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Abstract

This paper studies the polynomial time heuristic algorithm MIC
for the Test Cover problem that selects, with a greedy strategy, a
test that maximizes the classical Shannon entropy function. The
Test Cover Problem is known not to admit a polynomial time al-
gorithm with performance bound (1− ε)(log m), for any ε > 0 unless
NP ⊂ DTIME(mlg2 lg2 m). We prove that MIC approximation ra-
tio is ≤ 1

ln 2 lnm + O(ln lnm) ≈ 1.45 ln m, improving previous best
approximation algorithms with ratio of ≈ 2 ln m.

1 Introduction

Given a ground set of items {1, ...,m} and a collection of tests T1, ..., Tn, Ti ⊆
{1, ...,m} the Test Cover Problem (TCP) aims at constructing a minimum
cardinality set of tests that distinguishes all items. It naturally arises in
problems of medical diagnosis and pattern recognition, and has been recently
addressed in a number of works approaching the Single Nucleotide Polymor-
phism (SNPs) selection problem [1, 11, 14] for haploid identification and
reconstruction in computational biology.

This paper provides an estimate of the approximation ratio of the Mutual
Information Clustering (MIC) Algorithm for such problems, as proposed in
[2]. In the rest of this introduction we report on existing literature on the
subject; in Section 2 we recall basic concepts from Information Theory by
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applying them to partitions of a set, and we provide a slight generalization
of partition entropy extremal properties as reported by Shastri and Govil
[13]. Finally in Section 3 we present the algorithm, prove its correctness,
and provide an upper bound for its approximation ratio.

1.1 Test Cover and Set Cover

The input of the Test Cover Problem (TCP) is a set of items {1, ...,m}, and a
collection of tests T1, ..., Tn, Ti ⊆ {1, ...,m}. A test Tj covers or differentiates
the item pair {h, i} if either h ∈ Tj or i ∈ Tj, i.e., if |Tj ∩ {h, i}| = 1. A
subcollection Γ ⊆ {T1, ..., Tn} of tests is a test cover if each of the m(m−1)/2
item pairs is covered by at least one test in Γ. The goal is to find a test cover
of minimum cardinality, if one exists.

The TCP has a close relationship with the Set Cover Problem (SCP),
which inputs a set of elements {1, ...,M} and a collection of sets S1, ..., SN ,
Si ⊆ {1, ...,M}. Its goal is to find a set cover of minimum cardinality, if one
exists, that is a subcollection Υ ⊆ {S1, ..., SN} of sets such that each of the
M elements is covered by at least one set in Υ, i.e.

⋃
S∈Υ = {1, ...,M}.

In facts, a TCP instance T can be transformed into an equivalent SCP
instance ST with M = (m)(m−1)

2
elements and N = n subsets, by constructing

an element oi,j in ST for each pair {i, j} of different items in T . Subsets in
ST are such that oi,j ∈ Sl ⇔ |Tl ∩ {i, j}| = 1.

Thus, an algorithm for the SCP also works for the TCP. All known TCP
approximation algorithms are based on this transformation [4].

1.2 The Greedy TCP Algorithm

In particular, the greedy algorithm for the SCP, which selects a subset cov-
ering the largest number of yet uncovered elements, directly gives a greedy
algorithm for the TCP that chooses a test that covers the largest number
of yet uncovered pairs. Hence, given a TCP instance T , the Greedy TCP
builds the equivalent SCP instance ST and applies the greedy algorithm for
the SCP to find a set cover σ. The Greedy TCP returns the tests collection
τ = {Ti|Si ∈ σ}.

Theorem 1.1. [6, 8, 9] The Greedy TCP approximation ratio is 1+2 ln m.
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1.3 Inapproximability results

Moret and Shapiro [10] showed how to reduce the SCP to the TCP. Thus
they argue that the TCP is NP-Hard and extend other inapproximability
results for the SCP to the TCP:

Theorem 1.2. [10] The TCP has no polynomial-time algorithm with per-
formance bound o(lg m), unless P = NP , and no polynomial-time algo-
rithm with performance bound (1 − ε) ln m, for any ε > 0, unless NP ⊂
DTIME(mlg2 lg2 m).

