
ML Homework 3

December 11, 2017

1 ML Homework 3

Ivan Puhachov

1.1 Problem

Make a model which will be able to predict any of given feature (or a set of features) even with
additional missing data.

Dataset: Letters - 17 features, 20 000 samples.
Training set - DATA variable, 17 features x 16 000
Testing set - TEST variable, 17 features x 4 000

1.2 Idea

Key idea is to train N neural nets (where N - number of given features in TS), each on full data
without missing unit. Apply this neural nets to given query and give a result based on full output.

Example: if in query features 4,6,9 is requested ’?’ we apply correspondent neural nets inde-
pendently.

Variables will be encoded by characteristics vector.
Idea of evaluation: explore how can we improve this "general-prediction" system by using

dropout technique. Besides usual test of performance (accuracy on the test set), compare results
of 2 systems: with and without dropout.

1.3 Summary

Based on "Letters" dataset * Chosen neural net architecture [input 282 binary - 100 relu - 60 relu
- bunary output] is too complicated for predicting almost all features and leads to overfitting.
On training they showed around 85% of accuracy, while on testing (even without missing data)
accuracy is near 70% * Dropout is very powerfull tecnique to simulate missing variables and to
prevent overfitting. Even when testing set includes very few missing values (query marks), pre-
diction is 2% better. If missing values are more common, neural nets with dropout showed better
performance (up to 6% increase).

1.4 Results

1.4.1 Accuracy of predicting each feature

When given test set has ’?’ only in this feature

1

Feature:lettr xbox ybox widthhigh onpixxbar ybar x2bary2barxybarx2ybarxy2brxege xegvyyege yegvx

Accuracy:90.5 72.1 60.1 70.5 73.8 70.1 65.3 63.8 64.6 62 68.8 67.5 63.5 73.5 69.3 69 65.5

Accuracy
with
Dropout:

92.7 74.7 61.9 72.1 74.6 70.4 67.8 65.7 65.8 63.5 71.2 69.7 65.8 75.4 71.6 70.3 67.1

1.4.2 Accuracy of prediction on noisy data

Accuracy of prediction ’Letter’ feature, when adding 10 (30, 50, 100 etc.) missing values (’?’) on
each other features randomly.

Frequency Accuracy (%) Accuracy with Dropout:

10 90.5 92.2
30 90.1 91.8
50 89.6 91.4
100 88.7 90.5
200 86.5 88.8
400 82.4 85.2
800 73.5 77.7
1000 69.0 73.8

1.5 Realization

In [1]: import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

In [2]: dataframe = pd.read_csv('Letters.csv')

#dataframe = pd.read_csv('anyCSVfile.csv')

DATA, TEST = train_test_split(dataframe, test_size=0.2, random_state=6) #random_state to make reproducible splitting

DATA.reset_index(drop=True, inplace=True)

TEST.reset_index(drop=True, inplace=True)

In [3]: DATA[1:10]

Out[3]: lettr xbox ybox width high onpix xbar ybar x2bar y2bar xybar \

1 H 5 10 8 8 10 7 6 6 4 7

2 Q 3 5 3 6 4 8 9 5 1 6

3 M 7 11 8 8 4 7 7 13 2 7

4 R 5 11 7 8 6 6 8 5 6 6

5 Y 2 1 3 1 0 7 10 3 1 7

6 Q 5 9 6 8 3 9 6 9 8 7

7 K 6 11 9 8 7 6 6 1 6 9

8 E 4 8 4 6 2 3 6 6 11 7

2

9 A 4 9 7 7 5 6 5 2 3 4

x2ybr xy2br xege xegvy yege yegvx

1 5 8 9 6 10 10

2 7 11 2 9 5 9

3 10 8 9 6 0 8

4 5 7 3 6 6 9

5 12 8 1 11 0 8

6 4 9 3 8 4 8

7 6 10 5 7 5 8

8 7 15 0 8 7 7

9 1 6 5 7 5 4

1.5.1 Data transformation

Transform data row. For each feature - transform it by one-hot-encoder or use 0-vector of suitable
shape.

How it works: * program extracts each feature range out of dataset DATA (assuming features
are categorical) to list in feature_range * function encodeValue takes feature value and column (fea-
tureNo) and transforms it to characteristics vector of appropriate size, according to corresponding
feature range. If it meets new value (which is not present in corresponding feature_range) it re-
turns 0-vector * function deencodeValue takes characteristics vector and returns corresponding
feature value * function transformInput transforms whole row from dataset to big vector (con-
catinated characteristics vectors) of length inputvector_length

Transformation of training set will be done in training part. It will be done by only using these
functions.

In [4]: feature_range = np.array([DATA[i].unique().tolist() for i in DATA]) # list of all feature values

inputvector_length = sum([len(feature_range[i]) for i in range(len(feature_range))])

def encodeValue(value, column):

"""

create a characteristics vector, encoding value from column in data

"""

encodedValue = np.zeros(len(feature_range[column]))

try:

index = feature_range[column].index(value)

encodedValue[index]=1

except:

pass

return encodedValue

def deencodeValue(vector, column):

"""

deencode characteristics vector given from column

"""

index = np.argmax(vector)

3

return feature_range[column][index]

def transformInput(row):

"""

return a transformed input query even if it has question marks (substitute with 0-vector)

"""

transformedRow = np.array([])

for i in range(len(row)):

value = row[i]

encodedValue = encodeValue(value,i)

transformedRow = np.concatenate((transformedRow,encodedValue))

#print(encodedValue)

return transformedRow

Example

In [14]: DATA.iloc[0,0]

Out[14]: 'I'

In [11]: vector = encodeValue(DATA.iloc[0,0],0)

print(vector)

[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.]

In [13]: deencodeValue(vector,0)

Out[13]: 'I'

In [6]: tst = DATA.iloc[100,:].values

print(transformInput(tst))

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

4

In [7]: print(len(transformInput(tst)))

282

In [8]: print(inputvector_length)

282

1.5.2 Creating neural nets

Training 17 neural nets (for dataset Letters - there are 17 features).
Function buildANNtoPredict returns a trained neural net, which can predict some particular

feature (only one), basing on DATA. If parameter dropout is True, than it constructs neural net with
dropout.

Architecture: inputvector_length binary -> 100 relu -> 60 relu ->output_length softmax

• inputvector_length is constant for each model (16x16 + 26 for "Letters" dataset)
• output_length depends on feature_range of particular feature we predicting
• dropout unit lies between 1 and 2 hidden layers

Process of training For feature number X: * create a true output - vector of this feature values
from training set DATA and encode it * substitute all values of this feature in dataset DATA as ’?’.
Now this feature will always be encoded as 0-vector of appropriate length * encode input through
characteristics vectors (function transformInput) * train neural net

• Save the result in array

In [105]: from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

from keras.layers import Dropout

In [106]: def buildANNtoPredict(featureNo, dropout = False):

"""

given a No. of column (feature) we want to predict, construct and train neural net to predict this exact

"""

output_length = len(feature_range[featureNo])

Model construction

model = Sequential()

model.add(Dense(100, input_dim=inputvector_length, activation='relu'))

if (dropout):

model.add(Dropout(0.2))

model.add(Dense(60, activation='relu'))

model.add(Dense(output_length, activation='softmax'))

adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)

5

model.compile(loss='categorical_crossentropy', optimizer=adam,metrics=['accuracy'])

Creating training and testing sets

trainLocalCopy = DATA.copy()

y = trainLocalCopy.iloc[:,featureNo].values

yEncoded=np.zeros(0)

for value in y:

encodedValue = encodeValue(value,featureNo)

yEncoded = np.append(yEncoded,encodedValue)

yEncoded.shape = (-1,output_length)

trainLocalCopy.iloc[:,featureNo] = '?'

xEncoded = np.array([transformInput(trainLocalCopy.iloc[i,:].values) for i in range(len(trainLocalCopy))])

Training

#(xTrain, xTest, yTrain, yTest) = train_test_split(xEncoded, yEncoded, test_size = 0.1)

model.fit(xEncoded, yEncoded, batch_size=32, epochs=20,verbose=2)

return model

Training

In [89]: MODELS = [buildANNtoPredict(i) for i in range(DATA.shape[1])]

