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Abstract A new class of two-step Runge-Kutta methods for the numerical
solution of ordinary differential equations is proposed. These methods are ob-
tained using the collocation approach by relaxing some of the collocation con-
ditions to obtain methods with desirable stability properties. Local error esti-
mation for these methods is also discussed.
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1 Introduction

It is the purpose of this paper to discuss the construction of highly stable two-
step collocation methods for the numerical solution of initial value problem
for the system of ordinary differential equations (ODEs)

{
y′(t) = f(y(t)), t ∈ [t0, T ],
y(t0) = y0.

(1.1)
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Here, f : Rd → Rd is assumed to be sufficiently smooth, and y0 ∈ Rd is a
given initial value. Let h > 0 be a constant stepsize and define the grid

tn = t0 + nh, n = 0, 1, . . . , N,

where Nh = T − t0. Assume that the continuous approximation of sufficiently
high order P (t0+sh) to the solution y(t0+sh) of (1.1) is already computed for
s ∈ [0, 1] which corresponds to the initial interval [t0, t1]. Then the two-step
continuous approximation to the solution of (1.1) is defined by





P (tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn

+ h

m∑

j=1

(
χj(s)f(P (tn−1 + cjh)) + ψj(s)f(P (tn + cjh))

)
,

yn+1 = P (tn+1),

(1.2)

s ∈ (0, 1], n = 1, 2, . . ., N−1. Here, c = [c1, . . . , cm]T is the abscissa vector and
ϕ0(s), ϕ1(s), χj(s), and ψj(s), j = 1, 2, . . . ,m, are polynomials which define
the method. This formula defines the polynomial P (t) on the current step
from tn to tn+1, while P (tn−1 + cjh) corresponds to the polynomial values
computed in the previous step from tn−1 to tn. This method requires the
starting procedure to compute the approximate solution on the initial interval
[t0, t1]. For this purpose we can use, for example, the continuous Runge-Kutta
methods constructed by Owren and Zennaro [21], [22], [23].

Putting

Y
[n−1]
j = P (tn−1 + cjh), Y

[n]
j = P (tn + cjh), j = 1, 2, . . . ,m,

the method (1.2) corresponding to s = ci, i = 1, 2, . . . ,m, can be written as
two-step Runge-Kutta (TSRK) method of the form





yn+1 = θyn−1 + θ̃yn + h

m∑

j=1

(
vjf(Y

[n−1]
j ) + wjf(Y

[n]
j )

)
,

Y
[n]

i = uiyn−1 + ũiyn + h

m∑

j=1

(
aijf(Y

[n−1]
j ) + bijf(Y

[n]
j )

)
,

(1.3)

i = 1, 2, . . .,m, n = 1, 2, . . . , N − 1, with

θ = ϕ0(1), θ̃ = ϕ1(1), vj = χj(1), wj = ψj(1),
ui = ϕ0(ci), ũi = ϕ1(ci), aij = χj(ci), bij = ψj(ci).

This general class of TSRK methods was introduced by Jackiewicz and Tracogna
[16] and further investigated in [1], [3], [9], [10], [11], [14], [18], [28], and [29].
The special case of collocation methods (1.2) provide continuous approxima-
tion to the solution y(t) of (1.1) on the whole interval of integration, and not
only at the gridpoints {tn} as is the case for the methods defined by (1.3).

Different approach to the construction of continuous two-step Runge-Kutta
methods is presented in [17], [4] and [6]. Continuous two-step Runge-Kutta
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methods for delay differential equations are considered in [2], [5] and for
Volterra integral equations in [12].

The organization of this paper is as follows. In Section 2 we derive the order
conditions so that the method (1.2) has uniform order p and stage order q = p.
In Section 3 we derive the recurrence relation which are needed to analyze
linear stability properties of these methods. In Section 4 the estimation of the
principal part of the local error is discussed. The analysis of methods with
m = 1 and m = 2 is given in Sections 5 and 6, where the examples of A-stable
and L-stable methods are also listed. Finally, in Section 7 some concluding
remarks are given and plans for future research are briefly outlined.

2 Order conditions

In this section we derive continuous order conditions for (1.2) assuming that
P (tn + sh) is a uniform approximation to y(tn + sh), s ∈ (0, 1], of order p. As
the result the stage values P (tn + cjh) have (stage) order q = p. To this end
we investigate the local discretization error ξ(tn + sh) of (1.2) which is defined
as the residuum obtained by replacing P (tn + sh) by y(tn + sh), P (tn + cjh)
by y(tn + cjh), j = 1, 2, . . . ,m, yn−1 by y(tn−1) and yn by y(tn), where y(t)
is the solution to (1.1). This leads to

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn)

− h

m∑

j=1

(
χj(s)y′(tn + (cj − 1)h) + ψj(s)y′(tn + cjh)

)
, (2.1)

s ∈ (0, 1], n = 1, 2, . . . , N − 1. We have the following theorem.