2 Entropy of partitions

Entropy is a measure of uncertainty or information of a random variable
introduced by Shannon [12]. As Shannon himself stated, it is the only
function satisfying all the reasonable properties required for such a measure.

In the following we recall basic definitions and properties of entropy by
applying them to our scenario of sets of tests in connection with the theory
of set partitions. We refer to [3] for a thorough treatment of Information
Theory.

Definition 2.1 (RΓ). A tests collection Γ ⊆ {T1, ..., Tn} determines a binary
relation RΓ on the set {1, ...,m}. We say that two elements i, j (possibly
equal) are related, and write RΓ(i, j) if no test in Γ can distinguish them.
More formally:

RΓ(i, j) = ∀Tl ∈ Γ, (i, j ∈ Tl) ∨ (i, j /∈ Tl)

Proposition 2.2. RΓ is an equivalence relation.

Definition 2.3 (∆Γ). Let Γ be a tests collection over {1, ...,m}, we define
∆Γ as the partition induced on the set {1, ...,m} by RΓ.

A partition ∆ over the set {1, ...,m} has a natural probability mass func-
tion defined over its elements:

p(x) = Pr{x} =
|x|
m

, x ∈ ∆

which allows the following

Definition 2.4 (Entropy). Let Γ ⊆ {T1, ..., Tn} be a tests collection. Let
∆Γ = {A1, ..., Ak} be the partition induced by Γ on the set {1, ...,m}. The
entropy H(Γ) of Γ is defined by:

H(Γ) = H(∆Γ) = −
∑
x∈∆Γ

p(x) lg2 p(x)
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2.1 Joint and conditional partition entropy

Joint and conditional entropy are analogously defined relying over the natural
joint and conditional probabilities:

Definition 2.5 (Joint Entropy of Γ, Υ). Let Γ, Υ ⊆ {T1, ..., Tn} be tests
collections over {1, ...,m}. The joint entropy H(Γ, Υ) is:

H(Γ, Υ) = H(∆Γ, ∆Υ) = −
∑
x∈∆Γ

∑
y∈∆Υ

p(x, y) lg2 p(x, y)

where:

p(x, y) = Pr{x ∩ y} =
|x ∩ y|

m
, x ∈ ∆Γ, y ∈ ∆Υ

Proposition 2.6. Let Γ, Υ ⊆ {T1, ..., Tn} be tests collections over {1, ...,m}.

H(Γ, Υ) = H(Γ ∪Υ)

Definition 2.7 (Conditional Entropy of Γ known Υ). Let Γ, Υ ⊆
{T1, ..., Tn} be tests collections over {1, ...,m}. The entropy H(Γ|Υ) is defined
by:

H(Γ|Υ) = H(∆Γ|∆Υ) = −
∑
x∈∆Γ

∑
y∈∆Υ

p(x, y) lg2 p(x|y)

where:

p(x, y) = Pr{x ∩ y} =
|x ∩ y|

m
, x ∈ ∆Γ, y ∈ ∆Υ

p(x|y) = Pr{x|y} =
|x ∩ y|
|y|

x ∈ ∆Γ, y ∈ ∆Υ

The tight coherence of partition entropy with Shannon’s allows to deduce
the analogous chain rule:

Theorem 2.8 (Chain Rule).

