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EXISTENCE OF VERTICAL ENDS

OF MEAN CURVATURE 1/2 IN H
2 × R

MARIA FERNANDA ELBERT, BARBARA NELLI, AND RICARDO SA EARP

Abstract. We prove the existence of graphs over exterior domains of H2×{0},
of constant mean curvature H = 1

2
in H2 × R and weak growth equal to the

embedded rotational examples.

1. Introduction

In this paper, we prove the existence of vertical graphs over exterior domains of
H

2×{0}, with constant mean curvature H = 1
2 in H

2×R (Theorem 3.4), provided
that the boundary curve satisfies some geometric conditions. An easy example
of boundary curve could be a hyperbolic ellipse with small eccentricity (Example
3.5).

As far as we know, the graphs thus obtained are the first examples of embedded
vertical ends (a vertical end is a topological compact disk minus one interior point,
with no asymptotic point at finite height) that are not rotational. Furthermore, they
have weak growth (see Definition 3.3) equal to the embedded rotational examples.

Such examples suggest a new discussion in the theory of constant mean curvature
H = 1

2 ends in H
2 × R, inspired by that of minimal ends in R

3 (see [H-K], [SC],
[R]). In analogy with the minimal case, we ask:

Question 1. Is every vertical end, that is also a graph of mean curvature H = 1
2 ,

uniformly asymptotic to the end of a rotational graph?

Question 2. Let M be a surface of mean curvature H = 1
2 , properly embedded in

H
2 × R, with two vertical ends that are graphs. Is M a rotational surface?

We can prove that the ends of our graphs are trapped between two rotational
surfaces, which gives a contribution to the answer to the first question.

It is worth noticing that there are many examples of entire graphs of mean
curvatureH = 1

2 with a nonvertical end; see for instance [SE]. A significant example

is given by the graph of the following function f : H2 ×{0} −→ R (in the halfplane
model for H2):

f(x, y) =

√
x2 + y2

y
, y > 0.

The graph of f has mean curvature H = 1
2 and its asymptotic boundary contains

two vertical half straight lines going from 1 to +∞ (see [SE], equation (31), figure
(12)).

We prove our existence result by solving a certain Dirichlet problem for the mean
curvature equation H = 1

2 , over some exterior domains in H
2 × {0}. The proof is

Received by the editors April 8, 2008 and, in revised form, February 21, 2010.
2010 Mathematics Subject Classification. Primary 53C42, 35J25.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

1179



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1180 M. F. ELBERT, B. NELLI, AND R. SA EARP

obtained by the Perron Process. The geometric condition satisfied by the boundary
guarantees that the rotational surfaces of mean curvature H = 1

2 can be used as
barriers at the boundary points.

The third author and E. Toubiana proved an existence theorem analogous to
Theorem 3.4 for the minimal case in R

3 [SE-T3] and in H
n×R [SE-T4]. They used

catenoids as barriers. In [N-SE], the second and the third authors studied surfaces
in H

2 × R of mean curvature H = 1
2 : they proved a vertical halfspace theorem.

This paper is organized as follows. In Section 2, we describe the geometry of
rotational ends of mean curvature H = 1

2 and we prove the Convex Hull Lemma.
In Section 3 we prove the existence theorem.

2. Rotational surfaces with H � 1
2

The third author and E. Toubiana found explicit integral formulas for rotational
surfaces of constant mean curvature H ∈ (0, 12 ] in [SE-T2]. A careful description of
the geometry of these surfaces is contained in the Appendix of [N-SE-S-T].

