Problem

Fleming’s proof of Bernstein’s Theorem extends to area minimizing hypersur-

faces in Rn+1, n ≤ 6, but not to minimal stable hypersurfaces. So, it is quite

natural to ask the following Bernstein’s problem in the parametric case:
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Does it exist a complete, minimal, stable, non planar hypersurface in Rn+1?

The discussion about the parametric Bernstein’s problem will be the subject

of the rest of this paper.

Let us come back to the non parametric case, for a while, in order to recall

the result of Heinz [11]. Heinz studied the solution of (1) on a disk in R2

centered at p, of radius R. He proved that there exists an universal constant C

such that

|A|(p) ≤
C

R2

where |A| is the norm of the second fundamental form of the graph.

Heinz’ result implies Bernstein’s Theorem.

Schoen, Simon and Yau [18] extended Heinz’ estimate to area minimizing

hypersurfaces of Rn+1, up to dimension n = 5. Their result implies Bernstein’s

conjecture for area minimizing hypersurfaces in the appropriate dimension.

When n = 2, Do Carmo and Peng [7] and independently Fischer-Colbrie and

Schoen [10], proved that a stable minimal surface immersed in R3 is a plane.

On the contrary, when n ≥ 8, the graphs in [3] are stable, minimal, complete,

non planar hypersurfaces in Rn+1.

So, we are left with the following parametric Bernstein’s problem:

Are the hyperplanes the only minimal, stable, complete hypersurfaces in

Rn+1, 3 ≤ n ≤ 7?

Before describing our contributions to the parametric Bernstein’s problem,

we recall some other partial results.

We denote by B(p, R) the ball in Rn+1 centered at p of radius R. Schoen,

Simon and Yau [18] proved the following very general result about minimal

stable hypersurfaces.

SSY-Theorem For any n ∈ N and q ∈
[

0, 4 +
√

8
n

[

, there exists a constant

β(q, n) satisfying the following condition: if M is a stable minimal hypersurface

of Rn+1 then, for any R > 0, p ∈ M,
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∫

B(p, R

2
)∩M

|A|q ≤ β(q, n)R−qvol(B(p, R) ∩ M) (2)

Using the same techniques as in the proof of SSY-Theorem, Do Carmo and

Peng [8] showed that a minimal, stable, complete hypersurface is a hyperplane

if

lim
R−→∞

∫

BR
|A|2

R2+2q
= 0, q <

√

2

n
.

Cao, Shen and Zhu [5] proved that a minimal, stable, complete hypersurface

in the Euclidean space must have only one end. This result has recently been

extended to any ambient space with positive sectional curvature by Li and Wang

[12]. Q. Chen [4] showed that, if the number of connected components of the

intersection between a minimal, stable, complete hypersurface M and any ball

of Rn+1, n = 3, 4, is bounded by some constant, then M is a hyperplane. D.

Zhou and X. Chen have told us that they have recently proved the following:

if the Lp norm of the second fundamental form of a minimal, stable, complete

hypersurface M in Rn+1, n ≤ 4, p ≥ n, is bounded, then M is a hyperplane

(personal communication).

3 New Results

We have been exploring the problem of existence of non planar, complete, min-

imal, stable hypersurfaces embedded in Rn+1, 3 ≤ n ≤ 7 and we have obtained

some new results. In this section we state them and we describe briefly the

techniques of the proofs. The proofs are essentially contained in [14], [15].

First, we are able to reduce the problem to the bounded curvature case. Let

M be a submanifold of Rn+1 and |A| the length of the second fundamental form

of M. We say that M has uniformly bounded curvature if there is a positive

constant C such that |A|(x) ≤ C, ∀x ∈ M.

Theorem 1 If there exists a non flat, complete, minimal, stable hypersurface,

properly immersed in Rn+1, then there exists such a hypersurface with uniformly
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bounded curvature.

Theorem 1 is an easy consequence of the following curvature estimate (where,

we do not assume that M has codimension one).

Theorem 2 Assume that a complete minimal, stable submanifold of Rn+1 with

uniformly bounded curvature is flat. Let M be a properly immersed minimal,

stable submanifold of Rn+1. We have

(i) if ∂M += ∅, then for any point p ∈ M

|A|(p) ≤
C

infq∈∂M |p − q]
(3)

where C is some universal constant;

(ii) if M is complete without boundary, then M is flat.