Epoch 1/20

1s - loss: 1.6638 - acc: 0.5706

Epoch 2/20

0s - loss: 0.6678 - acc: 0.8126

Epoch 3/20

0s - loss: 0.4912 - acc: 0.8566

Epoch 4/20

0s - loss: 0.3936 - acc: 0.8840

Epoch 5/20

0s - loss: 0.3237 - acc: 0.9051

Epoch 6/20

0s - loss: 0.2759 - acc: 0.9175

Epoch 7/20

0s - loss: 0.2293 - acc: 0.9347

Epoch 8/20

1s - loss: 0.1940 - acc: 0.9428

Epoch 9/20

0s - loss: 0.1643 - acc: 0.9529

Epoch 10/20

0s - loss: 0.1372 - acc: 0.9604

Epoch 11/20

0s - loss: 0.1153 - acc: 0.9686

Epoch 12/20

0s - loss: 0.0956 - acc: 0.9741

Epoch 13/20

0s - loss: 0.0824 - acc: 0.9783

Epoch 14/20

0s - loss: 0.0669 - acc: 0.9836

6

Epoch 15/20

0s - loss: 0.0550 - acc: 0.9873

Epoch 16/20

0s - loss: 0.0451 - acc: 0.9908

Epoch 17/20

0s - loss: 0.0413 - acc: 0.9906

Epoch 18/20

0s - loss: 0.0323 - acc: 0.9941

Epoch 19/20

0s - loss: 0.0253 - acc: 0.9961

Epoch 20/20

0s - loss: 0.0223 - acc: 0.9970

Epoch 1/20

1s - loss: 1.2332 - acc: 0.5307

Epoch 2/20

0s - loss: 0.7979 - acc: 0.6661

Epoch 3/20

0s - loss: 0.6903 - acc: 0.7090

Epoch 4/20

0s - loss: 0.6151 - acc: 0.7441

Epoch 5/20

0s - loss: 0.5566 - acc: 0.7688

Epoch 6/20

0s - loss: 0.5071 - acc: 0.7897

Epoch 7/20

0s - loss: 0.4679 - acc: 0.8068

Epoch 8/20

0s - loss: 0.4305 - acc: 0.8234

Epoch 9/20

0s - loss: 0.4012 - acc: 0.8356

Epoch 10/20

0s - loss: 0.3709 - acc: 0.8497

Epoch 11/20

0s - loss: 0.3436 - acc: 0.8616

Epoch 12/20

0s - loss: 0.3209 - acc: 0.8712

Epoch 13/20

0s - loss: 0.2936 - acc: 0.8822

Epoch 14/20

0s - loss: 0.2740 - acc: 0.8926

Epoch 15/20

0s - loss: 0.2582 - acc: 0.9010

Epoch 16/20

0s - loss: 0.2358 - acc: 0.9086

Epoch 17/20

0s - loss: 0.2218 - acc: 0.9159

Epoch 18/20

0s - loss: 0.2045 - acc: 0.9245

7

Epoch 19/20

0s - loss: 0.1919 - acc: 0.9274

Epoch 20/20

0s - loss: 0.1812 - acc: 0.9338

Epoch 1/20

1s - loss: 1.5968 - acc: 0.4458

Epoch 2/20

0s - loss: 1.0775 - acc: 0.5722

Epoch 3/20

0s - loss: 0.9520 - acc: 0.6009

Epoch 4/20

0s - loss: 0.8683 - acc: 0.6321

Epoch 5/20

0s - loss: 0.8077 - acc: 0.6533

Epoch 6/20

0s - loss: 0.7564 - acc: 0.6757

Epoch 7/20

0s - loss: 0.7134 - acc: 0.6930

Epoch 8/20

0s - loss: 0.6734 - acc: 0.7091

Epoch 9/20

0s - loss: 0.6433 - acc: 0.7222

Epoch 10/20

0s - loss: 0.6100 - acc: 0.7366

Epoch 11/20

0s - loss: 0.5795 - acc: 0.7542

Epoch 12/20

0s - loss: 0.5555 - acc: 0.7658

Epoch 13/20

0s - loss: 0.5314 - acc: 0.7781

Epoch 14/20

0s - loss: 0.5089 - acc: 0.7879

Epoch 15/20

0s - loss: 0.4889 - acc: 0.7977

Epoch 16/20

0s - loss: 0.4674 - acc: 0.8106

Epoch 17/20

0s - loss: 0.4472 - acc: 0.8164

Epoch 18/20

0s - loss: 0.4295 - acc: 0.8232

Epoch 19/20

0s - loss: 0.4095 - acc: 0.8350

Epoch 20/20

0s - loss: 0.3937 - acc: 0.8412

Epoch 1/20

1s - loss: 1.3147 - acc: 0.4843

Epoch 2/20

0s - loss: 0.8637 - acc: 0.6344

8

Epoch 3/20

0s - loss: 0.7475 - acc: 0.6821

Epoch 4/20

0s - loss: 0.6738 - acc: 0.7148

Epoch 5/20

0s - loss: 0.6177 - acc: 0.7389

Epoch 6/20

0s - loss: 0.5712 - acc: 0.7588

Epoch 7/20

0s - loss: 0.5302 - acc: 0.7775

Epoch 8/20

0s - loss: 0.4998 - acc: 0.7926

Epoch 9/20

0s - loss: 0.4702 - acc: 0.8048

Epoch 10/20

0s - loss: 0.4393 - acc: 0.8196

Epoch 11/20

0s - loss: 0.4125 - acc: 0.8310

Epoch 12/20

0s - loss: 0.3885 - acc: 0.8411

Epoch 13/20

0s - loss: 0.3644 - acc: 0.8521

Epoch 14/20

0s - loss: 0.3423 - acc: 0.8634

Epoch 15/20

0s - loss: 0.3235 - acc: 0.8711

Epoch 16/20

0s - loss: 0.3061 - acc: 0.8809

Epoch 17/20

0s - loss: 0.2879 - acc: 0.8864

Epoch 18/20

0s - loss: 0.2705 - acc: 0.8950

Epoch 19/20

0s - loss: 0.2552 - acc: 0.9004

Epoch 20/20

0s - loss: 0.2410 - acc: 0.9073

Epoch 1/20

1s - loss: 1.1950 - acc: 0.5907

Epoch 2/20

0s - loss: 0.7167 - acc: 0.7203

Epoch 3/20

0s - loss: 0.6240 - acc: 0.7425

Epoch 4/20

0s - loss: 0.5578 - acc: 0.7611

Epoch 5/20

0s - loss: 0.5050 - acc: 0.7828

Epoch 6/20

0s - loss: 0.4631 - acc: 0.7996

9

Epoch 7/20

0s - loss: 0.4293 - acc: 0.8142

Epoch 8/20

0s - loss: 0.3967 - acc: 0.8314

Epoch 9/20

0s - loss: 0.3750 - acc: 0.8386

Epoch 10/20

0s - loss: 0.3518 - acc: 0.8482

Epoch 11/20

0s - loss: 0.3249 - acc: 0.8633

Epoch 12/20

0s - loss: 0.3061 - acc: 0.8708

Epoch 13/20

0s - loss: 0.2867 - acc: 0.8800

Epoch 14/20

0s - loss: 0.2685 - acc: 0.8905

Epoch 15/20

0s - loss: 0.2531 - acc: 0.8970

Epoch 16/20

0s - loss: 0.2411 - acc: 0.9003

Epoch 17/20

0s - loss: 0.2241 - acc: 0.9101

Epoch 18/20

0s - loss: 0.2108 - acc: 0.9169

Epoch 19/20

0s - loss: 0.2008 - acc: 0.9214

Epoch 20/20

0s - loss: 0.1892 - acc: 0.9254

Epoch 1/20

1s - loss: 1.3592 - acc: 0.4654

Epoch 2/20

0s - loss: 0.8951 - acc: 0.6252

Epoch 3/20

0s - loss: 0.7671 - acc: 0.6765

Epoch 4/20

0s - loss: 0.6867 - acc: 0.7106

Epoch 5/20

0s - loss: 0.6253 - acc: 0.7399

Epoch 6/20

0s - loss: 0.5751 - acc: 0.7618

Epoch 7/20

0s - loss: 0.5319 - acc: 0.7794

Epoch 8/20

0s - loss: 0.4904 - acc: 0.8000

Epoch 9/20

0s - loss: 0.4612 - acc: 0.8142

Epoch 10/20

0s - loss: 0.4310 - acc: 0.8274

10

Epoch 11/20

0s - loss: 0.4023 - acc: 0.8389

Epoch 12/20

0s - loss: 0.3798 - acc: 0.8479

Epoch 13/20

0s - loss: 0.3519 - acc: 0.8630

Epoch 14/20

0s - loss: 0.3273 - acc: 0.8741