In this section, we recall some properties of rotational surfaces of constant mean
curvature H ∈ (0, 1

2 ], and we describe their asymptotic behavior. Let u : Ω −→ R

be a C2 function defined on a subset Ω of H2 × {0}. The vertical graph of u is the
subset of H2 ×R given by {(x, y, t) ∈ Ω× R | t = u(x, y)} . The vertical graph of a
function u : H2 × {0} −→ R has constant mean curvature H, with respect to the
upward unit normal vector field N = −∇Hu

Wu
+ 1

Wu

∂
∂t , if and only if u satisfies the

following partial differential equation:

(2.1) divH

(
∇Hu

Wu

)
= 2H,

where divH, ∇H are the hyperbolic divergence and gradient respectively and
Wu =

√
1 + |∇Hu|2H, | · |H being the norm in H

2 × {0}.
We take the disk model for H

2 with Euclidean coordinates (x, y). If we set

F =
(

1−x2−y2

2

)2

and develop equation (2.1), we obtain

(2.2)

uxx(1+Fu2
y)−2Fuxuyuxy+uyy(1+Fu2

x)+
√
F (u2

x+u2
y)(xux+yuy)−

2HW 3
u

F
= 0.

Denote by ρ the hyperbolic distance from the origin in H
2×{0}. Then, the func-

tion whose graph is a rotational surface with constant mean curvature H satisfies
(cf. Lemma 11 in [SE-T2])

1

sinh ρ

⎛
⎝ sinh ρuρ√

1 + u2
ρ

⎞
⎠ = 2H.

The family of first integrals of the previous equation is the following (cf. formula
(21) in [SE-T2], with l = 0, α = −d or formula (9) in [N-SE-S-T]):

(2.3) uH
α (ρ) =

∫ ρ

rHα

−α+ 2H cosh r√
sinh2 r − (−α+ 2H cosh r)2

dr,

where α is a real parameter and rHα = arccosh
(

−2αH+
√
1−4H2+α2

1−4H2

)
, for 0 � H < 1

2

and r
1
2
α = | lnα|.
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Figure 1. H = 1
2 : the profile curve in the immersed and embed-

ded case (R = tanh ρ/2).

The function uH
α is defined up to an additive constant that corresponds to a

vertical translation of the rotational surface. When α = 2H, the function uH
2H is

defined on H
2 × {0}, and its graph is an entire rotational surface, denoted by SH .

For any α �= 2H, the graph of uH
α is defined outside the disk DH

α of radius rHα and
it is vertical along the boundary of DH

α . We choose the integration constant such
that uH

α (rHα ) = 0. Denote by HH
α the annulus obtained by the union of the graph of

uH
α with its symmetry with respect to the slice t = 0. As it is shown in Lemma 5.2

in [N-SE-S-T], for α > 1 the surfaces HH
α are immersed, while they are embedded

for α � 1.
We are especially interested in the asymptotic behavior of the rotational surfaces

with mean curvature H = 1
2 (see Figure 1).

For simplicity, we denote by uα, Dα, rα, Hα, S, the previous u
1
2
α , D

1
2
α , r

1
2
α , H

1
2
α ,

S
1
2 , respectively.
For any α �= 1, Hα is a rotational annulus symmetric with respect to the plane

t = 0. Replacing H = 1
2 in formula (2.3) one has

(2.4) uα(ρ) =

∫ ρ

| lnα|

−α+ cosh r√
2α cosh r − 1− α2

dr.

As we said before, the radius of the disk Dα is rα = | lnα| and the function uα

is vertical along the boundary of Dα. Furthermore, rα is always greater than or
equal to zero; it is zero if and only if α = 1 and tends to infinity as α −→ 0. In
this case, the unique simply connected example is the graph of the entire function
u1(ρ) = 2 cosh ρ

2 .
A straightforward computation shows that the integrand function in (2.4) is

equivalent to 1
2
√
α
e

r
2 − cαe

− r
2 , for r −→ ∞, where cα is a constant depending only

on α. Then, by integrating, one has that uα(ρ) � 1√
α
e

ρ
2 +2cαe

− ρ
2 +k, for ρ −→ ∞,

where k is the integration constant.
By a more careful computation, one can prove that the asymptotic behavior of

the function uα is the following:

(2.5) uα(ρ) =
1√
α
e

ρ
2 +

3α2 − 1

2α
3
2

e−
ρ
2 + k +O

(
e−

3ρ
2

)
, ρ −→ ∞.
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Figure 2. Distance between Hα and Hβ .

Now, it is very natural to give the following definition.

Definition 2.1. We define 1√
α
to be the growth of the surface Hα.

