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1 Introduction

For the numerical solution of initial-value problems for ordinary differential
equations (ODEs)

{
y′(t) = f(y(t)), t ∈ [t0, T ],
y(t0) = y0 ∈ Rm,

(1.1)

f : Rm → Rm, we consider the class of two-step Runge-Kutta (TSRK)
methods of the form




Y
[n]

i = uiyn−2 + (1 − ui)yn−1 + h

s∑

j=1

(
aijf(Y [n−1]

j ) + bijf(Y [n]
j )

)
,

yn = θyn−2 + (1 − θ)yn−1 + h

s∑

j=1

(
vjf(Y [n−1]

j ) + wjf(Y [n]
j )

)
,

(1.2)
i = 1, 2, . . ., s, n = 2, 3, . . . , N , Nh = T − t0. Here, yn is an approxi-
mation of order p to y(tn), tn = t0 + nh, and Y

[n]
i are approximations

of stage order q to y(tn−1 + cih), i = 1, 2, . . . , s, where y(t) is the solu-
tion to (1.1), c = [c1, . . . , cs]T is the abscissa vector and −1 < θ ≤ 1 for
zero-stability. The precise definitions of order and stage order are given
in Section 2. These methods were introduced by Jackiewicz and Tracogna
[24] and further investigated in [1], [2], [3], [4], [13], [17], [21], [25], [26],
[29], and [30].

TSRK methods (1.2) can be represented by the abscissa vector c and
the table of their coefficients

u A B

θ vT wT
=

u1 a11 a12 · · · a1s b11 b12 · · · b1s

u2 a21 a22 · · · a2s b21 b22 · · · b2s

...
...

...
. . .

...
...

...
. . .

...
us as1 as2 · · · ass bs1 bs2 · · · bss

θ v1 v2 · · · vs w1 · · · ws−1 ws

.

In this paper we will describe a new approach for the construction of meth-
ods of order p and stage order q = p for which stability properties are
determined by quadratic stability functions. Since p = q these methods do
not suffer from order reduction phenomenon which is the case for classical
Runge-Kutta methods. This is illustrated numerically in Section 8. More-
over, we assume that the coefficient matrix B has a one point spectrum

σ(B) = {λ}, λ > 0. (1.3)
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This feature would allow for efficient implementation of such methods sim-
ilarly as in the case of singly implicit Runge-Kutta (SIRK) methods con-
sidered by Burrage [6], Butcher [8], and Burrage, Butcher and Chipman
[7], see also [9], [11].

Putting Y [n] = [Y [n]
1 , . . . , Y

[n]
s ]T , f(Y [n]) = [f(Y [n]

1 ), . . . , f(Y [n]
s )]T , the

TSRK methods (1.2) can be written in the following vector form




Y [n] = (u ⊗ Im)yn−2 +
(
(e − u) ⊗ Im)

)
yn−1

+ h
(
(A ⊗ Im)f(Y [n−1]) + (B ⊗ Im)f(Y [n]

)
,

yn = θyn−2 + (1 − θ)yn−1

+ h
(
(vT ⊗ Im)f(Y [n−1]) + (wT ⊗ Im)f(Y [n])

)
,

(1.4)

where e = [1, . . . , 1]T ∈ Rs and Im is the identity matrix of dimension m.
To analyze stability properties of (1.4) it is convenient to reformulate

these formulas as general linear methods (GLMs) of the form



Y [n]

yn

yn−1

hf(Y [n])


 =




B e − u u A

wT 1 − θ θ vT

0 1 0 0
Is 0 0 0







hf(Y [n])

yn−1

yn−2

hf(Y [n−1])


 . (1.5)

This representation corresponds to the problem (1.1) with m = 1 which is
relevant in linear stability analysis. Putting

[
A U

B V

]
=




B e − u u A

wT 1 − θ θ vT

0 1 0 0
Is 0 0 0


 ∈ R(2s+2)×(2s+2), (1.6)

and applying (1.5) to the linear test equation

y′ = ξy, t ≥ 0, (1.7)

where ξ ∈ C, it follows that the stability properties of (1.5) with respect to
(1.7) are determined by the stability matrix M(z) defined by

M(z) = V + zB(Is − zA)−1U, (1.8)

where z = hξ ∈ C. We also define the stability function p̃(ω, z) as the
characteristic polynomial of M(z), i.e.,

p̃(ω, z) = det
(
ωIs+2 − M(z)

)
. (1.9)
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This is a polynomial of degree s+2 with respect to ω whose coefficients are
rational functions with respect to z. For methods for which the coefficient
matrix B has a one point spectrum (1.3) it is more convenient to work with
the function p(ω, z) defined by

p(ω, z) = (1 − λz)sp̃(ω, z), (1.10)

in which the coefficients of ωi, i = 0, 1, . . ., s+2, are polynomials of degree
s with respect to z.

In [1] the authors described the construction of TSRK methods for
which the stability polynomial assumes the simple form

p(ω, z) = ωs
(
(1 − λz)sω2 − p1(z)ω + p0(z)

)
, (1.11)

with a root ω = 0 of multiplicity s, where p1(z) and p0(z) are polyno-
mials of degree s with respect to z. Methods for which this is the case
are said to possess quadratic stability (QS). We were then aiming in [1] at
construction of methods which are A-stable and L-stable. This leads to
large systems of polynomial equations for the unknown coefficients of the
methods which were then solved by least squares minimization. This ap-
proach works reasonably well if the number of stages s is not too large and
in [1] examples of methods found in this way are given up to five stages.
However, this is often not manageable when s is high. In fact, the authors
were striving for high order methods with insufficient number of stages and
as a result could not control the size of the error constant and the stability
at infinity. On the contrary, the methods constructed in this paper do not
suffer from these disadvantages: there are enough free parameters to ob-
tain methods with small error constrants, reliable error estimates and good
stability properties. In this paper we propose a completely different and a
much simpler approach which is based on the so-called inherent quadratic
stability (IQS). As will be explained later these are some conditions im-
posed on the coefficients matrices A, U, B, and V which guarantee that
the stability polynomial of the resulting method reduces to (1.11). These
IQS conditions are easy to resolve, even for methods with quite large num-
ber of stages, without the need to solve complicated systems of nonlinear
equations as was the case in [1]. This leads to methods with more accurate
representation of coefficients than for methods constructed in [1]. It is also
important to observe that quadratic stability is the most natural require-
ment for TSRK methods, as it will be afterward explained in the paper.
The characterization of such methods, was inspired by the recent work on
GLMs with inherent Runge-Kutta stability (IRKS) [14], [15], [16], [31],
[32]. As in [1] we are aiming for methods which are A-stable and L-stable.
This is accomplished with the aid of symbolic manipulation packages using
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the Schur criterion [28] (see also [27]) applied to the quadratic polynomial

(1 − λz)sw2 − p1(z)ω + p0(z)

appearing in (1.11) for λ > 0. We are also investigating the possibility
of constructing methods which are algebraically stable. This work will be
reported in [19].