H(Γ1, Γ2, ..., Γn) =
n∑

i=1

H(Γi|Γi−1, ..., Γ1)

2.2 Extremal partition entropy

Extremal properties of partition entropy have been studied by Shastri and
Govil [13]. We report their results and a slight generalization.
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Theorem 2.9 (Maximum Entropy). [13] Let ∆ = {A1, ..., Ak} be a
partition on the set {1, ...,m} such that ∀Ai, Aj ∈ ∆, ||Ai| − |Aj|| ≤ 1. Let
m = qk + r with 0 ≤ r < k. Then

H(∆) = Hmax(k) = − 1

m

{
r(q + 1) lg2

q + 1

m
+ (k − r)q lg2

q

m

}
1

is the maximum entropy-value for partitions with size k.

The result can be improved with the following:

Corollary 2.10 (Maximum Entropy). Let ∆ = {A1, ..., Ak} be a partition
on the set {1, ...,m} such that ∀Ai, Aj ∈ ∆, ||Ai| − |Aj|| ≤ 1. Then H(∆) =
Hmax(k) is the maximum entropy-value for the partitions with size at most k.

Proof. It is sufficient to show that Hmax(k) ≤ Hmax(k+1). We obtain:

Hmax(k) = − 1

m

{
r1(q1 + 1) lg2

q1 + 1

m
+ (k − r1)q1 lg2

q1

m

}
Hmax(k+1) = − 1

m

{
r2(q2 + 1) lg2

q2 + 1

m
+ (k + 1− r2)q2 lg2

q2

m

}
where m = q1k + r1, 0 ≤ r1 < k, m = q2(k + 1) + r2 and 0 ≤ r2 < k + 1.

Let’s consider this two possible situations according to the results of the
divisions m

k
and m

k+1
.

• Let’s suppose that q1 = q2 = q and r2 = r1 − q.

Hmax(k) −Hmax(k+1) = ... =

[
q(q + 1)

m

] [
lg2

q

m
− lg2

q + 1

m

]
< 0

• Now we suppose that q2 < q1.

Hmax(k) −Hmax(k+1) ≤ (lg2(q2 + 1)− lg2 q1) ≤ lg2 q1 − lg2 q1 = 0

Theorem 2.11 (Minimum Entropy). [13] Let ∆ = {A1, ..., Ak} be a
partition on the set {1, ...,m} such that for all Ai ∈ ∆ but exactly one,
|Ai| = 1. Then

H(∆) = Hmin(k) = − 1

m

{
(k − 1) lg2

1

m
+ (m− k + 1) lg2(1−

k − 1

m
)

}
is the minimum entropy-value for partitions with size k.

1This expression is slightly different from the one given in [13] which is incorrect.
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Again, the result can be improved with the following:

Corollary 2.12 (Minimum Entropy). Let ∆ = {A1, ..., Ak} be a partition
on the set {1, ...,m} such that for all Ai ∈ ∆ but exactly one, |Ai| = 1. Then
H(∆) = Hmin(k) is the minimum entropy-value for partitions with size at
least k.

Proof. It is sufficient to show that Hmin(k) ≤ Hmin(k+1). We obtain:

Hmin(k) = −k − 1

m
lg2

1

m
− m− k + 1

m
lg2

m− k + 1

m

Hmin(k+1) = − k

m
lg2

1

m
− m− k

m
lg2

m− k

m

Then:

Hmin(k) −Hmin(k+1) = ... = − 1

m
lg2(m− k + 1) < 0

3 The MIC algorithm

The MIC (Mutual Information Clustering) Algorithm chooses step by step,
with greedy strategy, a most informative test.

input ({1, ...,m}, {T1, ..., Tn})
Γ = ∅
while H({T1, ..., Tn}|Γ) 6= 0 do

begin

T ∈ arg maxTi∈({T1,...,Tn}\Γ) H({Ti}|Γ)
Γ = Γ ∪ {T}

end

return Γ

Table 1: The MIC Algorithm

Worst case running time of the MIC Algorithm is O(mn2).
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3.1 Correctness

In this section we assume that input allows a cover, i.e. there are no identical
elements.