Theorem 1 Assume that the function f(y) is sufficiently smooth. Then the
method (1.2) has uniform order p if the following conditions are satisfied





ϕ0(s) + ϕ1(s) = 1,
(−1)k

k!
ϕ0(s) +

m∑

j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)
=
sk

k!
,

(2.2)

s ∈ [0, 1], k = 1, 2, . . . , p. Moreover, the local discretization error (2.1) takes
the form

ξ(tn + sh) = hp+1Cp(s)y(p+1)(tn) +O(hp+2), (2.3)

as h→ 0, where the error function Cp(s) is defined by

Cp(s) =
sp+1

(p + 1)!
− (−1)p+1

(p + 1)!
ϕ0(s) −

m∑

j=1

(
χj(s)

(cj − 1)p

p!
+ ψj(s)

cpj
p!

)
. (2.4)
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Proof . Expanding y(tn + sh), y(tn −h), y′(t+ (cj − 1)h) and y(tn + cjh) into
Taylor series around the point tn and collecting terms with the same powers
of h we obtain

ξ(tn + sh) =
(
1 − ϕ0(s) − ϕ1(s)

)
y(tn)

+
p+1∑

k=1

(
sk

k!
− (−1)k

k!
ϕ0(s)

)
hky(k)(tn)

−
p+1∑

k=1

m∑

j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)
hky(k)(tn)

+ O(hp+2).

Equating to zero the terms of order k, k = 0, 1, . . ., p, we obtain order con-
ditions (2.2). Comparing the terms of order p + 1 we obtain (2.3) with error
function Cp(s) defined by (2.4). ut

The condition
ϕ0(s) + ϕ1(s) = 1, s ∈ [0, 1],

is the generalization of preconsistency conditions for TSRK methods (1.3),
compare [15]. This condition implies that θ, θ̃, uj and ũj appearing in (1.3)
satisfy the conditions

θ + θ̃ = 1, uj + ũj = 1, j = 1, 2, . . .,m.

We are mainly interested in methods corresponding to p = m + r, where
r = 1, 2, . . . ,m+1, and the next theorem examines the solvability of the linear
systems of equations (2.2) corresponding to these orders.

Theorem 2 Assume that ci 6= cj, and ci 6= cj − 1 for i 6= j. Then the system
of continuous order conditions (2.2) corresponding to p = m + r, where r =
1, 2, . . . ,m, has a unique solution ϕ1(s), χj(s), j = m−r+1,m−r+2, . . . ,m,
and ψj(s), j = 1, 2, . . . ,m, for any given polynomials ϕ0(s) and χj(s), j =
1, 2, . . . ,m − r. The system (2.2) corresponding to p = 2m + 1 has a unique
solution ϕ0(s), ϕ1(s), χj(s), and ψj(s), j = 1, 2, . . . ,m, which are polynomials
of degree ≤ 2m + 1.

Proof . Observe that the polynomial ϕ1(s) is uniquely determined from the
first equation of (2.2). The proof of the first part of the theorem for p = m+r,
r = 1, 2, . . . ,m, follows from the fact that the matrices of these systems (2.2)
corresponding to χj(s), j = m − r + 1,m − r + 2, . . . ,m, are Vandermonde
matrices. The second part of the theorem corresponding to p = 2m + 1 is
technically more complicated and the details are given in [13]. ut

The next result shows that the polynomials ϕ0(s), ϕ1(s), χj(s), and ψj(s),
j = 1, 2, . . . ,m, corresponding to the methods of order p = 2m + 1 satisfy
some interpolation and collocation conditions.
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Theorem 3 Assume that ϕ0(s), ϕ1(s), χj(s), and ψj(s), j = 1, 2, . . .,m,
satisfy (2.2) for p = 2m+ 1. Then these polynomials satisfy the interpolation
conditions

ϕ0(0) = 0, ϕ1(0) = 1, χj(0) = 0, ψj(0) = 0,
ϕ0(−1) = 1, ϕ1(−1) = 0, χj(−1) = 0, ψj(−1) = 0, (2.5)

and the collocation conditions

ϕ′
0(ci) = 0, ϕ′

1(ci) = 0, χ′
j(ci) = 0, ψ′

j(ci) = δij ,

ϕ′
0(ci − 1) = 0, ϕ′

1(ci − 1) = 0, χ′
j(ci − 1) = δij, ψ

′
j(ci − 1) = 0, (2.6)

i, j = 1, 2, . . .,m. Here, δij is the Kronecker delta, i.e., δii = 1 and δij = 0 for
i 6= j.

Proof . The conditions (2.5) follow immediately by substituting s = 0 and
s = −1 into (2.2) corresponding to p = 2m+ 1. To show (2.6) we differentiate
(2.2) to get




ϕ′
0(s) + ϕ′

1(s) = 0,
(−1)k

k!
ϕ′

0(s) +
m∑

j=1

(
χ′

j(s)
(cj − 1)k−1

(k − 1)!
+ ψ′

j(s)
ck−1
j

(k − 1)!

)
=

sk−1

(k − 1)!
,

(2.7)

k = 1, 2, . . ., 2m + 1. Substituting s = ci and s = ci − 1, i = 1, 2, . . .,m, into
(2.7) we obtain (2.6). ut

It follows from (2.5) and (2.6) that the polynomial P (t) defined by (1.2)
satisfies the interpolation conditions

P (tn) = yn, P (tn−1) = yn−1,

and the collocation conditions

P ′(tn + cih) = f(P (tn + cih)), P ′(tn−1 + cih) = f(P (tn−1 + cih)),

i = 1, 2, . . . ,m. It also follows from (2.5) that the methods described in The-
orem 3 satisfy the conditions Cp(−1) = 0 and Cp(0) = 0.