The organization of the paper is as follows. In Section 2 stage order and
order conditions for TSRK methods are derived using the theory of GLMs
for ODEs. In Section 3 the characterization of TSRK methods for which
stability properties are determined by quadratic stability polynomials is ob-
tained. This leads to the notion of inherent quadratic stability (IQS). The
algorithm for the construction of such methods, with additional property
that the coefficient matrix B has a one point spectrum, is then described in
Section 4. In Section 6 the construction of A-stable and L-stable quadratic
stability polynomials is discussed. The examples of TSRK methods with
IQS and coefficient matrix B which has a one point spectrum are presented
in Section 7. In Section 8 we present some numerical experiments for fixed
stepsize implementations of classical Runge-Kutta-Gauss method of order
p = 4 and stage order q = 2 and TSRK method of order p = 4 and stage
order q = 4, and SDIRK method of order p = 3 and stage order q = 2 and
TSRK method of order p = 3 and stage order q = 3. These results indicate
that in contrast to Runge-Kutta formulas TSRK methods constructed in
this paper do not suffer from order reduction for stiff problems. Finally, in
Section 9 some concluding remarks are given and plans for future work are
outlined.

2 Stage order and order conditions

In this section we derive the stage order and order conditions for TSRK
methods (1.2) using the order theory for GLMs developed by Butcher [10].
Consider the GLM with s internal stages and r external stages of the form





Y
[n]
i = h

s∑

j=1

aijf(Y [n]
j ) +

r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑

j=1

bijf(Y [n]
j ) +

r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(2.1)

n = 1, 2, . . . , N , where Y
[n]

i is an approximation to y(tn−1 + cih) and y
[n]
i

is an approximation to the linear combination of the derivatives of the
solution y(t) to (1.1) at the point tn. For TSRK methods (1.4) formulated
as GLMs (1.5) we have r = s+2, y

[n]
1 = yn, y

[n]
2 = yn−1 and y

[n]
i = hf(Y [n]

i−2),
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i = 3, 4, . . . , s + 2. These methods are characterized by the abscissa vector
c = [c1, . . . , cs]T and four coefficient matrices A = [aij], U = [uij], B =
[bij], and V = [vij], with

A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r.

The representation of TSRK methods (1.2) as GLMs (2.1) was discussed in
Section 1. This leads to the formula (1.5), where the vector y[n] of external
approximations of GLM (2.1) is expressed in terms of the quantities yn,
yn−1 and hf(Y [n]) of the TSRK method (1.2). This also leads to the
representation (1.6), where the coefficient matrices A, U, B, and V of
GLM (2.1) are expressed in terms of the coefficients θ, u, v, w, A, and B
of TSRK method (1.2).

To formulate the stage order and order conditions for GLM (2.1) we
assume that the components of the input vector y

[n−1]
i for the next step

satisfy

y
[n−1]
i =

p∑

k=0

qikh
ky(k)(tn−1) + O(hp+1), i = 1, 2, . . . , r, (2.2)

for some real parameters qik, i = 1, 2, . . . , r, k = 0, 1, . . ., p. We then
request that the components of the internal stages Y

[n]
i are approximations

of order q ≥ p− 1 to the solution y(t) of (1.1) at the points tn−1 + cih, i.e.,

Y
[n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , r, (2.3)

and that the components of the output vector y
[n]
i satisfy

y
[n]
i =

p∑

k=0

qikhky(k)(tn) + O(hp+1), i = 1, 2, . . . , r. (2.4)

The integers q and p are called the stage order and order, respectively, of
GLM (2.1). We collect the parameters qik appearing in (2.2) and (2.4) in
the vectors qk defined by

qk =
[

q1k q2k · · · qrk

]T ∈ Rr , k = 0, 1, . . . , p.

We also introduce the notation ecz =
[

ec1z ec2z · · · ccsz
]T

, and de-
fine the vector w(z) by

w(z) =
p∑

k=0

qkzk, z ∈ C.

Here, C is the set of complex numbers. We have the following theorem.
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Theorem 2.1 (Butcher [10]). Assume that y[n−1] satisfies (2.2). Then
the GLM (2.1) of order p and stage order q = p satisfies (2.3) and (2.4) if
and only if

ecz = zAecz + Uw(z) + O(zp+1), (2.5)

and
ezw = zBecz + Vw(z) + O(zp+1). (2.6)

Expanding ecz and ez in (2.5) and (2.6) into power series around z = 0
and comparing the constant terms in the resulting expressions we obtain
the preconsistency conditions

Uq0 = e, Vq0 = q0, (2.7)

where e = [1, . . . , 1] ∈ Rs+2. Comparing the terms of order zk, k =
1, 2, . . . , p in the resulting expressions the stage order and order conditions
can be reformulated in the form

ck

k!
− Ack−1

(k − 1)!
−Uqk = 0, k = 1, 2, . . . , p, (2.8)

and
k∑

l=0

qk−l

l!
− Bck−1

(k − 1)!
− Vqk = 0, k = 1, 2, . . . , p, (2.9)

compare also [23]. We determine next the vectors qk, k = 0, 1, . . ., p,
appearing in (2.8) and (2.9). It follows from (1.5) that for TSRK method
(1.2) the vector of external approximations y[n] assumes the form

y[n] =




yn

yn−1

hf(Y [n])


 =




y(tn)
y(tn − h)

y′(tn + (c − e)h)


+ O(hp+1),

where e = [1, . . . , 1] ∈ Rs, and expanding y(tn − h) and y′(tn + (c − e)h)
into Taylor series around the point tn we obtain

y[n] =




y(tn)

y(tn) − hy′(tn) +
h2

2!
y′′(tn) + · · ·+ (−1)p hp

p!
y(p)(tn)

hy′(tn)e + h2y′′(tn)
(c − e)

1!
+ · · ·+ hpy(p)(tn)

(c − e)p−1

(p − 1)!




+O(hp+1),

where (c−e)ν , ν = 0, 1, ..., p−1, is intended componentwise. Comparing
this expression with (2.4) leads to the following formulas for the vectors qk

q0 = [1 1 0T ]T , qk =

[
0

(−1)k

k!

(
(c − e)k−1

(k − 1)!

)T ]T

,
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k = 1, 2, . . . , p, where 0 in q0 stands for the zero vector of dimension
s. The vector q0 is called the preconsistency vector. It can be verified
using the representation (1.6) that the preconsistency conditions (2.7) are
automatically satisfied for TSRK method (1.2). The vector q1 is called the
consistency vector and the conditions corresponding to k = 1 in (2.8) and
(2.9) are called the consistency and stage consistency conditions. These
conditions take the form

Be + Vq1 = q0 + q1, Ae + Uq1 = c.

It is convenient to express the stage order and order conditions (2.8)
and (2.9) directly in terms of the coefficients c, θ, u, v, w, A, and B of the
original TSRK methods (1.2). Theorem 2.1 implies the following result.