As it is shown in Lemma 5.2 in [N-SE-S-T], the growth of any immersed rota-
tional surface is smaller than the growth of the simply connected surface S and the
growth of any embedded rotational surface is greater than the growth of S.

Now, we describe how two rotational embedded surfaces Hα and Hβ intersect for
0 < β < α < 1. In this case, both ends of Hβ are contained in the mean convex side
of Hα. Furthermore, if one restricts to the halfspace t � 0, then Hα ∩Hβ ∩ {t � 0}
is a horizontal circle for every 0 < α �= β < 1. For every α ∈ (0, 1), S ∩ Hα is a
circle as well, and, as α −→ 1, the circle S ∩ Hα approaches the origin, while the
upper end of Hα approaches the end of S.

In order to simplify the notation, we set H1 = S.

Definition 2.2. Let 0 < β < α � 1. We define the horizontal distance between Hα

and Hβ as the distance between Hα ∩ {t = 0} and Hβ ∩ {t = 0}, i.e. the positive

number rβ − rα = − ln β
α .

The next lemma guarantees that, for n great, the distance between Hα∩{t = n}
and Hβ ∩ {t = n} is almost the same as the distance at height zero, i.e. the
horizontal distance. This result will be crucial in the barrier argument in the proof
of Theorem 3.4.

Lemma 2.3. Let 0 < β < α � 1. Denote by Rα the radius of Hα ∩ {t = n} and by
Rβ the radius of Hβ ∩ {t = n}. Then Rα � 2 lnn+ lnα and Rβ � 2 lnn+ lnβ, for

n great enough, that is, Rα −Rβ � − ln β
α .

Proof. It is a straightforward computation using the asymptotic behavior in (2.5)
(see Figure 2). �

It is clear that any surface obtained from Hα either by a vertical translation
or by a horizontal hyperbolic translation has growth 1√

α
. The effect of a vertical

translation on formula (2.5) is obviously an additive constant. The image of Hα by
a horizontal hyperbolic translation intersects any slice in a circle. All such circles
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have hyperbolic center on the same vertical geodesic, that is, the image of the t-
axis. Then, the translated surface has an asymptotic expansion as in (2.5), where
ρ is the distance from the vertical geodesic image of the t-axis.

In the following, we will refer to formula (2.5) for any surface obtained from Hα

either by a vertical translation or by a horizontal hyperbolic translation.

Remark 2.4. The asymptotic behavior of rotational surfaces with mean curvature
H < 1

2 is quite different from the H = 1
2 case. In fact, the parameter α does

not appear in the leading term of the asymptotic expansion. Hence, for any fixed
H < 1

2 , all the HH
α behave analogously at infinity. Furthermore, if H < 1

2 , the
leading term has linear growth (see [SE-T2], [N-SE-S-T]).

We close this section by proving a very interesting consequence of the existence
of the rotational simply connected surfaces. We say that a surface S is congruent
to SH if there is either a vertical or a horizontal translation, or a symmetry with
respect to a horizontal slice, say T, such that T (S) = SH . Let K be a compact set
in H

2 × R. For any H ∈ (0, 12 ], we define FH
K as follows:

FH
K = {B ⊂ H

2 × R | K ⊂ B, ∂B is congruent to SH}.

Lemma 2.5 (Convex Hull Lemma). (a) Let M be a compact surface immersed
in H

2 × R with constant mean curvature H ∈ (0, 1
2 ]. Then M is contained in the

convex hull of the family FH
∂M .

(b) Let M be a compact surface immersed in H
2 × R with prescribed mean cur-

vature function H : M −→ (0, 12 ]. Then M is contained in the convex hull of the

family F
1
2

∂M .

Proof. (a) Up to vertical translation, there exists a copy of SH with the end on
the top and containing M in its convex side. By abuse of notation, we denote by
SH any surface obtained by SH by a hyperbolic isometry. Now, move SH by a
translation along some horizontal geodesic. If the first contact point p between SH

and M is an interior point of M, then the two surfaces are tangent at p and they
have the same mean curvature vector at p. This is a contradiction by the maximum
principle. Hence, one can move SH horizontally until it touches ∂M. One can
do the same for any horizontal geodesic, and one can move SH vertically as well.
Furthermore, one can start with a surface with the end on the bottom and proceed
in the same manner. The result follows.