For the methods of order p = m + r, r = 1, 2, . . . ,m, we will choose ϕ0(s)
and χj(s), j = 1, 2, . . . ,m− r, as polynomials of degree ≤ m+ r which satisfy
the interpolation conditions

ϕ0(0) = 0, χj(0) = 0, j = 1, 2, . . . ,m− r, (2.8)

and the collocation conditions

ϕ′
0(ci) = 0, χ′

j(ci) = 0, j = 1, 2, . . . ,m− r. (2.9)

This leads to the polynomials ϕ0(s) and χj(s), j = 1, 2, . . .,m− r, of the form

ϕ0(s) = s
(
q0 + q1s + · · ·+ qm+r−1s

m+r−1
)
,

χj(s) = s
(
rj,0 + rj,1s+ · · ·+ rj,m+r−1s

m+r−1
)
,



6

j = 1, 2, . . . ,m− r, where

q0 + 2q1ci + · · ·+ (m + r)qm+r−1c
m+r−1
i = 0,

rj,0 + 2rj,1ci + · · ·+ (m+ r)rj,m+r−1c
m+r−1
i = 0,

j = 1, 2, . . . ,m− r, i = 1, 2, . . . ,m. The methods obtained in this way satisfy
some of the interpolation and collocation conditions (2.5) and (2.6). We have
the following theorem.

Theorem 4 Assume that ϕ0(s) and χj(s), j = 1, 2, . . . ,m − r, satisfy (2.8)
and (2.9). Then the solution ϕ1(s), χj(s), j = m − r + 1,m − r + 2, . . . ,m,
and ψj(s), j = 1, 2, . . . ,m of (2.2) satisfy the interpolation conditions

ϕ1(0) = 1, χj(0) = 0, j = m− r + 1,m− r + 2, . . . ,m,
ψj(0) = 0, j = 1, 2, . . . ,m, (2.10)

and the collocation conditions

ϕ′
1(ci) = 0, χ′

j(ci) = 0, j = m− r + 1,m− r + 2, . . . ,m,
ψ′

j(ci) = δij , j = 1, 2, . . . ,m, (2.11)

i = 1, 2, . . .,m.

Proof . Substituting s = 0 into (2.2) corresponding to p = m + r, r =
1, 2, . . . ,m, and taking into account that the solution to (2.2) is unique the
condition (2.10) follows. Differentiating (2.2) with respect to s and substitut-
ing s = ci, i = 1, 2, . . . ,m, into the resulting relations for k = 1, 2, . . .,m + r,
we obtain (2.11). This completes the proof. ut

The formulas obtained by imposing the conditions (2.8) and (2.9) will be
then called two-step almost collocation methods. It follows from Theorem 4
that the polynomial P (t) defined by the method (1.2) of order p = m + r,
r = 1, 2, . . . ,m, satisfies the interpolation condition

P (tn) = yn

and the collocation conditions at the points ci, i.e.,

P ′(tn + cih) = f(P (tn + cih)), i = 1, 2, . . . ,m.

However, in general, these methods do not satisfy the interpolation condition

P (tn−1) = yn−1

and the collocation conditions

P ′(tn−1 + cih) = f(P (tn−1 + cih)), i = 1, 2, . . .,m.

In our search for highly stable methods (A-stability, L-stability) we will
be mainly concerned with methods of order p = 2m and p = 2m − 1. The
advantage of these methods as compared, for example, with methods of low
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stage order, consists of the fact that they provide a uniform approximation
P (t) of order p = 2m to the solution y(t) of (1.1) over the entire interval of
integration [t0, T ]. As a result these methods do not suffer from the order re-
duction phenomenon [7]. This is in contrast to implicit Runge-Kutta methods
with m stages of order p = 2m, p = 2m − 1, or p = 2m − 2 for which the
continuous approximation to y(t) is only of (stage) order m. This leads to the
reduction of order for stiff systems of ODEs for which the effective order is
equal only to the stage order m.

3 Linear stability analysis

To analyze the stability properties of the methods (1.2) we will use the stan-
dard test equation

y′ = λy, t ≥ 0, (3.1)

where λ is a complex parameter. Applying (1.2) to (3.1) and computing the
resulting expression at the points s = ci, i = 1, 2, . . .,m, and s = 1 we obtain





P (tn + cih) = ϕ0(ci)yn−1 + ϕ1(ci)yn

+ hλ

m∑

j=1

(
χj(ci)P (tn−1 + cjh) + ψj(ci)P (tn + cjh)

)
,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn

+ hλ
m∑

j=1

(
χj(1)P (tn−1 + cjh) + ψj(1)P (tn + cjh)

)
,

(3.2)

i = 1, 2, . . .,m, n = 1, 2, . . . , N − 1. Introducing the notation z = hλ,

P (tn + ch) =



P (tn + c1h)

...
P (tn + cmh)


 , ϕ0(c) =



ϕ0(c1)

...
ϕ0(cm)


 , ϕ1(c) =



ϕ1(c1)