Epoch 15/20

0s - loss: 0.3065 - acc: 0.8826

Epoch 16/20

0s - loss: 0.2912 - acc: 0.8903

Epoch 17/20

0s - loss: 0.2735 - acc: 0.8972

Epoch 18/20

0s - loss: 0.2517 - acc: 0.9060

Epoch 19/20

0s - loss: 0.2339 - acc: 0.9143

Epoch 20/20

0s - loss: 0.2184 - acc: 0.9211

Epoch 1/20

1s - loss: 1.5290 - acc: 0.4290

Epoch 2/20

0s - loss: 1.0797 - acc: 0.5706

Epoch 3/20

0s - loss: 0.9323 - acc: 0.6221

Epoch 4/20

0s - loss: 0.8300 - acc: 0.6671

Epoch 5/20

0s - loss: 0.7548 - acc: 0.6947

Epoch 6/20

0s - loss: 0.6925 - acc: 0.7204

Epoch 7/20

0s - loss: 0.6437 - acc: 0.7406

Epoch 8/20

0s - loss: 0.5967 - acc: 0.7641

Epoch 9/20

0s - loss: 0.5542 - acc: 0.7797

Epoch 10/20

0s - loss: 0.5213 - acc: 0.7934

Epoch 11/20

0s - loss: 0.4883 - acc: 0.8104

Epoch 12/20

0s - loss: 0.4583 - acc: 0.8216

Epoch 13/20

0s - loss: 0.4332 - acc: 0.8313

Epoch 14/20

0s - loss: 0.4061 - acc: 0.8439

11

Epoch 15/20

0s - loss: 0.3859 - acc: 0.8510

Epoch 16/20

0s - loss: 0.3610 - acc: 0.8624

Epoch 17/20

0s - loss: 0.3452 - acc: 0.8686

Epoch 18/20

0s - loss: 0.3265 - acc: 0.8784

Epoch 19/20

0s - loss: 0.3026 - acc: 0.8885

Epoch 20/20

0s - loss: 0.2892 - acc: 0.8940

Epoch 1/20

1s - loss: 1.5592 - acc: 0.4425

Epoch 2/20

0s - loss: 1.0833 - acc: 0.5674

Epoch 3/20

0s - loss: 0.9502 - acc: 0.6230

Epoch 4/20

0s - loss: 0.8485 - acc: 0.6662

Epoch 5/20

0s - loss: 0.7708 - acc: 0.6955

Epoch 6/20

0s - loss: 0.7074 - acc: 0.7209

Epoch 7/20

0s - loss: 0.6527 - acc: 0.7429

Epoch 8/20

0s - loss: 0.6064 - acc: 0.7596

Epoch 9/20

0s - loss: 0.5689 - acc: 0.7751

Epoch 10/20

0s - loss: 0.5298 - acc: 0.7954

Epoch 11/20

0s - loss: 0.4933 - acc: 0.8099

Epoch 12/20

0s - loss: 0.4624 - acc: 0.8221

Epoch 13/20

0s - loss: 0.4321 - acc: 0.8327

Epoch 14/20

0s - loss: 0.4086 - acc: 0.8452

Epoch 15/20

0s - loss: 0.3850 - acc: 0.8534

Epoch 16/20

0s - loss: 0.3624 - acc: 0.8672

Epoch 17/20

0s - loss: 0.3406 - acc: 0.8745

Epoch 18/20

0s - loss: 0.3211 - acc: 0.8827

12

Epoch 19/20

0s - loss: 0.3054 - acc: 0.8882

Epoch 20/20

0s - loss: 0.2844 - acc: 0.8956

Epoch 1/20

1s - loss: 1.6859 - acc: 0.3866

Epoch 2/20

0s - loss: 1.1302 - acc: 0.5639

Epoch 3/20

0s - loss: 0.9605 - acc: 0.6234

Epoch 4/20

0s - loss: 0.8447 - acc: 0.6660

Epoch 5/20

0s - loss: 0.7562 - acc: 0.7021

Epoch 6/20

0s - loss: 0.6863 - acc: 0.7293

Epoch 7/20

0s - loss: 0.6284 - acc: 0.7519

Epoch 8/20

0s - loss: 0.5836 - acc: 0.7705

Epoch 9/20

0s - loss: 0.5403 - acc: 0.7907

Epoch 10/20

0s - loss: 0.5034 - acc: 0.8039

Epoch 11/20

0s - loss: 0.4722 - acc: 0.8164

Epoch 12/20

0s - loss: 0.4416 - acc: 0.8305

Epoch 13/20

0s - loss: 0.4156 - acc: 0.8399

Epoch 14/20

0s - loss: 0.3936 - acc: 0.8489

Epoch 15/20

0s - loss: 0.3725 - acc: 0.8588

Epoch 16/20

0s - loss: 0.3549 - acc: 0.8636

Epoch 17/20

0s - loss: 0.3280 - acc: 0.8796

Epoch 18/20

0s - loss: 0.3096 - acc: 0.8849

Epoch 19/20

0s - loss: 0.2938 - acc: 0.8916

Epoch 20/20

0s - loss: 0.2762 - acc: 0.8986

Epoch 1/20

1s - loss: 1.7380 - acc: 0.3659

Epoch 2/20

0s - loss: 1.1894 - acc: 0.5331

13

Epoch 3/20

0s - loss: 1.0209 - acc: 0.5954

Epoch 4/20

0s - loss: 0.9063 - acc: 0.6362

Epoch 5/20

0s - loss: 0.8252 - acc: 0.6753

Epoch 6/20

0s - loss: 0.7550 - acc: 0.6973

Epoch 7/20

0s - loss: 0.6980 - acc: 0.7238

Epoch 8/20

0s - loss: 0.6517 - acc: 0.7403

Epoch 9/20

0s - loss: 0.6088 - acc: 0.7576

Epoch 10/20

0s - loss: 0.5720 - acc: 0.7720

Epoch 11/20

0s - loss: 0.5384 - acc: 0.7883

Epoch 12/20

0s - loss: 0.5067 - acc: 0.8030

Epoch 13/20

0s - loss: 0.4757 - acc: 0.8170

Epoch 14/20

0s - loss: 0.4533 - acc: 0.8234

Epoch 15/20

0s - loss: 0.4255 - acc: 0.8373

Epoch 16/20

0s - loss: 0.4065 - acc: 0.8446

Epoch 17/20

0s - loss: 0.3874 - acc: 0.8505

Epoch 18/20

0s - loss: 0.3631 - acc: 0.8648

Epoch 19/20

0s - loss: 0.3463 - acc: 0.8704

Epoch 20/20

0s - loss: 0.3263 - acc: 0.8785

Epoch 1/20

1s - loss: 1.6036 - acc: 0.4420

Epoch 2/20

0s - loss: 1.0804 - acc: 0.5976

Epoch 3/20

0s - loss: 0.9170 - acc: 0.6494

Epoch 4/20

0s - loss: 0.8075 - acc: 0.6885

Epoch 5/20

0s - loss: 0.7232 - acc: 0.7192

Epoch 6/20

0s - loss: 0.6556 - acc: 0.7466

14

Epoch 7/20

0s - loss: 0.5957 - acc: 0.7705

Epoch 8/20

0s - loss: 0.5461 - acc: 0.7899

Epoch 9/20

0s - loss: 0.5052 - acc: 0.8057

Epoch 10/20

0s - loss: 0.4676 - acc: 0.8246

Epoch 11/20

0s - loss: 0.4391 - acc: 0.8357

Epoch 12/20

0s - loss: 0.4074 - acc: 0.8470

Epoch 13/20

0s - loss: 0.3796 - acc: 0.8597

Epoch 14/20

0s - loss: 0.3543 - acc: 0.8654

Epoch 15/20

0s - loss: 0.3322 - acc: 0.8774

Epoch 16/20

0s - loss: 0.3116 - acc: 0.8884

Epoch 17/20

0s - loss: 0.2886 - acc: 0.8969

Epoch 18/20

0s - loss: 0.2743 - acc: 0.9009

Epoch 19/20

0s - loss: 0.2560 - acc: 0.9089

Epoch 20/20

0s - loss: 0.2376 - acc: 0.9134

Epoch 1/20

1s - loss: 1.5127 - acc: 0.4598

Epoch 2/20

0s - loss: 1.0493 - acc: 0.5901

Epoch 3/20

0s - loss: 0.9226 - acc: 0.6371

Epoch 4/20

0s - loss: 0.8261 - acc: 0.6741

Epoch 5/20

0s - loss: 0.7511 - acc: 0.7030

Epoch 6/20

0s - loss: 0.6800 - acc: 0.7338

Epoch 7/20

0s - loss: 0.6279 - acc: 0.7541

Epoch 8/20

0s - loss: 0.5812 - acc: 0.7765

Epoch 9/20