Theorem 2.2 (compare [2], [24]) Assume that the TSRK method (1.2) or
(1.4) has order p and stage order q = p. Then the order and stage order
conditions take the form

Ck :=
ck

k!
− (−1)k

k!
u − A(c − e)k−1

(k − 1)!
− Bck−1

(k − 1)!
= 0, (2.10)

k = 1, , 2, . . . , p, and

Ĉk :=
1
k!

− (−1)k

k!
θ − vT (c − e)k−1

(k − 1)!
− wTck−1

(k − 1)!
= 0, (2.11)

k = 1, 2, . . ., p, where cν := [cν
1, . . . , c

ν
s ]T .

Putting k = 1 in (2.10) and (2.11) the stage consistency and consistency
conditions take the form (A + B)e − u = c, (vT + wT )e = 1 + θ.

3 Characterization of TSRK methods with

quadratic stability

To investigate the form of the stability function of the method (1.2) it is
convenient to introduce some equivalence relation between matrices of the
same dimensions. We say that the two matrices D and E are equivalent,
which will be denoted by D ≡ E, if they are equal except for the first two
rows.

This relation has several useful properties which will aid in the deriva-
tion of TSRK methods with appropriate stability properties. It can be
verified that if F ∈ R(ν+2)×(ν+2) is a matrix partitioned as follows

F =
[

F11 F12

F21 F22

]
,
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where F11 ∈ R2×2, F12 ∈ R2×ν, F21 ∈ Rν×2, F22 ∈ Rν×ν, and if F21 = 0,
then D ≡ E implies FD ≡ FE. Moreover, for any matrix F we have also
D ≡ E implies DF ≡ EF.

In general, it is a very complicated task to construct TSRK methods
(1.2) which possess QS, especially for methods with large number of stages
s, since this requires the solution of large systems of polynomial equations
of high degree, for the unknown coefficients of the methods. However,
if we are willing to restrict the class of methods, it is possible to find
interrelations between the coefficients matrices A, U, B, and V defined
by (1.6) which ensure that this is the case, i.e., that the TSRK method
(1.2) possesses QS. Such conditions in the case of GLMs with Runge-Kutta
stability were discovered recently by Butcher and Wright [15], [31], and
lead to the concept of Inherent Runge–Kutta stability (IRKS). They take a
similar form for TSRK methods with QS, leading to the concept of Inherent
Quadratic Stability (IQS), formalized in the following definition.

Definition 3.1 The TSRK method (1.2) with coefficients A, U, B, and
V defined by (1.6) has inherent quadratic stability (IQS) if there exists a
matrix X ∈ R(s+2)×(s+2) such that

BA ≡ XB, (3.1)

and
BU ≡ XV − VX. (3.2)

The significance of this definition follows from the following theorem.

Theorem 3.1 Assume that the TSRK method (1.2) has IQS and that the
matrices Is−zA and Is+2−zX are nonsingular. Then its stability function
p̃(ω, z) defined by (1.9) assumes the form

p̃(ω, z) = ωs
(
ω2 − p̃1(z)ω + p̃0(z)

)
, (3.3)

where p̃1(z) and p̃0(z) are rational functions with respect to z.

Proof: The proof of this theorem follows along the lines of the corresponding
result for GLMs with IRKS [15], [31]. Assuming Is − zA nonsingular, the
IQS relation (3.1) is equivalent to

B ≡ (Is+2 − zX)B(Is − zA)−1. (3.4)

To investigate the characteristic polynomial of the corresponding matrix
M(z), as defined in (1.8), it is more convenient to consider the matrix
related to M(z) by similarity transformation. Using (3.2) and (3.4) and
assuming that Is+2 − zX is nonsingular, we obtain

(Is+2 − zX)M(z)(Is+2 − zX)−1 ≡ V. (3.5)
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It follows from the structure of the matrix V (see (1.6)) and the relation
(3.5) that the matrix (Is+2 − zX)M(z)(Is+2 − zX)−1 can be partitioned
as follows

(Is+2 − zX)M(z)(Is+2 − zX)−1 =
[

M̃11(z) M̃12(z)
0 0

]
, (3.6)

where M̃11(z) ∈ R2×2, M̃12(z) ∈ R2×s, and 0 stands for zero matrix of
dimension s × 2 and s × s, respectively. This relation implies that the
characteristic polynomial p̃(ω, z) of the matrix

(Is+2 − zX)M(z)(Is+2 − zX)−1

and M(z) assumes the form (3.3). 2

Observe that the matrices Is − zA and Is+2 − zX are singular at a
finite number of points in the complex plane. When we implement these
methods, the stepsize control mechanism should check for those singular
points and choose the stepsize so that z = hξ is far from them by some safe
margin. This issue can be investigated using a similar approach to that
used in [5] in the case of singly implicit Runge-Kutta methods.

The proof of Theorem 3.1 explains also the reason why it is natural in
the context of TSRK methods to investigate quadratic stability. It follows
that the stability matrix M(z) and the coefficient matrix V are related
by the equation (3.5), where the matrix M(z) satisfies (3.6). Moreover,
in the case of TSRK methods, the matrix V has a very precise structure
given by the representation (1.6), and its eigenvalues are 1, −θ and 0 (with
multiplicity s). Therefore, for θ 6= 0, looking for a stability function of the
type (1.11) is quite natural choice.

To express the IQS conditions (3.1) and (3.2) in terms of the coefficients
θ, u, v, w, A, and B of TSRK method (1.2) we partition the matrix X as
follows

X =
[

X11 X12

X21 X22

]
, (3.7)

where X11 ∈ R2×2, X12 ∈ R2×s, X21 ∈ Rs×2, X22 ∈ Rs×s. We also
partition accordingly the matrices B, U, and V (see (1.6))

B =
[

B11

Is

]
, U =

[
U11 A

]
, V =

[
V11 V12

0 0

]
,

where B11 ∈ R2×s, U11 ∈ Rs×2, V11 ∈ R2×2, V12 ∈ R2×s are given by

B11 =
[

wT

0

]
, U11 =

[
e − u u

]
, V11 =

[
1 − θ θ

1 0

]
, V12 =

[
vT

0

]
,

and 0 in V stands for zero matrices of dimension s×2 and s×s, respectively.
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Theorem 3.2 A TSRK method (1.2) has IQS if there exist vectors α, β ∈
Rs and a matrix X ∈ Rs×s such that the following conditions are statisfied

B = αwT + X, e = α + β, u = θα, A = αvT . (3.8)

Proof: According to the way we have partitioned the above matrices, IQS
conditions (3.1) and (3.2) are equivalent to

B = X21B11 + X22,

and
U11 = X21V11, A = X21V12,

respectively. By setting
[

α β
]

= X21 ∈ Rs×2, X = X22, (3.9)

with α, β ∈ Rs, the theorem follows. 2

The price we have to pay for IQS as compared with the approach pre-
sented in [1] is the increase by one in the number of stages for the same
order and stage order. However, the approach based on IQS leads to a
larger number of free parameters than that in [1], which can be utilized for
other purposes such as, for example, the construction of reliable estima-
tors of local discretization errors, and possibly the construction of TSRK
methods which are also algebraically stable. These topics are the subject
of current work [18], [19].