...
ϕ1(cm)


 ,

vT =
[
χ1(1) · · · χm(1)

]T
, wT =

[
ψ1(1) · · · ψm(1)

]T
,

and
A = [χj(ci)]

m
i,j=1 , B = [ψj(ci)]

m
i,j=1 ,

(compare also Section 1 for the definition of v, w, A, and B) the relation (3.2)
can be written in a vector form



P (tn + ch) = ϕ0(c)yn−1 + ϕ1(c)yn + z

(
AP (tn−1 + ch) + BP (tn + ch)

)
,

yn+1 = ϕ0(1) + ϕ1(1)yn + z
(
vTP (tn−1 + ch) + wTP (tn + ch)

)
,

(3.3)
n = 1, 2, . . . , N − 1. Hence,

P (tn + ch) =
(
I − zB

)−1
(
ϕ0(c)yn−1 + ϕ1(c)yn + zAP (tn−1 + ch)

)
(3.4)
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and substituting this relation into the equation for yn+1 leads to

yn+1 =
(
ϕ0(1) + zwT (I − zB)−1ϕ0(c)

)
yn−1

+
(
ϕ1(1) + zwT (I − zB)−1ϕ1(c)

)
yn

+ z
(
vT + zwT (I − zB)−1A

)
P (tn−1 + ch).

(3.5)

The relations (3.4) and (3.5) are equivalent to



yn+1

yn

P (tn + ch)


 =



M11(z) M12(z) M13(z)

1 0 0
Qϕ1(c) Qϕ0(c) zQA







yn

yn−1

P (tn−1 + ch)


 , (3.6)

where
M11(z) = ϕ1(1) + zwTQϕ1(c),
M12(z) = ϕ0(1) + zwTQϕ0(c),
M13(z) = z(vT + zwTQA),

and
Q = (I − zB)−1 ∈ Cm×m.

The matrix appearing in (3.6) is called stability matrix of the method (1.2),
and will be denoted by M (z). We have M (z) ∈ C(m+2)×(m+2). We also define
the stability function of the method (1.2) as

p(w, z) = det
(
wI −M (z)

)
. (3.7)

We will be mainly interested in methods which are A-stable. This means that
all the roots w1, w2, . . . , wm+2 of the polynomial p(w, z) defined by (3.7) are
in the unit circle for all z ∈ C such that Re(z) ≤ 0. By the maximum principle
this will be the case if the denominator of p(w, z) does not have poles in the
negative half plane C− and if the roots of P (w, iy) are in the unit circle for
all y ∈ R. This last condition will be investigated using the Schur theorem
[25] (see also [19]). This criterion for a polynomial of any degree k can be
formulated as follows. Consider the polynomial

φ(w) = ckw
k + ck−1w

k−1 + · · ·+ c1w + c0,

where ci are complex coefficients, ck 6= 0 and c0 6= 0. φ(w) is said to be a
Schur polynomial if all its roots wi, i = 1, 2, . . . , k, are inside of the unit circle.
Define

φ̂(w) = c̄0w
k + c̄1w

k−1 + · · ·+ c̄k−1w + c̄k,

where c̄i is the complex conjugate of ci. Define also the polynomial

φ1(w) =
1
w

(
φ̂(0)φ(w) − φ(0)φ̂(w)

)

of degree at most k − 1. We have the following theorem.
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Theorem 5 (Schur [25]). φ(w) is a Schur polynomial if and only if

|φ̂(0)| > |φ(0)|

and φ1(w) is a Schur polynomial.

We will be also interested in methods which are L-stable, i.e., methods
which are A-stable and all the roots of the stability function p(w, z) given by
(3.7) are equal to zero as z → −∞. Examples of such methods will be given
in Section 5 and in Section 6.

4 Local error estimation

It was demonstrated in Section 2 that the local discretization error at the point
tn+1 of the m-stage method (1.2) of order p or is given by

ξ(tn+1) = Cp(1)hp+1y(p+1)(tn) + O(hp+2), (4.1)

where the error constant Cp(1) is defined by (2.4) for s = 1. We will also
consider local error le(tn+1) defined by

le(tn+1) = Cp(1)hp+1ỹ(p+1)(tn) + O(hp+2), (4.2)

where ỹ(t) is the so-called local solution, i.e., the solution to the initial-value
problem {

ỹ′(t) = f(ỹ(t)), t ∈ [tn, tn+1],
ỹ(tn) = yn.

(4.3)

Assuming that the function f(y) appearing in (1.1) and (4.1) satisfies the
Lipschitz condition of the form

‖f(y) − f(z)‖ ≤ L‖y − z‖,

with a constant L ≥ 0, subtracting the integral forms of (1.1) and (4.1) we
obtain

‖y(t) − ỹ(t)‖ ≤ ‖y(tn) − yn‖ + L

∫ t

tn

‖y(s) − ỹ(s)‖ds,

t ∈ [tn, tn+1]. Using Gronwall’s lemma (compare for example [27]) yields

‖y(t) − ỹ(t)‖ ≤ ‖y(tn) − yn‖eL(t−tn).

Hence,
‖y(t) − ỹ(t)‖ = O(hp), t ∈ [tn, tn+1].

