
ML_homework1-v2

October 11, 2017

1 Machine Learning Homework 1

Ivan Puhachov

1.1 Problem

Read a file of training set - comma separated values (.csv) - as integers.
Train a model for classification problem.
Make a prediction to given set of queries.

1.1.1 How it works

I implemented few basics models for classification problem - baseline (most common outcome),
Nearest Neighbour, K-Nearest Neighbours. The output file is generated by 5-Nearest Neighbours
Methods, as it shown the best performance.

I will update this file with new technics.

1.1.2 Data

I used data from Wholesale Customers Data Set (http://archive.ics.uci.edu/ml/datasets/Wholesale+customers)
splitted in Training Set and Testing Set (Query Set) (300 rows and 140 rows).

Query data: Channel (last column) - binary (1 or 2, details in description of the data set).
The only edits I made on data is shifting Channel value to last column in table (instead of first

column in original file) and removig headers.
Files: * TS.csv - Training Set * QS.csv - Query Set * QS_answ.csv - Query Set with true outcome

(in last column) - to obtain accuracy of prediction Absence of "QS_answ" file will not cause any
problem in algorithms work, it is using only for validation and fancy graphs.

1.1.3 Algorithms

• Baseline: Predict the most common outcome from TrainingSet
• Nearest Neighbour: Find the nearest item from TrainingSet and predict the same output
• K-Nearest Neighbours: Find K (fixed value) nearest items from TrainingSet and predict

average output (most common) For calculating distances between objects I’m using different
metrics: Euclidean, Taxicab, Discrete

Important: I did not test this program on wrong data (unexpected symbols, errors, missing val-
ues etc.) so crashes may occur under these conditions.

1

1.1.4 Imports

In [1]: import numpy as np

import csv

import matplotlib.pyplot as plt

from collections import Counter

1.2 Inputs

In [2]: filename = 'TS.csv'

with open(filename) as f:

reader = csv.reader(f)

#next(reader, None) #to skip headers

TrainSet = np.array(list(reader)).astype(int)

filename = 'QS.csv'

with open(filename) as f:

reader = csv.reader(f)

#next(reader, None) #to skip headers

TestSet = np.array(list(reader))

TestSet[TestSet == '?'] = 0

TestSet = TestSet.astype(int)

(N, K) = TrainSet.shape

print (N,K)

#Column with variable we are trying to predict

Query = K-1 #Last column

print(TestSet)

300 8

[[2 16448 6243 ..., 2662 2005 0]

[2 5283 13316 ..., 8752 172 0]

[2 2886 5302 ..., 6236 555 0]

...,

[3 14531 15488 ..., 14841 1867 0]

[3 10290 1981 ..., 168 2125 0]

[3 2787 1698 ..., 477 52 0]]

1.3 Baseline model

The simplest model is to predict the most common outcome.

Statistics of outputs:

In [3]: TrainOutputs = [i[Query] for i in TrainSet]

Counter(TrainOutputs).most_common()

2

Out[3]: [(1, 197), (2, 103)]

In [4]: baseline = Counter(TrainOutputs).most_common(1)[0][0]

predictionBaseline = np.array([baseline for i in TestSet])

print(predictionBaseline)

[1 1

1 1

1 1

1 1]

1.4 Nearest Neighbour Methods

Description: for every new query point Q find the nearest data point from Train Set (or set of K
such points). Prediction for Q is the outcome value of nearest point (or the most common output
of K nearest points).

For calculating distance between datapoints we need a measure.
Consider the following metrics: 1. Euclidean 2. Taxicab 3. Discrete

In [5]: def measureDistEuclid(a,b):

dist = 0;

for i in range(K):

#measure distance only on "input" values

if (i!=Query):

to prevent overflowing of numpy int type

dist += (np.asscalar(a[i]-b[i].item()))**2

return np.sqrt(dist)

def measureDistTaxi(a,b):

dist = 0;

for i in range(K):

if (i!=Query):

dist += np.absolute(a[i]-b[i])

return dist

def measureDistDiscrete(a,b):

dist = 0;

for i in range(K):

if (i!=Query):

dist += (a[i]==b[i])

return dist

Implementing methods

In [6]: def nearestNeighbour(q,measureDist):

minDist = measureDist(q,TrainSet[0])