(b) The proof is analogous to the proof of (a). �

The Convex Hull Lemma gives horizontal and vertical distance estimates in
many geometric situations; for example, in the proof of existence of vertical graphs
in H

2×R with mean curvature H � 1
2 and in the proof of uniqueness of surfaces in

H
2×R with mean curvature H � 1

2 and boundary in two parallel horizontal planes
[N-SE-S-T].

3. Existence of complete graphs on exterior domains with H = 1
2

Our main goal is to construct examples of H = 1
2 vertical graphs in H

2 × R,

over an exterior domain in H
2. The ends of our graphs are trapped between two

rotational surfaces. This fact suggests that they are asymptotically rotational.
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Let us start by defining the geometric condition on the boundary curve. Let
r > 0 and denote by Cr the hyperbolic circle centered at the origin of radius r. We
recall that the hyperbolic curvature of Cr is coth r.

Definition 3.1. Let Γ ⊂ H
2 × {0} be a C2 Jordan curve and let 0 < b < c be two

real numbers. We say that Γ satisfies the circles condition (b, c) if the following
hold:

• Γ is contained in the annulus whose boundary is Cc ∪ Cb.
• The curvature of Γ at any point is in the interval (coth c, coth b).

Notice that if Γ satisfies the circles condition (b, c), then for any p ∈ Γ there
exists a hyperbolic translation of Cb (respectively of Cc) with length < c − b such
that Cb (respectively Cc) is tangent to Γ at p.

Before stating the theorem, we need two further definitions.

Definition 3.2. Let D be a bounded domain and let E be the graph of a C2

function u defined on the exterior domain H
2 × {0} \ D. If u|∂D is bounded and

either u(p) −→ +∞ or u(p) −→ −∞, as p approaches the asymptotic boundary of
H

2 × {0}, we call E a vertical graph end.

If E is a vertical graph end, then ∂∞E is disjoint from (∂∞H
2) × R. The ends

of the rotational surfaces described in Section 2 are vertical graph ends.
Equation (2.5) describes the asymptotic behavior of a rotational vertical graph

end of growth 1√
α
. Now, we give the notion of growth for a general vertical graph

end of mean curvature H = 1
2 .

Definition 3.3. Let E = graph(u) be a vertical graph end of constant mean
curvature H = 1

2 .

• We say that E has growth 1√
α
if the asymptotic behavior of u is the same

as uα in (2.5).
• We say that E has weak growth 1√

α
if there exists a constant K such that

|u− uα| < K.

Recall that the end of the simply connected surface S has growth one, while each
end of an annulus Hα has growth 1√

α
(α � 1 if Hα is embedded and α > 1 if Hα

is nonembedded).
Now, we can make Question 1, stated in the Introduction, more precise.

Question 1′. Is every vertical graph end of mean curvature H = 1
2 asymptotic to

a rotational graph end? If a vertical graph end of mean curvature H = 1
2 has weak

growth 1√
α
, does it have growth 1√

α
?

Let us state our main result.

Theorem 3.4. Let c be the radius of the circle S ∩ {t = 1}. Let Γ be a simple
C2 closed curve contained in the disk of H2 × {1} bounded by S ∩ {t = 1} and let
D be the compact domain bounded by the projection of Γ in H

2 × {0}. Assume
that, for some b such that 2c < 3b, Γ satisfies the circles condition (b, c). Then,
for any α such that ec−2b < α < e−c+b, there exists a complete vertical graph on
Ω = H

2 × {0} \D with boundary Γ, mean curvature H = 1
2 and weak growth 1√

α
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

VERTICAL ENDS 1185

Example 3.5. Any small C2 deformation of a hyperbolic circle of radius r gives
a domain satisfying Definition 3.1. Then, nontrivial examples of curves satisfying
the hypotheses of Theorem 3.4 are hyperbolic ellipses with small eccentricity and
any small C2 deformation of them.