Assuming that the function f(y) is sufficiently smooth we have similar con-
clusion for the derivatives of y(t) and ỹ(t)

‖y(i)(t) − ỹ(i)(t)‖ = O(hp), t ∈ [tn, tn+1], i = 1, 2, . . .,
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compare [20], [26]. Therefore, we can conclude that the principal parts, i.e.,
terms of order p+ 1 , of the local discretization error (4.1) and the local error
(4.2) are the same.

In the remainder of this section we will look for estimates of hp+1ỹ(p+1)(tn)
of the form

hp+1ỹ(p+1)(tn) = α0yn−1 + α1yn+

+ h

m∑

j=1

[
βjf(P (tn−1 + cjh)) + γjf(P (tn + cjh))

]
.

(4.4)

We have the following theorem.

Theorem 6 Assume that the solution ỹ(t) to (4.3) is sufficiently smooth.
Then the constants α0, α1, βj , and γj , j = 1, 2, . . .,m appearing in (4.4)
satisfy the system of equations





α0 + α1 = 0,

(−1)k

k!
α0 +

m∑

j=1

(
βj

(cj − 1)k−1

(k − 1)!
+ γj

ck−1
j

(k − 1)!

)
= 0,

k = 1, 2, . . . , p,
(

(−1)p+1

(p+ 1)!
−Cp(−1)

)
α0 +

m∑

j=1

(
βj

(cj − 1)p

p!
+ γj

cpj
p!

)
= 1.

(4.5)

Proof . Since ỹ(t) = yn (compare (4.3)), and the method (1.2) is of order p it
is locally of order p+ 1 and we have

yn−1 = ỹ(tn−1) −Cp(−1)hp+1ỹ(p+1)(tn) + O(hp+2).

We have also

P (tn + sh) = ỹ(tn + sh) +O(hp+1), s ∈ [−1, 1].

Substituting these relations and yn = ỹ(tn) into (4.4) we obtain

hp+1ỹ(tn) = α0

(
ỹ(tn − h) − Cp(−1)hp+1ỹ(p+1)(tn)

)
+ α1ỹ(tn)

+ h

m∑

j=1

(
βj ỹ

′(tn + (cj − 1)h) + γj ỹ
′(tn + cjh)

)
.

Expanding ỹ(tn−1), ỹ(tn+1), ỹ′(tn + (cj − 1)h), and ỹ′(tn + cjh) into Tay-
lor series around the point tn and comparing the terms of order O(hk) for
k = 0, 1, . . . , p+ 1 leads to the system (4.5). ut

Observe that (4.5) constitutes a system of p+ 2 equations with respect to
2m + 2 unknown coefficients α0, α1, βj , and γj , j = 1, 2, . . . ,m. We have the
following theorem.
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Theorem 7 Assume that ci 6= cj and ci 6= cj − 1 for i 6= j. Then the system
(4.5) corresponding to p = m + r, where r = 1, 2, . . . ,m, has a family of
solutions depending on m − r free parameters which may be chosen as, for
example, βr+1, βr+2, . . . , βm or γr+1, γr+2, . . . , γm. In particular, if r = m
then the solution to the system (4.5) is unique. This system does not have
solutions if r = m+ 1.

Proof . The proof is similar to that of Theorem 2 and is therefore omitted.
The interested reader can find complete details in [13]. ut

Other choices of free parameters than those indicated in Theorem 7 are
also possible. For example, if r = m− 1 ≥ 1 there is one free parameter which
may be chosen as α1, if r = m − 2 ≥ 1 there are two free parameters which
may be chosen as α1 and α0, if r = m− 3 ≥ 1 there are three free parameters
which may be chosen as α1, α0, and β1 or γ1, and if r = m − k ≥ 1, k > 3,
there are k free parameters which may be chosen as α1, α0, and βj or γj ,
j = 1, 2, . . . , k− 2.

5 Analysis of methods with m = 1

Consider first the methods (1.2) of order p = 2m + 1 = 3. Solving the order
conditions (2.2) corrsponding to m = 1 and p = 3 we obtain a one parameter
family of two-step methods depending on the abscissa c. The coefficients of
these methods are

ϕ0(s) =
s(6c(c− 1) + 3(1 − 2c)s+ 2s2)

1 − 6c2
,

ϕ1(s) = − (1 + s)(6c2 − 1 + (1 − 6c)s+ 2s2)
1 − 6c2

,

χ(s) = −s(1 + s)(2c + 3c2 − (1 + 2c)s)
1 − 6c2

,

ψ(s) =
s(1 + s)(1 − 4c+ 3c2 + (1 − 2c)s)

1 − 6c2
,

and the error constant C3(1) is given by

C3(1) =
1− 3c− 3c2 + 12c3 − 6c4

6(1 − 6c2)
,

with c 6= ±
√

6/6. To investigate stability properties of (1.2) it is more conve-
nient to work with the polynomial obtained by multipying the stability func-
tion (3.7) by its denominator. The resulting polynomial, which will be denoted
by the same symbol p(w, z), for this family of methods takes the form

p(w, z) = p3(z)w3 + p2(z)w2 + p1(z)w + p0(z), (5.1)
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where the polynomials pi(z), i = 0, 1, 2, 3, assume the form

p0(z) = −(c− 1)2c2z,

p1(z) = 5 − 12c+ 6c2 + (2 − 5c+ 6c2 − 6c3 + 3c4)z,

p2(z) = −4 + 12c− 12c2 + (4 − 8c− 3c2 + 6c3 − 3c4)z,

and
p3(z) = −1 + 6c2 + (1 − 2c− 2c2 + c3)cz.