4 Construction of TSRK methods with IQS

properties

We first compute the coefficient matrix A and the vector v from stage order
and order conditions (2.10) and (2.11). Introducing the notation

C =
[

c
c2

2!
· · · cs

s!

]
, C̃ =

[
e

c

1!
· · · cs−1

(s − 1)!

]
,

d =
[

−1
1
2!

· · · (−1)s

s!

]T

, g =
[

1
1
2!

· · · 1
s!

]T

,

E =
[

e
c − e

1!
· · · (c − e)s−1

(s − 1)!

]
,

the conditions (2.10) and (2.11) are equivalent to AE = C − udT − BC̃,
and vT E = gT − θdT − wT C̃, respectively. We note that, by assuming
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distinct abscissas, the matrices C, C̃, and E are nonsingular because of
Vandermonde type. Hence we obtain

A = (C − udT − BC̃)E−1, (4.1)

and
vT = (gT − θdT − wT C̃)E−1. (4.2)

To obtain TSRK methods with IQS we compute the matrix X from the
first condition in (3.8), i.e., X = B − αwT , and the vectors β and u from
the second and third condition of (3.8), i.e.,

β = e − α, u = θα. (4.3)

Then we enforce the last condition in (3.8) using the representations of A
and v given by (4.1) and (4.2). This leads to

C − udT − BC̃ = αgT − θαdT − αwT C̃

and, since C̃ is nonsingular, using the condition u = θα we obtain

B = (C − α(gT − wT C̃))C̃−1. (4.4)

Computing the matrix B from (4.4) and then the matrix A from (4.1),
where u = θα, and the vector v from (4.2) we obtain a family of TSRK
methods (1.2) of order p = s and stage order q = p which depends on
the parameters θ, α, c and w. By construction these methods satisfy IQS
conditions (3.8). We impose next the condition (1.3) that the matrix B
has a one point spectrum σ(B) = {λ}, where λ will be chosen in such
a way that the resulting method has some desirable stability properties.
This is equivalent to the requirement that the characteristic polynomial of
B assumes the simple form det(ωIs − B) = (ω − λ)s. Since

det(ωIs − B) =
s∑

k=0

bkωs−k,

where b0 = 1, bk = bk(θ, α, c, w), k = 1, 2, . . ., s, and

(ω − λ)s =
s∑

k=0

(
s
k

)
(−1)kλkωs−k

this is equivalent to the system of equations

bk(θ, α, c, w) =
(

s
k

)
(−1)kλk, k = 1, 2, . . . , s. (4.5)
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Since it follows from (4.4) that

B = (C − αgT )C̃−1 + αwT ,

the system (4.5) is linear with respect to w, and its solution leads, by virtue
of Theorem 3.1, to methods for which stability polynomial p(ω, z) takes the
form (1.11), i.e.,

p(ω, z) = ωs
(
(1 − λz)sω2 − p1(z)ω + p0(z)

)
. (4.6)

The polynomials p1(z) and p0(z) appearing in p(ω, z) take the form

p1(z) = p10 + p11z + · · ·+ p1,s−1z
s−1 + p1sz

s,
p0(z) = p00 + p01z + · · ·+ p0,s−1z

s−1 + p0sz
s.

(4.7)

Since, by (1.8)–(1.11),

p(ω, 0) = det(ωIs+2 −V) = ωs(ω − 1)(ω + θ) = ωs(ω2 − p1(0)ω + p0(0))

it follows that

p1(0) = p10 = 1 − θ, p0(0) = p00 = −θ. (4.8)

Therefore, the polynomials p1(z) and p2(z) now take the form

p1(z) = 1 − θ + p11z + · · ·+ p1,sz
s,

p0(z) = −θ + p01z + · · ·+ p0,sz
s.

For the method of order p = s the stability polynomial p(ω, z) satisfies the
condition

p(ez, z) = O(zs+1), z → 0. (4.9)

Expanding (4.9) into power series around z = 0 it follows from (4.8) that
the constant term vanishes, and comparing to zero terms of order zk, k =
1, 2, . . . , s, we obtain a system of s linear equations for the 2s coefficients
p1j, p0j, j = 1, 2 . . . , s, of the polynomials p1(z) and p0(z). This system has
a family of solutions depending on λ, θ, and s additional parameters which
may be chosen from p1j and p0j. Moreover we observe that, assuming
A-stability, the L-stability requirement is equivalent to

lim
z→∞

p1(z)
(1 − λz)s

= 0, lim
z→∞

p0(z)
(1 − λz)s

= 0,

which leads to the conditions

p1s = 0, p0s = 0. (4.10)
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The last point is now the computation of the vector α, which can be
carried out comparing the expression of the stability polynomial now com-
puted with the one coming from (3.6), i.e.

p̃(ω, z) = ωs det(ωI2 − M̃11(z)). (4.11)

Since the IQS conditions (3.8) do not depend on the blocks X11 and X12

of the matrix X in (3.7) we can assume without loss of generality that
X11 = 0 and X12 = 0. Therefore, it follows from (3.6) that

[
I2 0

−zX21 I2 − zX22

] [
M11(z) M12(z)
M21(z) M22(z)

]

=
[

M̃11(z) M̃12(z)
0 0

] [
I2 0

−zX21 I2 − zX22

]
.

Hence,

M11(z) = M̃11(z) − zM̃12(z)X21, M12(z) = M̃12(z)(I2 − zX22),

which, taking into account (3.9), leads to the following formula for the
matrix M̃11(z)

M̃11(z) = M11(z) + zM12(z)(I2 − zX)−1[ α β ], (4.12)

where we recall X = X22.
The construction of highly stable TSRK methods (1.2) with IQS prop-

erties and coefficient matrix B with one point spectrum σ(B) = {λ} can
be summarized in the following algorithm.

1. Choose the abscissa vector c with distinct components, such that
the matrices C̃ and E defined at the beginning of this section are
nonsingular.

2. We solve the system arising from (4.9) by fixing s coefficients of the
polynomials p0(z) and p1(z) and deriving the remaining s as functions
of θ and λ. Choose the parameters θ and λ > 0 so that the stability
polynomial p(ω, z) is A-stable and also L-stable, by using the Schur
criterion. This will be performed in Section 6 for s up to 8.

3. Compute the coefficient matrix B from the formula (4.4). This matrix
depends on the vectors α and w.

4. Compute the vectors β and u from the second and third condition of
(3.8), i.e., β = e − α and u = θα.
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5. Compute the coefficient matrix A from (4.1) and the vector v from
(4.2). They depend on α and w.

6. Solve the system (4.5) with respect to w. This leads to a family of
methods with IQS for which the matrix B has a one point spectrum
σ(B) = {λ}.

7. Compute the matrix M̃11(z) from the relation (4.12), the stability
polynomial p̃(ω, z) from (4.12) and p(ω, z) = (1− λz)sp̃(ω, z), whose
coefficients p1j and p0j depend only on α.