Theorem 3.1. Let Γ be a tests collection over{1, ...,m}. The following are
equivalent:

1. H({T1, ..., Tn}|Γ) = 0

2. H(Γ) = lg2 m

3. each of the m(m − 1)/2 items pair is covered (or distinguished) by at
least one test in Γ

The proof is simple. The intuitive argument consists in noting that the
information necessary for distinguishing/identifying all elements is lg2 m and,
once H(Γ) is lg2 m, if Γ is known no other test can provide extra information.

This theorem ensures that Γ is a test cover when MIC exits the while-
cycle. It can be observed that building a possibly suboptimal test cover is
conceptually equivalent to finding a tests collection with complete informa-
tion about all/remaining tests.

3.2 Approximation ratio

In this section we prove our main result: the approximation ratio of the MIC
Algorithm is 1

ln 2
ln m + O(ln ln m).

Definition 3.2. Let

Gi be the test selected by MIC at step i.

Γi be the test collection constructed by MIC after step i: Γi = {G1, ..., Gi}
with Γ0 = ∅.

Hi be the information of Gi, given previously chosen tests: Hi = H(Gi|Γi−1)

Observaton 3.3 (Information H(Γk)). From the chain rule follows

H(Γk) =
k∑

i=1

H(Gi|Gi−1, ..., G1) =
k∑

i=1

H(Gi|Γi−1) =
k∑

i=1

Hi

Lemma 3.4 (Hi Monotonicity). Hi is non-increasing, i.e. ∀i, Hi ≥ Hi+1.
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Proof. Since Gi is selected before Gi+1 we have H(Gi|Γi−1) ≥ H(Gi+1|Γi−1).
Thus

Hi = H(Gi|Γi−1) ≥ H(Gi+1|Γi−1) ≥ H(Gi+1|Γi) = Hi+1

because conditioning reduces entropy.

Lemma 3.5 (Upper Gap). Let ∆ be any tests collection over {1, ...,m}.
If H(∆) > lg2 m− 2

m
then H(∆) = lg2 m

Proof. On the one end, the entropy of the partition ∆m = {{1}, ..., {m}}
of exactly m classes is H(∆m) = lg2 m. On the other, the maximal-entropy
Corollary 2.10 guarantees that, among partitions with strictly less than
m classes, the maximal entropy value is obtained with a partition ∆max

consisting of m− 2 classes of cardinality 1, and one of cardinality 2. Thus:

H(∆max) =
m− 2

m
lg2 m +

2

m
lg2

m

2
= lg2 m− 2

m

The following lemma guarantees that after k iterations MIC constructs a
collection Γk with at least half the information of any other collection with k
tests. This evaluates the error made by MIC after k steps, and it is the key
result towards the proof of its approximation ratio.

Lemma 3.6. Let τ = {t1, ..., t|τ |} be any tests collection and Γ|τ | the tests

collection constructed after |τ | iterations of MIC . Then H(Γ|τ |) ≥ H(τ)
2

.

Proof. Suppose by contradiction that H(Γ|τ |) < H(τ)
2

. Hence

H(τ |Γ|τ |) ≥ H(τ)−H(Γ|τ |) > H(τ)− H(τ)

2
=

H(τ)

2

Now, if we rewrite H(τ |Γ|τ |) by applying the chain rule we get

H(τ |Γ|τ |) =

|τ |∑
i=1

H(ti|ti−1, ..., t1, Γ|τ |) >
H(τ)

2

and we can note that since the |τ | terms on the left side of the inequality
are all non-negative, at least one of them (say the k-th) is such that:

H(tk|tk−1, ..., t1, Γ|τ |) >
H(τ)

2|τ |

Then:
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H(tk|Γ|τ |) ≥ H(tk|tk−1, ..., t1, Γ|τ |) >
H(τ)

2|τ |

This proves that there exists tk such that H(tk|Γ|τ |) > H(τ)
2|τ | , which implies

that tk /∈ Γ|τ |.
By the monotonicity of Hi (Lemma 3.4), we have that for all i ≤ |τ |

Hi ≥ H(τ)
2|τ | . Thus

H(Γ|τ |) =

|τ |∑
i=1

Hi ≥ |τ |H(τ)

2|τ |
=

H(τ)

2

leading to a contradiction.