We will investigate next if there exist A-stable methods in this class of two-step
formulas of order p = 3. Let

p̃(w, y) := p(w, iy),

where p(w, z) is the stability polynonial (5.1). We compute next the constant
polynomial with respect to w, which will be denoted by p̃0(y), using the re-
cursive procedure described at the end of Section 3. This polynomial takes the
form

p̃0(y) = α(c)y4 + β(c)y6 + γ(c)y8,

where α(c), β(c) and γ(c) are polynomials with respect to the abscissa c. It
follows from the Schur criterion in Theorem 5 that the condition

p̃0(y) ≥ 0, for all y ≥ 0,

is the necessary condition for A-stability. However, it can be verified that the
polynomials α(c), β(c) and γ(c) are not simultaneously greater or equal to
zero for any c. This proves that A-stable methods do not exist in this class
of methods of order p = 3. In fact the region of stability of such methods is
bounded. This is illustrated in Fig. 1 for m = 1 and p = 3, where we have
plotted, in the (c, z)-plane, the stability interval of the methods corresponding
to each value of c, considering c ≥ 1

2 in order to be −1 ≤ θ < 1 for zero-
stability.

Consider next the methods (1.2) of order p = 2m = 2. We choose the
polynomial ϕ0(s) of degree less than or equal to two which satisfies the inter-
polation condition (2.8) and collocation condition (2.9), i.e., the conditions

ϕ0(0) = 0 and ϕ′
0(c) = 0.

This leads to the polynomial ϕ0(s) of the form

ϕ0(s) = q0s

(
1 − 1

2c
s

)
, (5.2)

where q0 is a real parameter. Solving the order conditions (2.2) corresponding
to m = 1 and p = 2, where ϕ0(s) is given by (5.2), we obtain a two-parameter
family of two-step methods depending on the parameter q0 and the abscissa
c. The coefficients of these formulas are given by

ϕ1(s) = 1 − q0s +
q0
2c
s2,
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Fig. 1 Region of stability in the (c, z)-plane for the two-step methods (1.2) with m = 1
and p = 3.

χ(s) =
(
c+

q0
2

+ cq0

)
s −

(
1
2

+
q0
2

+
q0
4c

)
s2,

ψ(s) =
(

1 − c+
q0
2

− q0c

)
s +

(
1
2

+
q0
2

−
q0
4c

)
s2,

and the error constant C2(1) takes the form

C2(1) =
10c− 24c2 + 12c3 + q0 − 2q0c − 6q0c2 + 12q0c3

24c
.

The stability polynomial of this family of methods is

p(w, z) = w
(
p2(z)w2 + p1(z)w + p0(z)

)
, (5.3)

where the polynomials p0(z), p1(z) and p2(z) are now given by

p0(z) = 2q0 − 4q0c+ (2c− 4c2 + 2c3 + q0 − 2q0c− q0c
2 + 2q0c3)z,

p1(z) = −4c− 2q0 + 4q0c− (6c− 8c2 + 4c3 − q0 + 2q0c − 2q0c2 + 4q0c3)z,

and
p2(z) = 4c− c2(4 − 2c+ q0 − 2q0c)z.
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Fig. 2 Region of A-stability in the (q0, c)-plane for the two-step methods (1.2) with m = 1
and p = 2.

We have performed a computer search based on the Schur criterion using
the polynomial p(w, z) given by (5.3) with p0(z), p1(z) and p2(z) defined above.
This search was performed in the parameter space (q0, c) and the results are
presented in Fig. 2 for −3 ≤ q0 ≤ 1 and 0 ≤ c ≤ 2, where the shaded region
corresponds to the A-stable formulas. Choosing, for example, q0 = −1 and
c = 3

4 we obtain the A-stable two-step method with coefficients given by

ϕ0(s) =
(2s − 3)s

3
, ϕ1(s) =

3 + 3s − 2s2

3
,

χ(s) =
(2s − 3)s

6
, ψ(s) =

(2s + 3)s
6

.

For this method the stability polynomial p(w, z) is given by

p(w, z) = w

((
3 − 27

16
z
)
w2 −

(
4 +

5
8
z
)
w +

(
1 +

5
16
z
))

,

the error constant C2(1) = − 17
144

and the constants α0, α1, β = β1 and γ = γ1

appearing in the estimator of h3ỹ(3)(tn) are

α0 = −288
95

, α1 =
288
95

, β = −72
19
, γ =

72
95
.
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We will look next for L-stable methods, i.e., methods for which all roots of the
polynomial p(w, z)/p2(z)), where p(w, z) is given by (5.3), are equal to zero as
z → −∞. Such methods correspond to the solutions of the nonlinear system
of equations

lim
z−>−∞

p0(z)
p2(z)

= 0, lim
z−>−∞

p1(z)
p2(z)

= 0.