Let us give some details about the hyperbolic ellipse. The main reference for
this computation is the book by the third author and E. Toubiana [SE-T5]. More
properties about the hyperbolic ellipse can be found in the thesis of P. Castillon
[C].

Consider the halfspace model for the hyperbolic plane. Denote by L the vertical
geodesic through the origin. We will write the equation of a hyperbolic ellipse,
E, with focuses on L, at points i and ie2εa, where ε ∈ [0, 1] is the eccentricity of
the ellipse. Notice that 2εa is the distance between the two focuses and 2a is the
hyperbolic length of the major axis. Denote by dH the distance in H

2. Then z ∈ H
2

is a point of the ellipse if and only if

(3.1) dH(z, ie
2εa) + dH(z, i) = 2a.

Consider the polar coordinates (r, θ) defined as follows. For any p ∈ H
2, p �= i,

let r = dH(p, i) and θ be the oriented angle between the vertical geodesic L and the
unique geodesic through p and i.

In order to write equation (3.1) in polar coordinates we must introduce a new
system of coordinates (u, v) (cf. exercise 2.6.1 in [SE-T5]) that are completely deter-
mined by the following formulas (cf. formulas (2.10), (2.12) and (2.13) in [SE-T5]):

(3.2)

tanhu = tanh r cos θ,
sinh v = sinh r sin θ,

cosh v =
cosh r

coshu
.

In such coordinates, a generic point z ∈ H
2 is z = eu tanh v + eu

cosh v i. Hence, by
the formula given in the exercise 2.5.2 in [SE-T5], one has

(3.3) cosh dH(z, ie
2εa) = cosh v cosh(u− 2εa).

Equation (3.1) is equivalent to

(3.4) cosh dH(z, ie
2εa) = cosh(2a− r).

By using (3.2) and (3.3), equation (3.4) writes as

(3.5) tanh r =

tanh a

(
1−

(
sinh εa

sinh a

)2
)

1− sinh 2εa

sinh 2a
cos θ

.

The curvature of the ellipse can be computed by using the last formula of exercise
2.6.2 in [SE-T5], and one has

(3.6) κ(θ) =
sinh a cosh a

sinh2 εa− sinh2 a

(
sinh2 a cosh a cosh 2εa+ sinh εaF

sinh2 a cosh a cosh 2εa+ sinh εaG

) 3
2

,

where

(3.7)
F = cosh2 εa sinh εa cos2 θ − cosh εa sinh 2a cos θ − sinh3 εa,
G = − cosh εa sinh 2a cos θ + sinh εa.
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Denote by M the geodesic through the point ieεa, orthogonal to L. The ellipse
E is invariant by reflections with respect to L and M. Furthermore, the points
V1, V̄1 ∈ E ∩M and V2, V̄2 ∈ E ∩L are the only critical points of the curvature κ.

The polar coordinates for V1, V̄1, V2, V̄2 are the following:

V1 =

(
a, arccos

tanh εa

tanh a

)
, V̄1 =

(
a, 2π − arccos

tanh εa

tanh a

)
,(3.8)

V2 = (a(1 + ε), 0), V̄2 = (a(1− ε), π).(3.9)

Also, by formula (3.6),

κ1 := κ

(
arccos

tanh εa

tanh a

)
= κ

(
2π − arccos

tanh εa

tanh a

)
=

√
cosh 2a− cosh 2εa√
2 sinh a tanh a

,

(3.10)

κ2 := κ(0) = κ(π) =
2 sinh2 a

(cosh 2a− cosh 2εa) tanh a
.(3.11)

Denote A =
√
cosh 2a−cosh 2εa√

2 sinh a
; then κ1 = A

tanh a , κ2 = 1
A2 tanh a . Notice that A � 1

and equality holds if and only if ε = 0, i.e. for the circle.
Since κ1 = A3κ2, then κ2 � κ1 and equality holds for A = 1, i.e. for the circle.
As κ1 is the minimum of the curvatures of the ellipse and κ2 is the maximum

of the curvatures of the ellipse, one takes b such that tanh(b) = 1
κ2

and c such that

tanh(c) = 1
κ1
.