0s - loss: 0.5411 - acc: 0.7908

Epoch 10/20

0s - loss: 0.5074 - acc: 0.8033

15

Epoch 11/20

0s - loss: 0.4720 - acc: 0.8201

Epoch 12/20

0s - loss: 0.4462 - acc: 0.8300

Epoch 13/20

0s - loss: 0.4155 - acc: 0.8395

Epoch 14/20

0s - loss: 0.3895 - acc: 0.8553

Epoch 15/20

0s - loss: 0.3692 - acc: 0.8635

Epoch 16/20

0s - loss: 0.3440 - acc: 0.8731

Epoch 17/20

0s - loss: 0.3223 - acc: 0.8826

Epoch 18/20

0s - loss: 0.3063 - acc: 0.8876

Epoch 19/20

0s - loss: 0.2888 - acc: 0.8927

Epoch 20/20

0s - loss: 0.2702 - acc: 0.9002

Epoch 1/20

1s - loss: 1.5736 - acc: 0.4437

Epoch 2/20

0s - loss: 1.1313 - acc: 0.5690

Epoch 3/20

0s - loss: 0.9798 - acc: 0.6239

Epoch 4/20

0s - loss: 0.8706 - acc: 0.6608

Epoch 5/20

0s - loss: 0.7896 - acc: 0.6906

Epoch 6/20

0s - loss: 0.7232 - acc: 0.7159

Epoch 7/20

0s - loss: 0.6701 - acc: 0.7401

Epoch 8/20

0s - loss: 0.6249 - acc: 0.7538

Epoch 9/20

0s - loss: 0.5832 - acc: 0.7716

Epoch 10/20

0s - loss: 0.5467 - acc: 0.7917

Epoch 11/20

0s - loss: 0.5113 - acc: 0.7984

Epoch 12/20

0s - loss: 0.4822 - acc: 0.8151

Epoch 13/20

0s - loss: 0.4514 - acc: 0.8310

Epoch 14/20

0s - loss: 0.4274 - acc: 0.8411

16

Epoch 15/20

0s - loss: 0.3990 - acc: 0.8511

Epoch 16/20

0s - loss: 0.3811 - acc: 0.8589

Epoch 17/20

0s - loss: 0.3597 - acc: 0.8678

Epoch 18/20

0s - loss: 0.3369 - acc: 0.8764

Epoch 19/20

0s - loss: 0.3241 - acc: 0.8795

Epoch 20/20

0s - loss: 0.3014 - acc: 0.8906

Epoch 1/20

1s - loss: 1.2949 - acc: 0.5506

Epoch 2/20

0s - loss: 0.8315 - acc: 0.6911

Epoch 3/20

0s - loss: 0.7341 - acc: 0.7232

Epoch 4/20

0s - loss: 0.6661 - acc: 0.7499

Epoch 5/20

0s - loss: 0.6093 - acc: 0.7696

Epoch 6/20

0s - loss: 0.5552 - acc: 0.7914

Epoch 7/20

0s - loss: 0.5111 - acc: 0.8095

Epoch 8/20

0s - loss: 0.4725 - acc: 0.8224

Epoch 9/20

0s - loss: 0.4365 - acc: 0.8409

Epoch 10/20

0s - loss: 0.4042 - acc: 0.8498

Epoch 11/20

0s - loss: 0.3730 - acc: 0.8651

Epoch 12/20

0s - loss: 0.3440 - acc: 0.8723

Epoch 13/20

0s - loss: 0.3201 - acc: 0.8832

Epoch 14/20

0s - loss: 0.2969 - acc: 0.8938

Epoch 15/20

0s - loss: 0.2774 - acc: 0.8996

Epoch 16/20

0s - loss: 0.2550 - acc: 0.9115

Epoch 17/20

0s - loss: 0.2316 - acc: 0.9162

Epoch 18/20

0s - loss: 0.2163 - acc: 0.9261

17

Epoch 19/20

0s - loss: 0.2025 - acc: 0.9303

Epoch 20/20

0s - loss: 0.1872 - acc: 0.9369

Epoch 1/20

1s - loss: 1.2273 - acc: 0.5681

Epoch 2/20

0s - loss: 0.8919 - acc: 0.6627

Epoch 3/20

0s - loss: 0.7904 - acc: 0.6957

Epoch 4/20

0s - loss: 0.7131 - acc: 0.7273

Epoch 5/20

0s - loss: 0.6473 - acc: 0.7502

Epoch 6/20

0s - loss: 0.5918 - acc: 0.7728

Epoch 7/20

0s - loss: 0.5446 - acc: 0.7914

Epoch 8/20

0s - loss: 0.4999 - acc: 0.8064

Epoch 9/20

0s - loss: 0.4571 - acc: 0.8251

Epoch 10/20

0s - loss: 0.4246 - acc: 0.8400

Epoch 11/20

0s - loss: 0.3899 - acc: 0.8539

Epoch 12/20

0s - loss: 0.3622 - acc: 0.8680

Epoch 13/20

0s - loss: 0.3354 - acc: 0.8756

Epoch 14/20

0s - loss: 0.3051 - acc: 0.8883

Epoch 15/20

0s - loss: 0.2850 - acc: 0.8964

Epoch 16/20

0s - loss: 0.2638 - acc: 0.9072

Epoch 17/20

0s - loss: 0.2425 - acc: 0.9146

Epoch 18/20

0s - loss: 0.2244 - acc: 0.9226

Epoch 19/20

0s - loss: 0.2098 - acc: 0.9247

Epoch 20/20

0s - loss: 0.1889 - acc: 0.9340

Epoch 1/20

1s - loss: 1.4737 - acc: 0.4701

Epoch 2/20

0s - loss: 0.9710 - acc: 0.6368

18

Epoch 3/20

0s - loss: 0.8356 - acc: 0.6851

Epoch 4/20

0s - loss: 0.7389 - acc: 0.7216

Epoch 5/20

0s - loss: 0.6618 - acc: 0.7485

Epoch 6/20

0s - loss: 0.6007 - acc: 0.7699

Epoch 7/20

0s - loss: 0.5529 - acc: 0.7899

Epoch 8/20

0s - loss: 0.5096 - acc: 0.8037

Epoch 9/20

0s - loss: 0.4708 - acc: 0.8234

Epoch 10/20

0s - loss: 0.4383 - acc: 0.8339

Epoch 11/20

0s - loss: 0.4080 - acc: 0.8469

Epoch 12/20

0s - loss: 0.3773 - acc: 0.8596

Epoch 13/20

0s - loss: 0.3482 - acc: 0.8716

Epoch 14/20

0s - loss: 0.3258 - acc: 0.8816

Epoch 15/20

0s - loss: 0.3015 - acc: 0.8912

Epoch 16/20

0s - loss: 0.2824 - acc: 0.8967

Epoch 17/20

0s - loss: 0.2623 - acc: 0.9089

Epoch 18/20

0s - loss: 0.2411 - acc: 0.9154

Epoch 19/20

0s - loss: 0.2299 - acc: 0.9192

Epoch 20/20

0s - loss: 0.2115 - acc: 0.9264

Epoch 1/20

1s - loss: 1.4431 - acc: 0.4815

Epoch 2/20

0s - loss: 1.0864 - acc: 0.5913

Epoch 3/20

0s - loss: 0.9476 - acc: 0.6392

Epoch 4/20

0s - loss: 0.8440 - acc: 0.6808

Epoch 5/20

0s - loss: 0.7614 - acc: 0.7041

Epoch 6/20

0s - loss: 0.6949 - acc: 0.7344

19

Epoch 7/20

0s - loss: 0.6376 - acc: 0.7509

Epoch 8/20

0s - loss: 0.5884 - acc: 0.7713

Epoch 9/20

0s - loss: 0.5453 - acc: 0.7885

Epoch 10/20

0s - loss: 0.5047 - acc: 0.8045

Epoch 11/20

0s - loss: 0.4715 - acc: 0.8187

Epoch 12/20

0s - loss: 0.4353 - acc: 0.8365

Epoch 13/20

0s - loss: 0.4041 - acc: 0.8459

Epoch 14/20

0s - loss: 0.3751 - acc: 0.8609

Epoch 15/20

0s - loss: 0.3551 - acc: 0.8686

Epoch 16/20

0s - loss: 0.3293 - acc: 0.8791

Epoch 17/20

0s - loss: 0.3044 - acc: 0.8892

Epoch 18/20

0s - loss: 0.2885 - acc: 0.8938

Epoch 19/20

0s - loss: 0.2650 - acc: 0.9080

Epoch 20/20

0s - loss: 0.2496 - acc: 0.9120

In [107]: MODELSDROPOUT = [buildANNtoPredict(i, dropout=True) for i in range(DATA.shape[1])]