It can be verified that this system takes the form
{

(c− 1)(2c− 2c2 + q0 − q0c − 2q0c2) = 0,
6c− 8c2 + 4c3 − q0 + 2q0c− 2q0c2 + 4q0c3 = 0,

and has solutions

q0 = −2
3
, c = 1 and q0 = −4

9
, c = 2.

The coefficients of the method corresponding to the first set of the above
parameters are

ϕ0(s) =
(s − 2)s

3
, ϕ1(s) =

3 + 2s − s2

3
, χ(s) = 0, ψ(s) =

(s+ 1)s
3

,

and the constants α0, α1, β and γ assume the values

α0 = −12
5
, α1 =

12
5
, β = −18

5
, γ =

6
5
.

The coefficients of the method corresponding to the second set of the param-
eters q0 and c are

ϕ0(s) =
s(s − 4)

9
, ϕ1(s) =

9 + 4s− s2

9
, χ(s) =

2(s − 4)s
9

, ψ(s) =
(s − 1)s

9
,

and the constants α0, α1, β and γ have the values

α0 = −108
115

, α1 =
108
115

, β = −54
23
, γ =

162
115

.

It can be verified that for s = 1 both of the above methods reduce to backward
differentiation method of order p = 2, compare [19], [8].

6 Analysis of methods with m = 2

We consider first the methods (1.2) of order p = 2m + 1 = 5. Solving the
order conditions (2.2) corresponding to m = 2 and p = 5 we obtain a family
of methods depending on the components of the abscissa vector c1 and c2.
We have plotted in Fig. 1 the contour plots of error constant C5(1) of these
formulas for 0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1. Choosing, for example, c1 = 1

2 and
c2 = 1 we obtain two-step formula of uniform order p = 5 with coefficients
given by

ϕ0(s) = − (15 − 10s− 30s2 + 24s3)s2

29
,
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Fig. 1 Contour plots of error constant C5(1) for 0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1.

ϕ1(s) =
(1 + s)(29 − 29s+ 44s2 − 54s3 + 24s4)

29
,

χ1(s) = −s
2(1 + s)(89 − 187s+ 96s2)

87
,

χ2(s) =
s(1 + s)(29 − 31s− 16s2 + 20s3)

29
,

ψ1(s) =
s2(1 + s)(19 + 7s− 16s2)

29
,

ψ2(s) = −s
2(1 + s)(7 − 2s − 12s2)

87
.

The error constant of this method is C5(1) = 113
83520

.
The stability polynomial of two parameter family of methods takes the

form
p(w, z) = p4(z)w4 + p3(z)w3 + p2(z)w2 + p1(z)w + p0(z),

where pi(z), i = 0, 1, 2, 3,4 are quadratic polynomials with respect to z. These
polynomials depend also on c1 and c2. We have performed an extensive com-
puter search based on Schur criterion in the two dimensional space (c1, c2)
looking for methods with good stability properties but so far we were not able
to find methods which are A-stable, because the region of stability of such
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methods is bounded, as it is illustrated in Fig. 2 for m = 2 and p = 5, where
we have plotted, in the (c1, z)-plane, the stability interval of the methods cor-
responding to each value of c1, considering c2 = 1 and taking c1 > −5+

√
65

10 ,
in order to satisfy the zero-stability requirement. We suspect that A-stable
methods do not exist in the class of formulas with m = 2 and p = 5, also with
respect to other values of c2.

Fig. 2 Region of stability in the (c1, z)-plane for the two-step methods (1.2) with m = 2,
p = 5 and c2 = 1.

We consider next the methods of order p = 2m = 4. We choose the poly-
nomial ϕ0(s) which satisfies the interpolation condition (2.8) and collocation
conditions (2.9), i.e., conditions of the form

ϕ0(0) = 0 and ϕ′
0(ci) = 0, i = 1, 2.

This leads to the polynomial of the form

ϕ0(s) = s(q0 + q1s+ q2s
2 + q3s

3),

where q2 and q3 are given by

q2 = −7q0 + 6q1
3

, q3 =
3q0 + 2q1

2
.
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Choosing, for example, c1 = 3
4
, c2 = 1, q0 = q1 = −1, we obtain the method

with coefficients given by

ϕ0(s) = −s(27 + 27s − 79s2 + 39s3)
27

,

ϕ1(s) =
27 + 27s + 27s2 − 79s3 + 39s4

27
,

χ1(s) = −2s(783 + 1026s− 2669s2 + 1293s3)
405

,

χ2(s) =
s(783 + 756s− 2249s2 + 1113s3)

162
,

ψ1(s) = −2s(27 + 18s− 97s2 + 57s3)
27

,

ψ2(s) =
s(837 + 594s− 2881s2 + 1857s3)

810
.

The error constant of this method is C4(1) = 1085
248832 and the constants α0, α1,

βi, and γi, i = 1, 2, appearing in the estimator of h5ỹ(5)(tn) and obtained by
the solution of the system (4.5) corresponding to m = 2 and p = 4 are

α0 =
1244160
21127

, α1 = −1244160
21127

, β1 =
4810752
21127

,

β2 = −4769280
21127

, γ1 =
2488320
21127

, γ2 = −1285632
21127

.