3

minDistValue = TrainSet[0][Query]

for i in TrainSet:

d = measureDist(q,i);

if (d<minDist):

minDist = d

minDistValue = i[Query]

return minDistValue

def KnearestNeighbour(q,k,measureDist):

distances = [{'dist':measureDist(i,q), 'Query':i[Query]} for i in TrainSet]

distances = sorted(distances, key = lambda x: x['dist'])

neighbours = [distances[i]['Query'] for i in range(k)]

return Counter(neighbours).most_common(1)[0][0]

Predicting

In [7]: predictionEuclid = np.array([nearestNeighbour(i,measureDistEuclid) for i in TestSet])

predictionTaxi = np.array([nearestNeighbour(i,measureDistTaxi) for i in TestSet])

predictionDiscrete = np.array([nearestNeighbour(i,measureDistDiscrete) for i in TestSet])

1.5 Output

As will be shown after, K-Nearest Neighbours method witk K=4 and Euclid distance shows the
best accuracy on testing set. This will be the output.

In [8]: for i in TestSet:

i[Query] = KnearestNeighbour(i,4,measureDistEuclid)

np.savetxt("OUT.csv",TestSet, delimiter=',', fmt='%d')

print(TestSet)

[[2 16448 6243 ..., 2662 2005 2]

[2 5283 13316 ..., 8752 172 2]

[2 2886 5302 ..., 6236 555 2]

...,

[3 14531 15488 ..., 14841 1867 2]

[3 10290 1981 ..., 168 2125 1]

[3 2787 1698 ..., 477 52 1]]

1.6 Comparison

Additional part.

4

1.6.1 Requesting true outcome

In [9]: filename = 'QS_answ.csv'

with open(filename) as f:

reader = csv.reader(f)

#next(reader, None) #to skip headers

TestSetANSW = np.array(list(reader)).astype(int)

truePrediction = np.array([i[Query] for i in TestSetANSW])

In [10]: def accuracy(pred):

err = 0;

for i in range(truePrediction.shape[0]):

if (truePrediction[i]!=pred[i]):

err+=1

return err

In [11]: print(accuracy(predictionBaseline))

print(accuracy(predictionEuclid))

print(accuracy(predictionTaxi))

print(accuracy(predictionDiscrete))

39

14

15

49

1.6.2 Graphs

In [12]: performance = [accuracy(predictionBaseline), accuracy(predictionDiscrete), accuracy(predictionTaxi),accuracy(predictionEuclid)]

plt.bar(np.arange(len(performance)), performance, align='center', alpha=0.5)

plt.xticks(np.arange(len(performance)), ['Baseline','Disctrete', 'Taxi', 'Euclid'])

plt.ylabel('Accuracy on TestSet')

plt.xlabel('Metrics')

plt.title('Comparing Baseline and NearestNeighbour')

plt.grid(True)

plt.show()

5

Comparing K-Nearest methods, changing K and Measure

In [13]: def predictionKNearest(k,measureDist):

return np.array([KnearestNeighbour(i,k,measureDist) for i in TestSet])

In [14]: Kmax = 10

In [15]: def plotPerfKNeigh(measureDist):

performance = [accuracy(predictionKNearest(i,measureDist)) for i in range(1,Kmax+1)]

plt.bar(np.arange(len(performance)), performance, align='center', alpha=1, color = 'c')

plt.xticks(np.arange(len(performance)), range(1,Kmax+1))

plt.title('Comparing K-Nearest with Measure')

plt.ylabel('Accuracy on TestSet')

plt.xlabel('Value of K')

plt.grid(True)

plt.show()

In [16]: plotPerfKNeigh(measureDistTaxi)

print("TaxiCab Distance")

6

TaxiCab Distance

In [17]: plotPerfKNeigh(measureDistEuclid)

print("Euclid Distance")

7

Euclid Distance

1.6.3 Plots about the data

(Under construction)

In [18]: import seaborn as sns

import pandas as pd

In [19]: filename = 'Wholesale.csv'

data = pd.read_csv(filename)

data.columns

Out[19]: Index(['Region', 'Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper',

'Delicassen', 'Channel'],

dtype='object')

In [20]: sns.set()

cols = ['Channel', 'Fresh', 'Grocery', 'Frozen','Delicassen']

sns.pairplot(data[cols], size=2.5)

plt.show()

8

9

	Machine Learning Homework 1
	Problem
	How it works
	Data
	Algorithms
	Imports

	Inputs
	Baseline model
	Nearest Neighbour Methods
	Output
	Comparison
	Requesting true outcome
	Graphs
	Plots about the data