Then, the condition of Theorem 3.4, that is, 2c < 3b, is equivalent to the following
inequality:

(3.12)

(
A+ tanh a

A− tanh a

)2

<

(
1 +A2 tanh a

1−A2 tanh a

)3

.

If ε = 0, i.e. A = 1, the previous inequality is verified for any a; hence it is
verified for any ε sufficiently small.

In our proof, we strongly use the geometry of the family of embedded, rotational
surfaces of mean curvatureH = 1

2 . In fact, we obtain a priori height estimates using
them as geometric barriers. Furthermore, the vertical graph is obtained as a limit
of vertical graphs defined on compact subsets of the domain, and the geometric
barriers guarantee the right boundary values for the limit vertical graph.

The proof of Theorem 3.4 is obtained by the Perron method, which we describe
below. First, we need some preliminaries.

In the following, Ω will be an open domain of H2 × {0}.
Let u : Ω −→ R be a C2 function. By equation (2.1), the graph of u has mean

curvature H = 1
2 with respect to the upward normal vector field if and only if u

satisfies

(3.13) divH

(
∇Hu

Wu

)
= 1.

Let f : ∂Ω → [0,+∞[ be a continuous function. We consider the Dirichlet
problem

P (Ω, f)

{
D(u) = divH

(
∇Hu
Wu

)
− 1 = 0 in Ω, u ∈ C2(Ω) ∩ C0(Ω̄),

u|∂Ω = f.
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For our proof we use a Compactness Theorem for constant mean curvature graphs
in H

2×R, and we need to guarantee the solvability of the Dirichlet problem P (U, f),
where U ⊂ Ω is a small closed disk. The Compactness Theorem for constant mean
curvature graphs in H

2×R yields that any bounded sequence of solutions of equation
(3.13) on a domain Ω in H

2 admits a subsequence that converges uniformly in the
C2 topology, on any compact subset of Ω, to a solution of equation (3.13). The
result follows from the purely interior gradient bound at any point p ∈ Ω (see [SI]
and Theorem 1.1 in [SP]) and from a standard argument using Schauder theory
and the Ascoli-Arzelà Theorem.

The existence of the solution of the Dirichlet problem in a small disk U is stated
in [SP] (Theorem 1.4). We give a sketch of the proof here, for completeness. Our
proof is analogous to that given in [SE-T4] for minimal hypersurfaces in H

n × R.
By an approximation argument (see the proof of Theorem 16.8 in [G-T]), we can

assume that the boundary data f is C2,α.
By classical elliptic theory (see chapter 11 in [G-T]), in order to prove existence

of C2,α solutions of P (U, f), it is enough to obtain a priori global C1 estimates.
By Theorem 3.1 in [SP], a priori height estimates and a priori boundary gradient
estimates yield a priori global C1 estimates. Using the Convex Hull Lemma, we get
a priori height estimates. So we are left with the a priori boundary gradient esti-
mates. Notice that the eigenvalues of the symmetric matrix of the coefficients of the
terms of the second order of equation (2.2) are 1 and 1+F |∇u|2. A straightforward
computation yields that, if the radius of the disk U is small enough, equation (2.2)
satisfies the structure conditions (14.33) in [G-T]. Then, one can apply Corollary
14.5 [G-T] to obtain the desired a priori boundary gradient estimates for the solu-
tion of P (U, f). Notice that the Maximum Principle guarantees that the solution
of P (U, f) is unique.

Let u : Ω → R be a continuous function and U ⊂ Ω be a small closed disk. Let
ũU be the unique extension of u|∂U as a graph of mean curvature H = 1

2 over U ,
continuous up to ∂U .

Definition 3.6. Let u and Ω be as above. We define the continuous function
MU (u) on Ω̄ by

MU (u) =

{
u(x), if x ∈ Ω̄ \ U,

ũU (x), if x ∈ U.