The stability polynomial of the four parameter family of methods of order
p = 4 takes the form

p(w, z) = w(p3(z)w3 + p2(z)w2 + p1(z)w + p0(z)),

where pi(z), i = 0, 1, 2, 3 are quadratic polynomials with respect to z. These
polynomials depend also on the parameters q0, q1, c1, and c2. We have per-
formed an extensive computer search based on the Schur criterion in the four
dimensional space (q0, q1, c1, c2) but so far we were not able to find methods
which are A-stable. We suspect again that such methods do not exist in this
class of formulas with m = 2 and p = 4.

Finally, consider the methods of order p = m + 1 = 3. We choose the
polynomials ϕ0(s) and χ1(s) of degree less than or equal to three which satisfy
conditions (2.8) and (2.9), i.e.,

ϕ0(0) = 0, χ1(0) = 0, ϕ′
0(ci) = 0, χ′

1(ci) = 0, i = 1, 2.

These polynomials take the form

ϕ0(s) = s(q0 + q1s+ q2s
2), χ1(s) = s(r0 + r1s+ r2s

2),

where
q1 = r1 = − (c1 + c2)q0

2c1c2
, q2 = r2 =

q0
3c1c2

.
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Fig. 3 Region of A-stability in the (q0, r0)-plane for the two-step methods (1.2) with m = 2
and p = 3.

Solving the order conditions (2.2) corresponding to m = 2 and p = 3 we obtain
a four parameter family of methods (1.2) depending on q0, r0, c1 and c2. The
stability polynomial of this family of methods is given by

p(w, z) = w2(p2(z)w2 + p1(z)w + p0(z)),

where pi(z), i = 0, 1, 2, are polynomials of degree less than or equal to two
with respect to z. These polynomials depend also on q0, r0, c1 and c2. We have
performed again an extensive computer search looking for methods which are
A-stable. We have found such methods only if both components of the abscissa
vector are ouside of the interval [0, 1]. The results of this search for c1 = 5

2
and c2 = 9

2
are presented in Fig. 3 for −0.4 ≤ q0 ≤ 0.1 and 0 ≤ r0 ≤ 1, where

the shaded region corresponds to A-stable methods. The coefficients of the
resulting methods with m = 2 and p = 3 are given by c = [52 ,

9
2 ],

ϕ0(s) =
q0s(135 − 42s+ 4s2)

135
, ϕ1(s) =

135− 135q0s + 42q0s2 − 4q0s3

135
,

χ1(s) =
r0s(135 − 42s+ 4s2)

135
,

χ2(s) = − (135 + 181q0 − 36r0)(135 − 42s + 4s2)s
1620

,
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ψ1(s) =
(

63
8

+
241
24

q0−3r0

)
s−

(
2+

1687
540

q0−
14
15
r0

)
s2+

(
1
6
+

241
810

q0−
4
45
r0

)
s3.

ψ2(s) =
(

35
8

+
145
24

q0−r0
)
s−

(
3
2
+

203
108

q0−
14
45
r0

)
s2+

(
1
6

+
29
162

q0−
4

135
r0

)
s3.

The error constant C3(1) is

C3(1) =
4494825 + 6019723q0 − 1229184r0

77760
.

For these methods there is a one parameter family of solutions to the system
(4.5) which define coefficients α0, α1, βi and γi, i = 1, 2. The solution to this
system such that γ1 = γ2 takes the form

α0 = −α1 =
77760

9019485 + 11232679q0 − 2293632r0
,

β1 =
155520

9019485 + 11232679q0 − 2293632r0
,

β2 = − 706320
9019485 + 11232679q0 − 2293632r0

,

γ1 = γ2 =
314280

9019485 + 11232679q0 − 2293632r0
.

We have also found methods in this class which are L-stable. Such methods
correspond to solutions of the nonlinear system

lim
z→−∞

p0(z)
p2(z)

= 0, lim
z→−∞

p1(z)
p2(z)

= 0.

One such solution is

q0 ≈ −21225899
77647080

≈ −0.273364, r0 ≈ 113887980
163068619

≈ 0.698405,

and the resulting method is A-stable and L-stable. A faster damping of errors
can be possibly achieved by the stronger property of stiff accuracy, considered
in H. Podhaisky, B.A. Schmitt and R. Weiner [24]. However, this issue is not
investigated in this paper.
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7 Concluding remarks

We proposed a new class of continuous two-step m-stage methods for the
numerical solution of ordinary differential equations. These methods are of
uniform order p and stage order q = p and as a result they do not suffer from
order reduction phenomenon persistent with methods of low stage order. They
are constructed using the collocation approach but by relaxing some of the
collocation conditions to obtain methods with desirable stability properties.
Local error estimation for these methods is also discussed. Examples of A-
stable and L-stable methods are given with m = 1 and p = 2 and m = 2 and
p = 3.

The construction of high order methods which are A-stable and L-stable
is a highly nontrivial task. Future work will address the construction of such
methods with p = m. The future work will also address various implementation
issues such as the choice of appropriate starting procedures, stepsize and order
changing strategy, solving nonlinear systems of equations by modified Newton
methods and local error estimation for large stepsizes. We hope these methods
will constitute building blocks of modern software for stiff differential systems.
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