Epoch 1/20

1s - loss: 1.8503 - acc: 0.5118

Epoch 2/20

0s - loss: 0.8329 - acc: 0.7618

Epoch 3/20

0s - loss: 0.6346 - acc: 0.8168

Epoch 4/20

0s - loss: 0.5261 - acc: 0.8441

Epoch 5/20

0s - loss: 0.4422 - acc: 0.8689

Epoch 6/20

0s - loss: 0.3931 - acc: 0.8794

Epoch 7/20

0s - loss: 0.3440 - acc: 0.8942

Epoch 8/20

0s - loss: 0.3025 - acc: 0.9052

20

Epoch 9/20

0s - loss: 0.2766 - acc: 0.9136

Epoch 10/20

0s - loss: 0.2508 - acc: 0.9216

Epoch 11/20

0s - loss: 0.2278 - acc: 0.9264

Epoch 12/20

0s - loss: 0.2070 - acc: 0.9341

Epoch 13/20

0s - loss: 0.1942 - acc: 0.9381

Epoch 14/20

0s - loss: 0.1843 - acc: 0.9392

Epoch 15/20

0s - loss: 0.1651 - acc: 0.9461

Epoch 16/20

0s - loss: 0.1599 - acc: 0.9484

Epoch 17/20

0s - loss: 0.1477 - acc: 0.9499

Epoch 18/20

0s - loss: 0.1359 - acc: 0.9545

Epoch 19/20

0s - loss: 0.1338 - acc: 0.9558

Epoch 20/20

0s - loss: 0.1194 - acc: 0.9613

Epoch 1/20

1s - loss: 1.2698 - acc: 0.5112

Epoch 2/20

0s - loss: 0.8578 - acc: 0.6431

Epoch 3/20

0s - loss: 0.7553 - acc: 0.6851

Epoch 4/20

0s - loss: 0.6867 - acc: 0.7120

Epoch 5/20

0s - loss: 0.6376 - acc: 0.7322

Epoch 6/20

0s - loss: 0.5940 - acc: 0.7528

Epoch 7/20

0s - loss: 0.5629 - acc: 0.7611

Epoch 8/20

0s - loss: 0.5342 - acc: 0.7767

Epoch 9/20

0s - loss: 0.5067 - acc: 0.7898

Epoch 10/20

0s - loss: 0.4851 - acc: 0.7963

Epoch 11/20

0s - loss: 0.4609 - acc: 0.8072

Epoch 12/20

0s - loss: 0.4463 - acc: 0.8134

21

Epoch 13/20

0s - loss: 0.4379 - acc: 0.8147

Epoch 14/20

0s - loss: 0.4139 - acc: 0.8274

Epoch 15/20

0s - loss: 0.4007 - acc: 0.8346

Epoch 16/20

0s - loss: 0.3898 - acc: 0.8389

Epoch 17/20

0s - loss: 0.3797 - acc: 0.8403

Epoch 18/20

0s - loss: 0.3654 - acc: 0.8510

Epoch 19/20

0s - loss: 0.3544 - acc: 0.8532

Epoch 20/20

0s - loss: 0.3582 - acc: 0.8528

Epoch 1/20

1s - loss: 1.6639 - acc: 0.4299

Epoch 2/20

0s - loss: 1.1548 - acc: 0.5508

Epoch 3/20

0s - loss: 1.0364 - acc: 0.5763

Epoch 4/20

0s - loss: 0.9605 - acc: 0.5984

Epoch 5/20

0s - loss: 0.9022 - acc: 0.6193

Epoch 6/20

0s - loss: 0.8557 - acc: 0.6369

Epoch 7/20

0s - loss: 0.8203 - acc: 0.6442

Epoch 8/20

0s - loss: 0.7861 - acc: 0.6592

Epoch 9/20

0s - loss: 0.7607 - acc: 0.6734

Epoch 10/20

0s - loss: 0.7345 - acc: 0.6798

Epoch 11/20

0s - loss: 0.7135 - acc: 0.6912

Epoch 12/20

0s - loss: 0.6892 - acc: 0.7049

Epoch 13/20

0s - loss: 0.6771 - acc: 0.7079

Epoch 14/20

0s - loss: 0.6518 - acc: 0.7177

Epoch 15/20

0s - loss: 0.6488 - acc: 0.7169

Epoch 16/20

0s - loss: 0.6253 - acc: 0.7333

22

Epoch 17/20

0s - loss: 0.6124 - acc: 0.7355

Epoch 18/20

0s - loss: 0.6043 - acc: 0.7401

Epoch 19/20

0s - loss: 0.5919 - acc: 0.7469

Epoch 20/20

0s - loss: 0.5748 - acc: 0.7534

Epoch 1/20

1s - loss: 1.3595 - acc: 0.4607

Epoch 2/20

0s - loss: 0.9387 - acc: 0.6038

Epoch 3/20

0s - loss: 0.8241 - acc: 0.6552

Epoch 4/20

0s - loss: 0.7532 - acc: 0.6788

Epoch 5/20

0s - loss: 0.6972 - acc: 0.7037

Epoch 6/20

0s - loss: 0.6617 - acc: 0.7186

Epoch 7/20

0s - loss: 0.6246 - acc: 0.7354

Epoch 8/20

0s - loss: 0.5933 - acc: 0.7462

Epoch 9/20

0s - loss: 0.5732 - acc: 0.7538

Epoch 10/20

0s - loss: 0.5454 - acc: 0.7687

Epoch 11/20

0s - loss: 0.5344 - acc: 0.7727

Epoch 12/20

0s - loss: 0.5164 - acc: 0.7829

Epoch 13/20

0s - loss: 0.4959 - acc: 0.7881

Epoch 14/20

0s - loss: 0.4844 - acc: 0.7953

Epoch 15/20

0s - loss: 0.4701 - acc: 0.8007

Epoch 16/20

0s - loss: 0.4578 - acc: 0.8065

Epoch 17/20

0s - loss: 0.4474 - acc: 0.8109

Epoch 18/20

0s - loss: 0.4357 - acc: 0.8159

Epoch 19/20

0s - loss: 0.4310 - acc: 0.8179

Epoch 20/20

0s - loss: 0.4196 - acc: 0.8249

23

Epoch 1/20

1s - loss: 1.2690 - acc: 0.5716

Epoch 2/20

0s - loss: 0.7945 - acc: 0.7004

Epoch 3/20

0s - loss: 0.6823 - acc: 0.7239

Epoch 4/20

0s - loss: 0.6169 - acc: 0.7432

Epoch 5/20

0s - loss: 0.5694 - acc: 0.7606

Epoch 6/20

0s - loss: 0.5357 - acc: 0.7718

Epoch 7/20

0s - loss: 0.4970 - acc: 0.7857

Epoch 8/20

0s - loss: 0.4705 - acc: 0.7974

Epoch 9/20

0s - loss: 0.4501 - acc: 0.8048

Epoch 10/20

0s - loss: 0.4301 - acc: 0.8160

Epoch 11/20

0s - loss: 0.4188 - acc: 0.8237

Epoch 12/20

0s - loss: 0.4025 - acc: 0.8269

Epoch 13/20

0s - loss: 0.3807 - acc: 0.8382

Epoch 14/20

0s - loss: 0.3723 - acc: 0.8404

Epoch 15/20

0s - loss: 0.3582 - acc: 0.8438

Epoch 16/20

0s - loss: 0.3456 - acc: 0.8518

Epoch 17/20

0s - loss: 0.3372 - acc: 0.8561

Epoch 18/20

0s - loss: 0.3353 - acc: 0.8569

Epoch 19/20

0s - loss: 0.3228 - acc: 0.8629

Epoch 20/20

0s - loss: 0.3158 - acc: 0.8631

Epoch 1/20

1s - loss: 1.4140 - acc: 0.4430

Epoch 2/20

0s - loss: 0.9792 - acc: 0.5824

Epoch 3/20

0s - loss: 0.8657 - acc: 0.6284

Epoch 4/20

0s - loss: 0.7879 - acc: 0.6669

24

Epoch 5/20

0s - loss: 0.7283 - acc: 0.6895

Epoch 6/20

0s - loss: 0.6888 - acc: 0.7099

Epoch 7/20

0s - loss: 0.6556 - acc: 0.7224

Epoch 8/20

0s - loss: 0.6300 - acc: 0.7352

Epoch 9/20

0s - loss: 0.6004 - acc: 0.7478

Epoch 10/20

0s - loss: 0.5696 - acc: 0.7610

Epoch 11/20

0s - loss: 0.5627 - acc: 0.7590

Epoch 12/20

0s - loss: 0.5357 - acc: 0.7767