In the proof of Theorem 2, we use a well known rescaling technique. We

assume by contradiction that the universal constant of inequality (3) does not

exist. This yields a sequence of minimal hypersurfaces, contradicting inequality

(3). We rescale each of them by a homothety whose ratio is essentially the

maximum of the norm of its second fundamental form. The rescaled hypersur-

faces have uniformly bounded curvature. Then, we can extract a subsequence

converging to a minimal stable hypersurface with uniformly bounded curvature

and with curvature one at one point. Such hypersurface can not be flat and

this gives a contradiction to the assumption (see [15] for the proof).

Next result answers Bernstein’s parametric problem in a particular case.

Theorem 3 Let M be a complete minimal stable hypersurface immersed in

Rn+1, n < 5. If there exist ε0 > 0 and N ∈ N such that, for any p ∈ M and any

ε ≤ ε0, the number of connected components of M ∩ B(p, ε) is bounded by N,

then M is a hyperplane.

Here is an idea of the proof of Theorem 3. By Theorem 1, we can restrict

to the case of uniformly bounded curvature. Then, M is locally a graph and

by hypothesis, in each extrinsic ball, of radius smaller thaw ε0 there are a finite
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number of such graphs. Hence, the area of M in each ball of radius smaller

thaw ε0 is uniformly bounded. Now, the result follows easily from the Schoen-

Simon-Yau’s curvature estimate contained in the inequality (2).

We recall the results of [14], that are more significative in this context. We

notice that, by Theorem 1, the assumption of uniformly bounded curvature for

the hypersurface M is not a strong hypothesis.

Let r : M−→R be a C2 function defined on the hypersurface M and let N

be a unit normal vector field to M . We call Tube of radius r around M the set

T (M, r) = {x ∈ R
n+1 | ∃p ∈ M, x = p + tN(p), t ≤ r(p)}.

In our opinion, strong evidence for the non existence of a non planar, em-

bedded, minimal stable hypersurface is given by the following Theorem.

Theorem 4 Let M be a non planar, stable, minimal hypersurface embedded

in Rn+1, n ≤ 5, with uniformly bounded curvature. Fix a point σ in M and

denote by d(p, σ) the intrinsic distance between σ and any point p ∈ M. Let

0 < c1 ≤ 1, c2 > 0, δ ≥ 1 and consider any C2 function r on M such that

r(p) ≥ inf{c1|A(p)|−1, c2d(p, σ)δ}. Then the tube T (M, r), is not embedded.

Theorem 4 means that the subfocal tube of a non planar minimal, stable

hypersurface embedded in Rn+1, n ≤ 5, cannot be embedded. More precisely: if

n ≤ 4, such hypersurfaces admit no embedded tube of constant radius, whatever

small the radius is .

However, the following Theorem shows that, assuming a further hypothesis

on the embedding, such hypersurfaces admit an embedded tube whose radius

decays sufficiently fast.

Theorem 5 Let M be a minimal, non planar hypersurface embedded in Rn+1,

n ≤ 5, with uniformly bounded curvature.

(i) If M is stable and there is an Euclidean ball B(p) in Rn+1 centered at

a point p ∈ M such that B(p) ∩ M consists of a finite number of connected

components, then there exists an embedded tube around M.
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(ii) If M is not stable, then either M is proper, or M is properly embedded in

a open set bounded by a complete minimal stable hypersurface (possibly multiply-

connected).

Let us say some words about the proof of Theorem 4 (see Theorem 1 in

[14]). We call T (R, r) the tube around a ball of radius R of M. If such a tube

were embedded in Rn+1, the order of its volume in terms of R should be at

most n + 1. We then compute the volume of T (R, r) in terms of the integral

of the norm of the second fundamental form of M. By a subtle application of

inequality (2), one obtains that the order of the volume of T (R, r) is larger than

n + 1, hence T (R, r) cannot be embedded.

For the proof of (i) of Theorem 5 we use a purely topological argument,

while (ii) is a generalization to higher dimension of a result about laminations,

contained in [13]. In fact, the result in [13] is much stronger than ours, be-

cause there, the authors can use the parametric form of Bernstein’s Theorem

in dimension two (see Theorem 2 in [14] for details).
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