We say that u ∈ C0(Ω̄) is a subsolution (resp. supersolution) of the problem P (Ω, f)
if

(1) For any small closed disk U ⊂ Ω, we have u � MU (u) (resp. u � MU (u)),
(2) u|∂Ω � f (resp. u|∂Ω � f).

Remark 3.7. We list below some classical facts about subsolutions and supersolu-
tions:

(1) If u ∈ C2(Ω), the first condition in Definition 3.6 is equivalent to D(u) � 0
for a subsolution or D(u) � 0 for a supersolution. Then, solutions of
D(u) = 0 are both sub and supersolutions.

(2) The supremum (resp. infimum) of subsolutions (resp. supersolutions) is
again a subsolution (resp. a supersolution).

(3) Let Ω be a bounded domain. Suppose that u is a subsolution and that v is
a supersolution of P (Ω, f); then u � v in Ω.
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Definition 3.8. Let Ω be a bounded domain. We say that p ∈ ∂Ω admits a barrier
for the problem P (Ω, f) if there exist a supersolution φ and a subsolution ϕ both
in C2(Ω) ∩ C0(Ω) such that φ(p) = ϕ(p) = f(p).

Then we have the following proposition.

Proposition 3.9 (Perron Process). Let Ω ⊂ H
2 × {0} be a domain and let

f : ∂Ω → R be a continuous function. Suppose that the problem P (Ω, f) has a
supersolution φ. Set

Sφ = {v| v is a subsolution of P (Ω, f) with v � φ}.
Then one has:

(1) If Sφ �= ∅, then the function u(x) = sup
v∈Sφ

v(x) is defined for any x ∈ Ω, is

C2 on Ω and satisfies equation (3.13).
(2) Suppose that Ω is bounded and that p ∈ ∂Ω admits a barrier for the problem

P (Ω, f). Then the solution u extends continuously at p setting u(p) = f(p).

The proof of Proposition 3.9 is analogous to that of Theorem 3.4 in [SE-T1] and
Theorem 4.1 in [SE-T4], where the authors proved the Perron Process for minimal
surfaces in H

3 and H
n × R, respectively.

Now we are ready to prove the main theorem.

Proof of Theorem 3.4. We use the Perron technique to construct a sequence of
surfaces with mean curvature H = 1

2 , each of them being the graph of a function
vn defined on an annulus Ωn, whose interior boundary is ∂Ω and whose exterior
boundary is a circle γn, to be defined below. The annuli Ωn exhaust Ω, and the
function vn takes values 1 on ∂Ω and n on γn. Then, we let n go to infinity and we
prove that the sequence {vn} converges to a solution u of

(3.14)

⎧⎪⎨
⎪⎩

divH

(
∇Hu
Wu

)
= 1 in H

2 × {0} \ Ω,

u = 1 on ∂Ω

with the desired weak growth.
We start by constructing the circle γn. Consider the surface Hβ with β = e−b.

By Lemma 2.3, for any α > ec−2b, the surface Hα has the following property: the
distance between Hβ∩{t = n} and Hα∩{t = n} is almost − lnβ+lnα > c−b, for n
great enough. Denote by H̄β (resp. H̄α ) the vertical upward translation of length
one, of the surface Hβ ∩ {t � 0} (resp. Hα ∩ {t � 0}). Define Γn = H̄α ∩ {t = n}
and let γn be the projection of Γn on the plane t = 0. Notice that this choice of
α allows us to translate horizontally H̄β by a distance c − b, without touching Γn

with H̄β ∩ {t = n}.
Let fn : ∂Ωn −→ R be defined by⎧⎨

⎩
fn(p) = 1 for p ∈ ∂Ω,

fn(p) = n on p ∈ γn.

Let ūα be the function whose graph is H̄α, which is clearly a supersolution of
the problem P (Ωn, fn).

We consider the following function:

(3.15) vn(x) = sup{v(x)| v is a subsolution of P (Ωn, fn) with v � ūα}.
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Figure 3. Proof of Theorem 3.4

As the function u1, whose graph gives S, is a subsolution of P (Ωn, fn), u1 � ūα,
the set in (3.15) is not empty (see Figure 3). By (1) of Proposition 3.9, we conclude
that vn is well defined and satisfies

divH

(
∇Hvn
Wvn

)
= 1 in Ωn.