Epoch 13/20

0s - loss: 0.5199 - acc: 0.7823

Epoch 14/20

0s - loss: 0.5041 - acc: 0.7924

Epoch 15/20

0s - loss: 0.4875 - acc: 0.7957

Epoch 16/20

0s - loss: 0.4780 - acc: 0.8013

Epoch 17/20

0s - loss: 0.4607 - acc: 0.8108

Epoch 18/20

0s - loss: 0.4563 - acc: 0.8071

Epoch 19/20

0s - loss: 0.4434 - acc: 0.8165

Epoch 20/20

0s - loss: 0.4349 - acc: 0.8193

Epoch 1/20

1s - loss: 1.6137 - acc: 0.4037

Epoch 2/20

0s - loss: 1.1697 - acc: 0.5351

Epoch 3/20

0s - loss: 1.0298 - acc: 0.5817

Epoch 4/20

0s - loss: 0.9352 - acc: 0.6202

Epoch 5/20

0s - loss: 0.8755 - acc: 0.6403

Epoch 6/20

0s - loss: 0.8142 - acc: 0.6624

Epoch 7/20

0s - loss: 0.7745 - acc: 0.6802

Epoch 8/20

0s - loss: 0.7358 - acc: 0.6971

25

Epoch 9/20

0s - loss: 0.7147 - acc: 0.7051

Epoch 10/20

0s - loss: 0.6913 - acc: 0.7166

Epoch 11/20

0s - loss: 0.6598 - acc: 0.7301

Epoch 12/20

0s - loss: 0.6389 - acc: 0.7363

Epoch 13/20

0s - loss: 0.6286 - acc: 0.7431

Epoch 14/20

0s - loss: 0.6077 - acc: 0.7519

Epoch 15/20

0s - loss: 0.5899 - acc: 0.7583

Epoch 16/20

0s - loss: 0.5739 - acc: 0.7667

Epoch 17/20

0s - loss: 0.5621 - acc: 0.7680

Epoch 18/20

0s - loss: 0.5460 - acc: 0.7741

Epoch 19/20

0s - loss: 0.5399 - acc: 0.7801

Epoch 20/20

0s - loss: 0.5315 - acc: 0.7811

Epoch 1/20

1s - loss: 1.5774 - acc: 0.4310

Epoch 2/20

0s - loss: 1.1537 - acc: 0.5451

Epoch 3/20

0s - loss: 1.0375 - acc: 0.5842

Epoch 4/20

0s - loss: 0.9577 - acc: 0.6121

Epoch 5/20

0s - loss: 0.8937 - acc: 0.6394

Epoch 6/20

0s - loss: 0.8430 - acc: 0.6588

Epoch 7/20

0s - loss: 0.7983 - acc: 0.6787

Epoch 8/20

0s - loss: 0.7659 - acc: 0.6931

Epoch 9/20

0s - loss: 0.7364 - acc: 0.7011

Epoch 10/20

0s - loss: 0.7039 - acc: 0.7186

Epoch 11/20

0s - loss: 0.6818 - acc: 0.7228

Epoch 12/20

0s - loss: 0.6555 - acc: 0.7328

26

Epoch 13/20

0s - loss: 0.6398 - acc: 0.7416

Epoch 14/20

0s - loss: 0.6190 - acc: 0.7496

Epoch 15/20

0s - loss: 0.6058 - acc: 0.7568

Epoch 16/20

0s - loss: 0.5978 - acc: 0.7604

Epoch 17/20

0s - loss: 0.5762 - acc: 0.7681

Epoch 18/20

0s - loss: 0.5650 - acc: 0.7728

Epoch 19/20

0s - loss: 0.5532 - acc: 0.7746

Epoch 20/20

0s - loss: 0.5421 - acc: 0.7818

Epoch 1/20

1s - loss: 1.8276 - acc: 0.3413

Epoch 2/20

0s - loss: 1.2688 - acc: 0.5111

Epoch 3/20

0s - loss: 1.1040 - acc: 0.5656

Epoch 4/20

0s - loss: 0.9943 - acc: 0.6061

Epoch 5/20

0s - loss: 0.9177 - acc: 0.6334

Epoch 6/20

0s - loss: 0.8572 - acc: 0.6553

Epoch 7/20

0s - loss: 0.8098 - acc: 0.6784

Epoch 8/20

0s - loss: 0.7655 - acc: 0.6905

Epoch 9/20

0s - loss: 0.7309 - acc: 0.7049

Epoch 10/20

0s - loss: 0.7025 - acc: 0.7156

Epoch 11/20

0s - loss: 0.6769 - acc: 0.7308

Epoch 12/20

0s - loss: 0.6572 - acc: 0.7379

Epoch 13/20

0s - loss: 0.6349 - acc: 0.7422

Epoch 14/20

0s - loss: 0.6159 - acc: 0.7565

Epoch 15/20

0s - loss: 0.5917 - acc: 0.7630

Epoch 16/20

0s - loss: 0.5908 - acc: 0.7659

27

Epoch 17/20

0s - loss: 0.5702 - acc: 0.7739

Epoch 18/20

0s - loss: 0.5422 - acc: 0.7842

Epoch 19/20

0s - loss: 0.5438 - acc: 0.7843

Epoch 20/20

0s - loss: 0.5291 - acc: 0.7861

Epoch 1/20

1s - loss: 1.7968 - acc: 0.3416

Epoch 2/20

0s - loss: 1.2795 - acc: 0.4955

Epoch 3/20

0s - loss: 1.1240 - acc: 0.5519

Epoch 4/20

0s - loss: 1.0239 - acc: 0.5824

Epoch 5/20

0s - loss: 0.9453 - acc: 0.6178

Epoch 6/20

0s - loss: 0.8873 - acc: 0.6422

Epoch 7/20

0s - loss: 0.8492 - acc: 0.6591

Epoch 8/20

0s - loss: 0.8038 - acc: 0.6685

Epoch 9/20

0s - loss: 0.7740 - acc: 0.6866

Epoch 10/20

0s - loss: 0.7478 - acc: 0.6949

Epoch 11/20

0s - loss: 0.7237 - acc: 0.7042

Epoch 12/20

0s - loss: 0.7052 - acc: 0.7139

Epoch 13/20

0s - loss: 0.6829 - acc: 0.7236

Epoch 14/20

0s - loss: 0.6637 - acc: 0.7270

Epoch 15/20

0s - loss: 0.6478 - acc: 0.7335

Epoch 16/20

0s - loss: 0.6326 - acc: 0.7457

Epoch 17/20

0s - loss: 0.6155 - acc: 0.7507

Epoch 18/20

0s - loss: 0.5980 - acc: 0.7551

Epoch 19/20

0s - loss: 0.5875 - acc: 0.7605

Epoch 20/20

0s - loss: 0.5778 - acc: 0.7624

28

Epoch 1/20

1s - loss: 1.7179 - acc: 0.4074

Epoch 2/20

0s - loss: 1.1938 - acc: 0.5512

Epoch 3/20

0s - loss: 1.0249 - acc: 0.6101

Epoch 4/20

0s - loss: 0.9258 - acc: 0.6458

Epoch 5/20

0s - loss: 0.8529 - acc: 0.6729

Epoch 6/20

0s - loss: 0.7989 - acc: 0.6924

Epoch 7/20

0s - loss: 0.7459 - acc: 0.7126

Epoch 8/20

0s - loss: 0.7077 - acc: 0.7256

Epoch 9/20

0s - loss: 0.6817 - acc: 0.7359

Epoch 10/20

0s - loss: 0.6433 - acc: 0.7486

Epoch 11/20

0s - loss: 0.6220 - acc: 0.7606

Epoch 12/20

0s - loss: 0.5973 - acc: 0.7699

Epoch 13/20

0s - loss: 0.5781 - acc: 0.7751

Epoch 14/20

0s - loss: 0.5586 - acc: 0.7812

Epoch 15/20

0s - loss: 0.5425 - acc: 0.7889

Epoch 16/20

0s - loss: 0.5254 - acc: 0.7965

Epoch 17/20

0s - loss: 0.5100 - acc: 0.8029

Epoch 18/20

0s - loss: 0.4942 - acc: 0.8067

Epoch 19/20

0s - loss: 0.4817 - acc: 0.8095

Epoch 20/20

0s - loss: 0.4723 - acc: 0.8148

Epoch 1/20

1s - loss: 1.6294 - acc: 0.4229

Epoch 2/20

0s - loss: 1.1386 - acc: 0.5544

Epoch 3/20

0s - loss: 1.0113 - acc: 0.6016

Epoch 4/20

0s - loss: 0.9257 - acc: 0.6304

29