8. Having computed the coefficients of the method in points 3, 4 and
5 such that the order conditions are satisfied up to order and stage
order p = q = s, (4.9) is automatically satisfied by the polynomial
p(ω, z) obtained in point 7. Then, in order to equate such stability
polynomial with the one derived in point 2, it is sufficient to determine
the parameter vector α by equalizing the s coefficients which have
been fixed in point 2.

5 Construction of high order TSRK methods

with IQS property

Unfortunately, the construction of higher order methods (p = s ≥ 7) by
using the algorithm presented in the previous section, and in particular the
generation of the system of nonlinear equations in the parameter vector
α, exceeds the capabilities of symbolic manipulation packages and in this
section we describe an alternative approach to generate such nonlinear
system, using some variants of the Fourier series method, proposed by
Butcher and Jackiewicz [12] in the context of diagonally implicit multistage
integration methods (DIMSIMs). The systems obtained in this way will
then be solved by algorithms based on least squares minimization. Using
this algorithm we were able to obtain A-stable and L-stable TSRK methods
(1.2) of order and stage order p = q = s = 7 and p = q = s = 8, and such
that the matrix B has a one point spectrum σ(B) = {λ}.

We denote by

q(ω, z) = (1 − λz)sω2 − p1(z)ω + p0(z),

the quadratic factor in the stability polynomial (4.6). A Fourier series
approach described in [12] can be summarized as follows. Assume that ωµ,
µ = 1, . . . , N1, are complex numbers uniformely distributed on the unit
circle. Multiplying the relation

q(ωµ, z) = (1 − λz)sω2
µ − p1(z)ωµ + p0(z),
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by ω−k
µ , k = 0, 1, and summing with respect to µ, we obtain the following

representations of the coefficients p0(z) and p1(z):

p0(z) =
1

N1

N1∑

µ=1

q(ωµ, z),

p1(z) = − 1
N1

N1∑

µ=1

q(ωµ, z).

Assume next that zν , ν = 1, . . . , N2, are complex numbers uniformely
distributed on the unit circle. Since the functions p0(z) and p1(z) have the
form (4.7), we multiply

pk(zν) = pk0 + pk1zν + · · ·+ pksz
s
ν

by z−l
ν , l = 0, 1, . . . , s, and sum with respect to ν, obtaining

p0l =
1

N1N2

N1∑

µ=1

N2∑

ν=1

z−l
ν q(ωµ, zν),

p1l = − 1
N1N2

N1∑

µ=1

N2∑

ν=1

ω−1
µ z−l

ν q(ωµ, zν).

(5.1)

The nonlinear system determined in point 8 of Section 4 can be equivalently
solved by using the expressions (5.1) of the coefficients p0l and p1l, if the
integers N1 and N2 are chosen to be sufficiently large.

6 Construction of highly stable quadratic sta-

bility polynomials

In this section, in agreement with point 2 of the algorithm reported in the
previous section, we derive methods of order p = q = s with quadratic
stability polynomials which are A-stable and L-stable for s up to 8. Ac-
cording to point 2 of the algorithm we will need to fix s coefficients of the
polynomials p0(z) and p1(z): we choose to annihilate

p0l, l = l0, . . . , s, p1l, l = l1, . . . , s, (6.1)

with l0 = d s+1
2 e and l1 = b s+1

2 c + 1.
For s = 1 the stability polynomial (1.11) takes the form

p(ω, z) = ω
(
(1 − λz)ω2 − p1(z)ω + p0(z)

)
,
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Figure 1: Regions of A-stability and L-stability in the (θ, λ)-plane for
p(ω, z) with p = s = 1 and p = s = 2.

with p1(z) = 1− θ + p11z, p0(z) = −θ + p01z. The solution of the equation
corresponding to (4.9) with s = 1 is p11 = 1 − λ − p01 + θ. Assuming,
according to (6.1), that p01 = 0 it can be verified using the Schur criterion
[28], [27] that p(ω, z) is A-stable if and only if 2λ + θ ≥ 1, 2λ − θ ≥ 1 and
λ ≤ 2. Moreover, p11 = 0 leads to θ = λ − 1 and the resulting polynomial
is L-stable if and only if 2

3 ≤ λ ≤ 2. This is illustrated in Fig. 1, where
the range of parameters (θ, λ) for which p(ω, z) is A-stable corresponds to
the shaded region and the range of (θ, λ) for which p(ω, z) is L-stable is
plotted by a thick line.

For s = 2, 3, . . . , 8, we are looking for A-stable methods which are also
L-stable. This is the case if the degrees of the polynomials p0(z) and p1(z)
in (1.11) are equal to s − 1, according to (4.10). For s = 2 the stability
polynomial (1.11) takes the form

p(ω, z) = ω2
(
(1 − λz)2ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1− θ + p11z and p0(z) = −θ + p01z. The system of equations
corresponding to (4.9) with s = 2 takes the form

p11 − p01 = 1 − 2λ + θ, 2p11 = 3 − 8λ + 2λ2 + θ.

and the unique solution to this system is given by

p11 =
3 − 8λ + 2λ2 + θ

2
, p01 =

1 − 4λ + 2λ2 − θ

2
.
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The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 1 by the shaded region.

For s = 3 the stability polynomial (1.11) takes the form

p(ω, z) = ω3
(
(1 − λz)3ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1 − θ + p11z + p12z
2 and p0(z) = −θ + p01z + p02z

2. The
system of equations corresponding to (4.9) with s = 3 takes the form

p11 − p01 = 1 − 3λ + θ, 2p11 − 2p02 + 2p12 = 3 − 12λ + 6λ2 + θ,

3p11 + 6p12 = 7 − 36λ + 36λ2 − 6λ3 + θ,

and assuming, according to (6.1), that p02 = 0, the unique solution to this
system is given by

p11 =
2(1 − 9λ2 + 3λ3 + θ)

3
, p12 =

5 − 36λ + 54λ2 − 12λ3 − θ

6
,

p01 =
1 − 9λ + 18λ2 − 6λ3 + θ

3
.

The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 2 by the shaded region.
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Figure 2: Regions of A-stability and L-stability in the (θ, λ)-plane for
p(ω, z) with p = s = 3 and p = s = 4.

For s = 4 the stability polynomial (1.11) takes the form

p(ω, z) = ω4
(
(1 − λz)4ω2 − p1(z)ω + p0(z)

)
,
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with p1(z) = 1−θ+p11z+p12z
2+p13z

3 and p0(z) = −θ+p01z+p02z
2+p03z

3.
The system of equations corresponding to (4.9) with s = 4 takes the form

p11 − p01 = 1 − 4λ + θ, 2p11 + 2p12 − 2p02 = 3 − 16λ + 12λ2 + θ,

3p11 + 6p12 + 6p13 − 6p03 = 7 − 48λ + 72λ2 − 24λ3 + θ,

4p11 + 12p12 + 24p13 = 15 − 128λ + 288λ2 − 192λ3 + 24λ4 + θ,

and assuming, according to (6.1), that p13 = 0 and p03 = 0 the unique
solution to this system is given by

p11 =
1 − 32λ + 144λ2 − 144λ3 + 24λ4 − θ

2
,

p12 =
17 − 192λ + 576λ2 − 480λ3 + 72λ4 − θ

12
,

p01 =
3 − 40λ + 144λ2 − 144λ3 + 24λ4 + θ

2
,

p02 =
7 − 96λ + 360λ2 − 384λ3 + 72λ4 + θ

12
.