It should be noted that the previous lemma needs no hypothesis on the
initial status of the computation. The lemma is still valid if MIC had already
chosen some tests Υ. The following generalizes lemma 3.6 to the general case.

Lemma 3.7. Let’s suppose that during its computation, MIC has constructed
the set Υ = Γ|Υ|. Let τ = {t1, ..., t|τ |} be any tests collection and let Γ̃ =
Γ|Υ|+|τ |\Γ|Υ| be the tests collection constructed in the subsequent |τ | iterations.

Then H(Γ̃|Υ) ≥ H(τ |Υ)
2

.

Proof. The proof is identical to the previous lemma 3.6 and can be obtained
by substituting for all entropy expressions H(x) with H(x|Υ) and H(x|y)
with H(x|(y ∪Υ)).

Theorem 3.8 (MIC Progression). Let τ ∗ be an optimal test cover. Let
Πi be the test collection built by MIC after i|τ ∗| steps: Πi = {G1, ..., Gi|τ∗|}
Then, for any i ≥ 1:

H(τ ∗|Πi) ≤
lg2 m

2i

Proof. By induction on i:

i=1. By Lemma 3.6, after |τ ∗| iterations, MIC finds a partial cover Π1 such
that H(Π1) ≥ lg2 m

2
. Thus

H(τ ∗|Π1) = H(τ ∗ ∪ Π1)−H(Π1) ≤ lg2 m− lg2 m

2
=

lg2 m

2
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Inductive step. Assume that MIC has gone through (i − 1)|τ ∗| iterations
and has constructed a partial cover Πi−1, and that

H(τ ∗|Πi−1) ≤
lg2 m

2i−1

By Lemma 3.7, in the subsequent |τ ∗| iterations, MIC selects the set

Π = Πi \Πi−1 of new elements such that H(Π|Πi−1) ≥ H(τ∗|Πi−1)
2

. Thus

H(τ ∗|Πi) = H(τ ∗|Πi−1)−H(Π|Πi−1) ≤
H(τ ∗|Πi−1)

2
≤ lg2 m

2i

Theorem 3.9 (MIC Approximation Ratio). Let τ ∗ be an optimal test
cover. Then MIC builds a test cover with cardinality at most |τ ∗|dlg2(m lg2 m)e.

Proof. By the Upper Gap Lemma 3.5, MIC iteration ends when the remain-
ing entropy reaches its theoretical bound:

H(τ ∗|Πi) ≤
lg2 m

2i
<

2

m

The second inequality holds when i > lg2(m lg2 m), so MIC goes through
at most |τ ∗|dlg2(m lg2 m)e iterations.

Corollary 3.10. MIC approximation ratio is 1
ln 2

ln m + O(ln ln m)

Proof.

dlg2(m lg2 m)e ≤ 1

ln 2
ln m + O(ln ln m)

4 Conclusion

This paper shows that Shannon’s information proves to be a better measure
to guide greedy selection strategies than simpler counting measures for the
TCP. In particular, the use of information allows a relevant improvement
of the approximation ratio of a greedy algorithm that uses set cardinality.
We are confident that similar improvements may be obtained for other NP-
hard problems whose approximating algorithms are based on simple greedy
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strategies and, in future work, we plan to investigate its application on further
problems.

We should also mention that [2] reports on a broad experimentation
of MIC both in simulated and natural genomic scenarios. MIC achieves
nearly optimal results for feasible tests and mostly better results than other
strategies proposed for genomic data, a fact that recommends for a broader
use of Shannon information as a measure of dependency in genomics.
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