Epoch 5/20

0s - loss: 0.8546 - acc: 0.6601

Epoch 6/20

0s - loss: 0.8054 - acc: 0.6800

Epoch 7/20

0s - loss: 0.7598 - acc: 0.6957

Epoch 8/20

0s - loss: 0.7282 - acc: 0.7087

Epoch 9/20

0s - loss: 0.6896 - acc: 0.7240

Epoch 10/20

0s - loss: 0.6660 - acc: 0.7321

Epoch 11/20

0s - loss: 0.6344 - acc: 0.7452

Epoch 12/20

0s - loss: 0.6174 - acc: 0.7531

Epoch 13/20

0s - loss: 0.5965 - acc: 0.7616

Epoch 14/20

0s - loss: 0.5760 - acc: 0.7721

Epoch 15/20

0s - loss: 0.5603 - acc: 0.7754

Epoch 16/20

0s - loss: 0.5607 - acc: 0.7740

Epoch 17/20

0s - loss: 0.5393 - acc: 0.7860

Epoch 18/20

0s - loss: 0.5272 - acc: 0.7876

Epoch 19/20

0s - loss: 0.5166 - acc: 0.7947

Epoch 20/20

0s - loss: 0.5028 - acc: 0.7973

Epoch 1/20

1s - loss: 1.6371 - acc: 0.4154

Epoch 2/20

0s - loss: 1.2020 - acc: 0.5441

Epoch 3/20

0s - loss: 1.0715 - acc: 0.5811

Epoch 4/20

0s - loss: 0.9854 - acc: 0.6101

Epoch 5/20

0s - loss: 0.9188 - acc: 0.6368

Epoch 6/20

0s - loss: 0.8616 - acc: 0.6562

Epoch 7/20

0s - loss: 0.8157 - acc: 0.6734

Epoch 8/20

0s - loss: 0.7823 - acc: 0.6928

30

Epoch 9/20

0s - loss: 0.7511 - acc: 0.6975

Epoch 10/20

0s - loss: 0.7279 - acc: 0.7105

Epoch 11/20

0s - loss: 0.7015 - acc: 0.7199

Epoch 12/20

0s - loss: 0.6768 - acc: 0.7292

Epoch 13/20

0s - loss: 0.6575 - acc: 0.7393

Epoch 14/20

0s - loss: 0.6453 - acc: 0.7426

Epoch 15/20

0s - loss: 0.6252 - acc: 0.7524

Epoch 16/20

0s - loss: 0.6085 - acc: 0.7576

Epoch 17/20

0s - loss: 0.6025 - acc: 0.7578

Epoch 18/20

0s - loss: 0.5787 - acc: 0.7693

Epoch 19/20

0s - loss: 0.5789 - acc: 0.7666

Epoch 20/20

0s - loss: 0.5580 - acc: 0.7786

Epoch 1/20

1s - loss: 1.3657 - acc: 0.5151

Epoch 2/20

0s - loss: 0.9077 - acc: 0.6585

Epoch 3/20

0s - loss: 0.8035 - acc: 0.6969

Epoch 4/20

0s - loss: 0.7432 - acc: 0.7192

Epoch 5/20

0s - loss: 0.6913 - acc: 0.7399

Epoch 6/20

0s - loss: 0.6394 - acc: 0.7568

Epoch 7/20

0s - loss: 0.6075 - acc: 0.7683

Epoch 8/20

0s - loss: 0.5754 - acc: 0.7804

Epoch 9/20

0s - loss: 0.5536 - acc: 0.7907

Epoch 10/20

0s - loss: 0.5330 - acc: 0.8002

Epoch 11/20

0s - loss: 0.5046 - acc: 0.8112

Epoch 12/20

0s - loss: 0.4864 - acc: 0.8149

31

Epoch 13/20

0s - loss: 0.4731 - acc: 0.8203

Epoch 14/20

0s - loss: 0.4527 - acc: 0.8272

Epoch 15/20

0s - loss: 0.4411 - acc: 0.8324

Epoch 16/20

0s - loss: 0.4246 - acc: 0.8397

Epoch 17/20

0s - loss: 0.4138 - acc: 0.8455

Epoch 18/20

0s - loss: 0.4048 - acc: 0.8439

Epoch 19/20

0s - loss: 0.3785 - acc: 0.8546

Epoch 20/20

0s - loss: 0.3817 - acc: 0.8525

Epoch 1/20

1s - loss: 1.2870 - acc: 0.5456

Epoch 2/20

0s - loss: 0.9405 - acc: 0.6455

Epoch 3/20

0s - loss: 0.8518 - acc: 0.6739

Epoch 4/20

0s - loss: 0.7887 - acc: 0.6979

Epoch 5/20

0s - loss: 0.7335 - acc: 0.7167

Epoch 6/20

0s - loss: 0.6941 - acc: 0.7311

Epoch 7/20

0s - loss: 0.6616 - acc: 0.7439

Epoch 8/20

0s - loss: 0.6263 - acc: 0.7595

Epoch 9/20

0s - loss: 0.5989 - acc: 0.7675

Epoch 10/20

0s - loss: 0.5739 - acc: 0.7790

Epoch 11/20

0s - loss: 0.5532 - acc: 0.7886

Epoch 12/20

0s - loss: 0.5293 - acc: 0.7944

Epoch 13/20

0s - loss: 0.5148 - acc: 0.7964

Epoch 14/20

0s - loss: 0.4942 - acc: 0.8060

Epoch 15/20

0s - loss: 0.4728 - acc: 0.8184

Epoch 16/20

0s - loss: 0.4710 - acc: 0.8173

32

Epoch 17/20

0s - loss: 0.4498 - acc: 0.8218

Epoch 18/20

0s - loss: 0.4385 - acc: 0.8284

Epoch 19/20

0s - loss: 0.4307 - acc: 0.8343

Epoch 20/20

0s - loss: 0.4148 - acc: 0.8360

Epoch 1/20

1s - loss: 1.5633 - acc: 0.4419

Epoch 2/20

0s - loss: 1.0642 - acc: 0.5978

Epoch 3/20

0s - loss: 0.9282 - acc: 0.6442

Epoch 4/20

0s - loss: 0.8400 - acc: 0.6807

Epoch 5/20

0s - loss: 0.7747 - acc: 0.7011

Epoch 6/20

0s - loss: 0.7233 - acc: 0.7188

Epoch 7/20

0s - loss: 0.6887 - acc: 0.7339

Epoch 8/20

0s - loss: 0.6413 - acc: 0.7498

Epoch 9/20

0s - loss: 0.6184 - acc: 0.7579

Epoch 10/20

0s - loss: 0.5934 - acc: 0.7665

Epoch 11/20

0s - loss: 0.5689 - acc: 0.7772

Epoch 12/20

0s - loss: 0.5545 - acc: 0.7841

Epoch 13/20

0s - loss: 0.5301 - acc: 0.7935

Epoch 14/20

0s - loss: 0.5104 - acc: 0.8006

Epoch 15/20

0s - loss: 0.4964 - acc: 0.8057

Epoch 16/20

0s - loss: 0.4779 - acc: 0.8138

Epoch 17/20

0s - loss: 0.4702 - acc: 0.8148

Epoch 18/20

0s - loss: 0.4593 - acc: 0.8201

Epoch 19/20

0s - loss: 0.4432 - acc: 0.8254

Epoch 20/20

0s - loss: 0.4391 - acc: 0.8306

33

Epoch 1/20

1s - loss: 1.4871 - acc: 0.4561

Epoch 2/20

0s - loss: 1.1544 - acc: 0.5611

Epoch 3/20

0s - loss: 1.0256 - acc: 0.6049

Epoch 4/20

0s - loss: 0.9366 - acc: 0.6409

Epoch 5/20

0s - loss: 0.8706 - acc: 0.6604

Epoch 6/20

0s - loss: 0.8221 - acc: 0.6766

Epoch 7/20

0s - loss: 0.7782 - acc: 0.6977

Epoch 8/20

0s - loss: 0.7424 - acc: 0.7056

Epoch 9/20

0s - loss: 0.7144 - acc: 0.7194

Epoch 10/20

0s - loss: 0.6785 - acc: 0.7331

Epoch 11/20

0s - loss: 0.6583 - acc: 0.7402

Epoch 12/20

0s - loss: 0.6324 - acc: 0.7532

Epoch 13/20

0s - loss: 0.6098 - acc: 0.7572

Epoch 14/20

0s - loss: 0.6015 - acc: 0.7598

Epoch 15/20

0s - loss: 0.5857 - acc: 0.7681

Epoch 16/20

0s - loss: 0.5615 - acc: 0.7786

Epoch 17/20