The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 2 by the shaded region. The regions for s = 2,
3, and 4 were obtained by computer searches in the parameter space (θ, λ)
using the Schur criterion [28], [27].

For s = 5 the stability polynomial (1.11) takes the form

p(ω, z) = ω5
(
(1 − λz)5ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1− θ + p11z + p12z
2 + p13z

3 + p14z
4 and p0(z) = −θ + p01z +

p02z
2 +p03z

3 +p04z
4. The system of equations corresponding to (4.9) with

s = 5 takes the form

p11 − p01 = 1 − 5λ + θ, p11 + p12 − p02 = 3/2 − 10λ + 10λ2 + θ/2,

3p11 + 6p12 + 6p13 − 6p03 = 7 − 60λ + 120λ2 − 60λ3 + θ,

4p11+12p12+24p13+24p14−24p04 = 15−160λ+480λ2−480λ3+120λ4+θ

5p11+20p12+60p13+120p14 = 31−400λ+1600λ2−2400λ3+1200λ4−120λ5+θ

and assuming, according to (6.1), that p03 = 0, p04 = 0 and p14 = 0, the
unique solution to this system is given by

p11 =
13− 200λ + 1200λ2 − 3000λ3 + 2400λ4 − 360λ5 + 3θ

5
,
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p12 =
−13 + 400λ − 3200λ2 + 8400λ3 − 6600λ4 + 960λ5 − 3θ

20
,

p13 =
31 − 600λ + 3600λ2 − 7800λ3 + 5400λ4 − 720λ5 + θ

60
,

p01 =
8 − 175λ + 1200λ2 − 3000λ3 + 2400λ4 − 360λ5 − 2θ

5
,

p02 =
9 − 200λ + 1400λ2 − 3600λ3 + 3000λ4 − 480λ5 − θ

20
.

the range of parameters (θ, λ) for which the polynomial p(ω, z) is A-stable
and also L-stable is plotted in Fig. 3 by the shaded region.

p = s = 5 p = s = 6
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Figure 3: Regions of A-stability and L-stability in the (θ, λ)-plane for
p(ω, z) with p = s = 5 and p = s = 6.

For s = 6 the stability polynomial (1.11) takes the form

p(ω, z) = ω6
(
(1 − λz)6ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1 − θ + p11z + p12z
2 + p13z

3 + p14z
4 + p15z

5 and p0(z) =
−θ + p01z + p02z

2 + p03z
3 + p04z

4 + p05z
5. Assuming, according to (6.1),

that p05 = 0, p04 = 0, p15 = 0 and p14 = 0, the system of equations
corresponding to (4.9) with s = 6 takes the form

p11 − p01 = 1 − 6λ + θ, p11 + p12 − p02 = 3/2 − 12λ + 15λ2 + θ/2,
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3p11 + 6p12 + 6p13 − 6p03 = 7 − 72λ + 180λ2 − 120λ3 + θ,

4p11 + 12p12 + 24p13 = 15− 192λ + 720λ2 − 960λ3 + 360λ4 + θ,

5p11 + 20p12 + 60p13 = 31− 480λ+ 2400λ2 − 4800λ3 + 3600λ4 − 720λ5 + θ,

6p11 + 30p12 + 120p13 = 63 − 1152λ + 7200λ2 − 19200λ3 + 21600λ4

− 8640λ5 + 720λ6 + θ.

The range of parameters (θ, λ) for which the polynomial p(ω, z) is A-
stable and also L-stable is plotted in Fig. 3 by the shaded region.

For s = 7 the stability polynomial (1.11) takes the form

p(ω, z) = ω7
(
(1 − λz)7ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1 − θ + p11z + p12z
2 + p13z

3 + p14z
4 + p15z

5 + p16z
6 and

p0(z) = −θ + p01z + p02z
2 + p03z

3 + p04z
4 + p05z

5 + p06z
6. Assuming,

according to (6.1), that p06 = 0, p05 = 0, p04 = 0, p16 = 0 and p15 = 0, the
system of equations corresponding to (4.9) with s = 7 takes the form

p11 − p01 = 1 − 7λ + θ,
p11 + p12 − p02 = 3/2 − 14λ + 21λ2 + θ/2,
3p11 + 6p12 + 6p13 − 6p03 = 7 − 84λ + 252λ2 − 210λ3 + θ,
4p11 + 12p12 + 24p13 + 24p14

= 15 − 224λ + 1008λ2 − 1680λ3 + 840λ4 + θ,
5p11 + 20p12 + 60p13 + 120p14

= 31 − 560λ + 3360λ2 − 8400λ3 + 8400λ4 − 2520λ5 + θ,
6p11 + 30p12 + 120p13 + 360p14

= 63 − 1344λ + 10080λ2 − 33600λ3 + 50400λ4

− 30240λ5 + 5040λ6 + θ,
7p11 + 42p12 + 210p13 + 840p14

= 127 − 3136λ + 28224λ2 − 117600λ3 + 235200λ4

− 211680λ5 + 70560λ6 − 5040λ7 + θ.

The range of parameters (θ, λ) for which the p(ω, z) is A-stable and also
L-stable is plotted in Fig. 4 by the shaded region.

For s = 8 the stability polynomial (1.11) takes the form

p(ω, z) = ω8
(
(1 − λz)8ω2 − p1(z)ω + p0(z)

)
,

with p1(z) = 1 − θ + p11z + p12z
2 + p13z

3 + p14z
4 + p15z

5 + p16z
6 + p17z

7

and p0(z) = −θ + p01z + p02z
2 + p03z

3 + p04z
4 + p05z

5 + p06z
6 + p07z

7.
Assuming, according to (6.1), that p07 = 0, p06 = 0, p05 = 0, p17 = 0,
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p = s = 7 p = s = 8
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Figure 4: Regions of A-stability and L-stability in the (θ, λ)-plane for
p(ω, z) with p = s = 7 and p = s = 8.

p16 = 0 and p15 = 0, the system of equations corresponding to (4.9) with
s = 8 takes the form

p11 − p01 = 1 − 8λ + θ,
p11 + p12 − p02 = 3/2− 16λ + 28λ2 + θ/2,
3p11 + 6p12 + 6p13 − 6p03 = 7 − 96λ + 336λ2 − 336λ3 + θ,
4p11 + 12p12 + 24p13 + 24p14 − 24p04

= 15 − 256λ + 1344λ2 − 2688λ3 + 1680λ4 + θ,
5p11 + 20p12 + 60p13 + 120p14

= 31 − 640λ + 4480λ2 − 13440λ3 + 16800λ4 − 6720λ5 + θ,
6p11 + 30p12 + 120p13 + 360p14

= 63 − 1536λ + 13440λ2 − 53760λ3 + 100800λ4

− 80640λ5 + 20160λ6 + θ,
7p11 + 42p12 + 210p13 + 840p14

= 127 − 3584λ + 37632λ2 − 188160λ3 + 470400λ4

− 564480λ5 + 282240λ6 − 40320λ7 + θ,
8p11 + 56p12 + 336p13 + 1680p14

= 255 − 8192λ + 100352λ2 − 602112λ3 + 1881600λ4

− 3010560λ5 + 2257920λ6 − 645120λ7 + 40320λ8 + θ.