We claim that, for each p ∈ ∂Ω and for each sufficiently large n, we can construct
a barrier at p, i.e. a subsolution hp and a supersolution Hp of P (Ωn, fn) such that
hp(p) = Hp(p) = 1.

In fact, in view of Lemma 2.3 and inequality α < e−c+b, we can move S horizon-
tally until the curve S∩{t = 1} is tangent to Γ at the point (p, 1) without touching
Γn. Thus, we obtain the subsolution hp of P (Ωn, fn). As we have already pointed
out, we can translate H̄β horizontally until it touches Γ at (p, 1) without touching
Γn. The graph thus obtained gives the supersolution Hp of P (Ωn, fn). Then, by
(2) in Proposition 3.9, vn extends continuously at p setting vn(p) = 1.

In order to prove that vn extends continuously to any point of p ∈ γn, one
constructs a supersolution and a subsolution, holding n at the point p. The super-
solution is given by the horizontal plane t = n. For the subsolution, we make a
suitable downward translation of S and then we translate it horizontally until it
touches Γn at (p, n). This is possible because of the asymptotic behavior of S. In
fact, translate down S by a constant C(n). As S is the graph of u1(ρ) = 2 cosh(ρ/2),

the translated surface S̃ is given by the graph of 2 cosh(ρ/2)−C(n). Let ρ(s) be the

radius of the circle S̃ ∩{t = s}. The function ρ(s) is strictly increasing in s ∈ [1, n].
Furthermore, by Lemma 2.3, for n large enough,

ρ(n)− ρ(1) ∼ 2 ln
1 + n

C(n)

1 + 1
C(n)

.

If we choose C(n) such that lim
n−→∞

n

C(n)
= 0, then lim

n−→∞
ρ(n)− ρ(1) = 0. That

is, S̃ ∩ {1 � t � n} is almost a vertical cylinder.
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Then, by (2) in Proposition 3.9, vn extends continuously at any p ∈ γn, setting
vn(p) = n.

For n sufficiently large, the sequence {vn} is uniformly bounded above by Hp

and below by hp, for any p ∈ ∂Ω. Such C0 estimates for {vn} independent of n,
combined with interior gradient estimates (see [SI] and [SP]), yield C2,α estimates
for {vn} on a compact subset of Ω. Then, the Ascoli-Arzelà Theorem guarantees
that a subsequence of {vn} converges uniformly on compact set, in the C2 topology,
to a solution u of the equation D(u) = 0 in Ω.

By construction, for any q ∈ Ω,

(3.16) hp(q) � u(q) � Hp(q).

Now, letting q go to p ∈ ∂Ω in (3.16), one has u(p) = 1 and u ∈ C2(Ω)∩C0(Ω).
It remains to show the growth property for the solution u. Let Γα be the in-

tersection of H̄α with the cylinder Γ × R. We translate H̄α until Γα lies below Γ.
Then, for each n, the translation of H̄α gives a subsolution of P (Ωn, fn), being,
therefore, below the graph of vn and a fortiori below the graph of u. �

Remark 3.10. Notice that, in the proof of Theorem 3.4, we prove the existence of
graphs of mean curvature H = 1

2 , over annuli.

The proof of the following result is analogous to the proof of Theorem 3.4.

Theorem 3.11. Let c be the radius of the circle Hδ∩{t = 1}, δ ∈ (0, 1). Let Γ be a
simple C2 closed curve contained in the disk of H2×{1} bounded by Hδ∩{t = 1} and
let D be the compact domain bounded by the projection of Γ in H

2 × {0}. Assume
that, for some b such that c− ln δ

2 < 3b
2 , Γ satisfies the circles condition (b, c). Then,

for any α such that ec−2b < α < δe−c+b, there exists a complete vertical graph on
Ω = H

2 × {0} \D with boundary Γ, mean curvature H = 1
2 and weak growth 1√

α
.
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