0s - loss: 0.5565 - acc: 0.7784

Epoch 18/20

0s - loss: 0.5407 - acc: 0.7871

Epoch 19/20

0s - loss: 0.5284 - acc: 0.7890

Epoch 20/20

0s - loss: 0.5156 - acc: 0.7950

Saving / loading trained models In case it is no time to compute it again (it will work only if the
splitting were done with the same random_state)

In [11]: def saveMODELS():

for i in range(len(MODELS)):

filename = "ML3hw_model" + str(i) + ".h5"

34

MODELS[i].save(filename)

from keras.models import load_model

def loadMODELS():

models = []

for i in range(len(feature_range)):

filename = "ML3hw_model" + str(i) + ".h5"

model = load_model(filename)

models.append(model)

return models

#saveMODELS()

In [12]: #MODELS = loadMODELS()

1.5.3 Prediction

In [184]: def predictByANN(transformedRow,indexToPredict,models=MODELS):

"""

row - numpy (binary) array of length inputvector_length

"""

prediction = models[indexToPredict].predict(np.array([transformedRow]))[0]

output = np.zeros(len(feature_range[indexToPredict]))

output[np.argmax(prediction)] = 1

return output

Example

In [235]: rowtopredict = 0

featuretopredict = 1

row = TEST.iloc[rowtopredict,:].values.copy()

y_true = row[featuretopredict]

row[featuretopredict] = '?'

transformedrow = transformInput(row)

y_pred_encoded = predictByANN(transformedrow, featuretopredict)

y_pred = deencodeValue(y_pred_encoded,featuretopredict)

print("\n Without dropout")

print("Encoded prediction: ", y_pred_encoded)

print("Deencoded prediction: ", deencodeValue(y_pred_encoded,featuretopredict))

print("True value: ", y_true)

%timeit predictByANN(transformedrow, featuretopredict)

y_pred_encoded = predictByANN(transformedrow, featuretopredict,MODELSDROPOUT)

35

y_pred = deencodeValue(y_pred_encoded,featuretopredict)

print("\n\n With dropout")

print("Encoded prediction: ", y_pred_encoded)

print("Deencoded prediction: ", deencodeValue(y_pred_encoded,featuretopredict))

print("True value: ", y_true)

%timeit predictByANN(transformedrow, featuretopredict,MODELSDROPOUT)

Without dropout

Encoded prediction: [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Deencoded prediction: 4

True value: 4

485 µs ± 30.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

With dropout

Encoded prediction: [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Deencoded prediction: 4

True value: 4

500 µs ± 24 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

1.6 Evaluating results

1.6.1 Accuracy on testing set

Run out prediction on noiseless data and compute the accuracy for each feature

Feature:lettr xbox ybox widthhigh onpixxbar ybar x2bary2barxybarx2ybarxy2brxege xegvyyege yegvx

Accuracy:90.5 72.1 60.1 70.5 73.8 70.1 65.3 63.8 64.6 62 68.8 67.5 63.5 73.5 69.3 69 65.5

Accuracy
with
Dropout:

92.7 74.7 61.9 72.1 74.6 70.4 67.8 65.7 65.8 63.5 71.2 69.7 65.8 75.4 71.6 70.3 67.1

Results

1.6.2 Accuracy on noisy testing set

Compute accuracy of letter column on noisy test set (with additional query marks) with different
noise level (frequency of missing values). However, the same can be done for any column.

Algorithm of computing accuracy * Create N (10, 30, 50, etc.) missing values in each column
independently * Make a prediction on Letter column and compute accuracy * Repeat 10 times -

36

compute average result

Results | Frequency | Accuracy (%) | Accuracy with Dropout: | |-----------|:------------:|---------
---------------| | 10 | 90.5 | 92.2 | | 30 | 90.1 | 91.8 | | 50 | 89.6 | 91.4 | | 100 | 88.7 | 90.5 | | 200
| 86.5 | 88.8 | | 400 | 82.4 | 85.2 | | 800 | 73.5 | 77.7 | | 1000 | 69.0 | 73.8 | #### Realization

In [296]: number_of_NAs = 1000

testWithNA = TEST.copy()

columnToPred = 0

testWithNA.iloc[:,columnToPred] = '?'

for i in range(testWithNA.shape[1]):

for k in range(number_of_NAs):

j = np.random.randint(testWithNA.shape[0])

testWithNA.iloc[j,i] = '?'

#testWithNA.iloc[j,0] = '?'

testWithNA.iloc[:1,:]

Out[296]: lettr xbox ybox width high onpix xbar ybar x2bar y2bar xybar x2ybr xy2br \

0 ? 4 5 5 6 ? 8 8 5 2 ? ? 10

xege xegvy yege yegvx

0 3 9 5 ?

Making a prediction

In [297]: testWithNAnumpy = testWithNA.values.copy()

testWithNAnumpy2 = testWithNA.values.copy()

testWithNAprediction = testWithNA.values.copy()

testnumpy = TEST.values.copy()

models = MODELSDROPOUT

for i in range(testWithNAnumpy.shape[0]):

row = testWithNAnumpy[i]

if '?' in row:

newrow = row.copy()

transformedRow = transformInput(row)

missingValuesIndeces = np.where(row=='?')[0]

for k in missingValuesIndeces:

newrow[k] = deencodeValue(predictByANN(transformedRow,k,models),k)

testWithNAprediction[i]=newrow

actual = testnumpy[np.where(testWithNAnumpy2[:,columnToPred]=='?')][:,columnToPred]

predicted = testWithNAprediction[np.where(testWithNAnumpy2[:,columnToPred]=='?')][:,columnToPred]

print(sum(actual==predicted) / len(actual))

0.74175

37

	ML Homework 3
	Problem
	Idea
	Summary
	Results
	Accuracy of predicting each feature
	Accuracy of prediction on noisy data

	Realization
	Data transformation
	Creating neural nets
	Prediction

	Evaluating results
	Accuracy on testing set
	Accuracy on noisy testing set