The range of parameters (θ, λ) for which the polynomial p(ω, z) is A-
stable and also L-stable is plotted in Fig. 4 by the shaded region.

All the systems listed above admit a unique solution. These solutions
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p = s A-stability and L-stability
1 λ = 1
2 λ ∈ [0.29, 3.24]
3 λ ∈ [0.38, 1.36]
4 λ ∈ [0.27, 0.42]∪ [0.65, 0.86]
5 λ ∈ [0.31, 0.40]
6 λ ∈ [0.24, 0.25]∪ [0.47, 0.48]
7 λ ∈ [0.26, 0.27]
8 λ ∈ [0.198, 0.2]

Table 6.1: Intervals of A-stability and L-stability corresponding to θ = 0
with restriction (6.1) on pkl, with the additional condition p11 = 0 in the
case s = 1.

for s = 6, 7, 8 are not listed here and can be obtained from the authors.

7 Examples of TSRK methods with IQS

In this section we will follow the algorithm described in Section 4 to derive
examples of A-stable and L-stable TSRK methods (1.2) with IQS and for
which the coefficient matrix B has a one point spectrum σ(B) = {λ}. These
examples correspond to p = q = s, up to s = 8 . It is always assumed that
θ = 0 which implies that u = 0, see (4.3).

Example 1. TSRK methods with p = q = s = 1. The coefficients of the
method corresponding to λ = 1 and arbitrary abscissa c are given by

u A B

θ v w
=

0 c − 1 1
0 c − 1 2 − c

.

The stability polynomial p(ω, z) of this family of methods is

p(ω, z) = ω
(
(1 − z)ω − 1

)

for any c. In particular, for c = 1 this method is equivalent to the backward
Euler method.

Example 2. TSRK methods with p = q = s = 2. The coefficients of the
method corresponding to λ = 5

4
and abscissa vector c = [0, 1]T are given

by

u A B

θ vT wT
=

0 −25
32

−25
32

75
32

−25
32

0 −11
32 −11

32
49
32

5
32

0 −11
32 −11

32
49
32

5
32

.
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The stability polynomial p(ω, z) of this method is

p(ω, z) = ω2
((

1 − 5
4
z
)2

ω2 −
(
1− 31

16
z
)
ω − 7

16
z
)
.

Example 3. TSRK methods with p = q = s = 3. The coefficients of the
method corresponding to λ = 3

4
and abscissa the vector c = [0, 1

2
, 1]T are

given by u = 0, θ = 0,

A =




1371718
2008359 −1349029

610487 −598537
334774

1996151
1120476 −3899713

676582 −4599017
986185

2289675
1145977

−2640065
408409

−4106281
785118


 ,

B =




3955778
915873 −573724

492365
253229
1575340

4717083
411104 −3938351

1455396
307583
814540

6683188
522061 −3272705

1193527
472108
741259


 ,

v =
[

2289675
1145977 −2640065

408409 −4106281
785118

]T
,

w =
[

6683188
522061 −3272705

1193527
472108
741259

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω3
((

1 − 3
4
z
)3

ω2 −
(
1 − 179

96
z +

53
96

z2
)
ω − 59

96
z
)
.

Example 4. TSRK methods with p = q = s = 4. The coefficients of the
method corresponding to λ = 1

3 and the abscissa vector c = [0, 1
3 , 2

3 , 1]T are
given by

A =




− 73571
418565

316790
450193 −383309

370547 −1102057
1459404

−324116
495273

3108022
1186313 −2008351

521461 −1905671
677809

−813738
787901

4021146
972541 −6409321

1054477 −6349415
1430988

−426460
370257

4154204
900915 −12185608

1797671 −6621076
1338039




,

B =




1082275
789096

− 47158
1102905

− 20658
230377

16548
733283

2053468
392523

173881
1660851 −337517

836884
86197
880374

13765224
1684843

119918
620675 −387828

932779
214966
1621163

8694859
954168

68987
727614

−198815
935168

90358
331129




,
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v =
[
−426460

370257
4154204
900915 −12185608

1797671 −6621076
1338039

]T
,

w =
[

8694859
954168

68987
727614 −198815

935168
90358
331129

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω4
((

1 − 1
3
z
)4

ω2 − p1(z)ω + p0(z)
)

with

p1(z) = 1 − 744347
1148421

z +
2965

320219
z2, p0(z) = −241021

765596
z − 198226

1427227
z2.

Example 5. TSRK methods with p = q = s = 5. The coefficients of the
method corresponding to λ = 7

20
and the abscissa vector c = [0, 1

4
, 1

2
, 3

4
, 1]T

are given by

A =




−910895
2636314

1530449
1462933

80731
858808

−6732586
1712163

−1286173
3283870

−2876560
3965691

1052194
479091

351641
1781853

−16016705
1940229

−553297
672917

−973540
873967

3166258
938781

137149
452544

−17304128
1364977

−373097
295475

−2881493
2213042

3977337
1008884

336842
950879

−10931975
737743

−586849
397609

−672384
487907

6197680
1485339

290655
775219

−17268043
1101025

−1015105
649813




,

B =




5108949
822212

−9636557
3096360

17025
771748

289432
533353

−110837
809445

18550547
1412647

−7713256
1222519

−132617
2924009

2955541
2513118

−273787
931060

12234958
608309

−14462842
1492679

39199
284488

1104843
627526

−298985
673039

18054598
768283

−6743249
591029

342131
1110339

1953199
897516

−327324
623023

67379365
2710249

−17730591
1470500

30199
136449

3382849
1342415

−200585
428266




,

v =
[ −672384

487907
6197680
1485339

290655
775219

−17268043
1101025

−1015105
649813

]T
,

w =
[

67379365
2710249

−17730591
1470500

30199
136449

3382849
1342415

−200585
428266

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω5
((

1 − 7
20

z
)5

− p1(z)ω + p0(z)
)
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with
p1(z) = 1 −

360063
400000

z +
23017
400000

z2 +
68950
857023

z3,

p0(z) = − 60063
400000

z − 13523
200000

z2.

Example 6. TSRK methods with p = q = s = 6. The coefficients of the
method corresponding to λ = 1

4 and the abscissa vector c = [0, 1
5 , 2

5 , 3
5 , 4

5 , 1]T

are given by

A =




206761
486792

−2177245
999613

4956617
1262836

−2659937
1501250

−5233080
1613899

−1237915
1202898

1221319
1042825

−2334973
388789

2041323
188617

−6575964
1346011

−7149231
799624

−2355280
830019

1969593
895745

−8394961
744520

56845577
2797637

−6564097
715632

−298740209
17796957

−2296272
431017

5500609
1789349

−13055131
828162

31208158
1098599

−10484818
817621

−40594171
1729785

−6093829
818159

2484695
697381

−6233112
341155

47357846
1438387

−11436434
769475

−229860522
8450951

−8605475
996862

3494450
939559

−37111484
1945823

31041506
903181

−2953828
190387

−45973675
1619193

−13030852
1446043




,

B =




12559463
2371052

−304401
1566979

−796357
279698

1215880
535137

−729199
969976

240761
2509704

13632701
929185

−398936
1182213

−14663406
1841771

5592299
883194

−2074575
989342

67223
250581

21218618
772033

−532052
739999

−10418382
708325

6260019
530806

−4109866
1052423

1009813
2024284

48917180
1273853

−2232926
1972181

−6614283
323212

21956107
1323707

−5219169
954631

570709
817563

76962919
1729681

−849049
631226

−21833631
918277

35687693
1844936

−6549440
1048933

540181
671271

37000571
796584

−861014
597671

−28722443
1160134

8314220
414279

−4232029
669366

109037
120350




,

v =
[

3494450
939559

−37111484
1945823

31041506
903181

−2953828
190387

−45973675
1619193

−13030852
1446043

]T
,

w =
[

37000571
796584

−861014
597671

−28722443
1160134

8314220
414279

−4232029
669366

109037
120350

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω6
((

1 − 1
4
z
)6

− p1(z)ω + p0(z)
)

with
p1(z) = 1 − 947389

1060975
z +

175073
1568033

z2 +
5749

216200
z3,

p0(z) = −
318846
811433

z −
218512
998727

z2 −
16078
429949

z3.
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Example 7. TSRK methods with p = q = s = 7. The coefficients
of the method corresponding to λ = 13

50
and the abscissa vector c =

[0, 1
6 , 1

3 , 1
2 , 2

3 , 5
6 , 1]T are given by

A =




1783335
676924

−7538683
457692

43678077
1049267

−54284841
1022633

33777979
937657

−7198262
356705

379683
1080112

3729799
735908

−20367633
642761

72355517
903494

−82333052
806207

71311153
1028961

−59002918
1519799

725528
1072835

5991341
863556

−14152977
326276

67851404
618929

−130388531
932696

76757929
809083

−56042180
1054523

424213
458238

6715081
877512

−228392010
4773683

144600295
1195877

−148311987
961861

108811375
1039871

−38121276
650345

1152775
1128982

5598709
726350

−33826821
701924

152607948
1252999

−103762415
668086

171340501
1625629

−76481641
1295358

437020
424913

16839303
2218079

−24069939
507106

112928115
941392

−172616717
1128418

184411781
1776417

−64700798
1112595

1357207
1339799

17189707
2289435

−51762970
1102681

103097327
869006

−614615108
4062537

230612016
2246183

−54870913
954062

695949
694669




,

B =




34603261
1388554

−19233572
815029

2030231
1173350

22887644
1581295

−18435947
1539801

2486545
609454

−287001
535772

52352438
1090781

−62923957
1391490

3783300
1182001

20813831
744708

−24191511
1047718

13984141
1777666

−885477
857243

94431588
1437773

−32965493
532566

6732933
1477091

18746689
491054

−18453504
584585

14100872
1310931

−1490328
1055203

39601297
546694

−29597137
433299

2472715
483671

37107199
879216

−18665405
535864

11132654
938101

−281828
180873

67418527
924008

−89376929
1299082

4456711
868713

86203912
2022917

−31715717
906161

9266149
775688

−2079903
1325867

59500172
827943

−264345204
3900895

5409897
1066186

565393
13484

−31677679
922400

8211829
693856

−1877703
1213402

52093647
732968

−43427686
648181

2907703
585819

44100315
1060744

−32146509
942964

10865491
914213

−11407715
7718976




,

v =
[

17189707
2289435

−51762970
1102681

103097327
869006

−614615108
4062537

230612016
2246183

−54870913
954062

695949
694669

]T
,

w =
[

52093647
732968

−43427686
648181

2907703
585819

44100315
1060744

−32146509
942964

10865491
914213

−11407715
7718976

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω7
((

1 − 13
50

z
)7

− p1(z)ω + p0(z)
)

with

p1(z) = 1 − 416477
1583260

z − 229249
721861

z2 +
305139
1474364

z3 − 48467
1303694

z4,

p0(z) =
348665
626026

z +
146321
1046876

z2 +
8403

1175114
z3.

Example 8. TSRK methods with p = q = s = 8. The coefficients of the
method corresponding to λ = 1

5 and the abscissa vector c = [0, 1
7 , 2

7 , 3
7 , 4

7 , 5
7 , 6

7 , 1]T
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are given by

A =




−714138
227233

34790019
1392476

−53301137
628189

167294409
1060088

−306224974
1805161

60624942
598429

−31988668
916041

2680603
438798

−2416325
511814

152422532
4061157

−75464143
592055

306391443
1292423

−238452872
935719

131985577
867272

−50292551
958716

11349405
1236724

−10251917
1509329

8135387
150661

−182141731
993237

354764764
1040137

−249438226
680343

164398219
750841

−59165330
783927

26279871
1990421

−10589606
1236985

35206127
517305

−162887481
704753

267548092
622383

−139563607
302025

345701691
1252732

−137870526
1449391

22369407
1344256

−11544228
1149833

11492131
143984

−441900815
1630269

287646235
570558

−574398702
1059911

44449916
137345

−447058553
4007410

13920551
713295

−3013026
265405

163431069
1810859

−196745135
641911

495505820
869213

−470948712
768539

390310186
1066567

−146881795
1164404

22707495
1029007

−5121537
408010

90577214
907681

−477042901
1407643

687350054
1090485

−538544390
794837

486019835
1201148

−271627329
1947482

27007063
1106855

−16048057
1189994

119831339
1117729

−132088075
362786

325044759
479995

−463100999
636186

329337818
757593

−101397601
676674

20020383
763726




,

B =




5065317
278834

−15365130
703469

−11135701
1048147

26469955
671091

−26922302
755283

16232681
987854

−7401603
1847926

192469
464674

38506450
1408799

−47461928
1453829

−20226373
1256011

79490963
1338286

−53022378
988273

25566519
1033666

−5369003
890335

671288
1076049

94806865
2412159

−90195025
1919661

−26647373
1159290

80004065
937473

−74345674
964123

41705227
1173141

−4752779
548405

841048
938235

8076507
163075

−19188129
323684

−36904738
1277149

67033053
622801

−98205601
1010408

80147498
1788801

−12867653
1178095

184748
163535

26318004
453167

−50775833
729980

−33037981
974354

128494339
1017570

−32228512
282981

66883087
1273296

−36423076
2844381

1738343
1312523

49284925
750569

−60342586
766911

−45712898
1192413

212349752
1487813

−65561113
509486

58350037
981351

−15250587
1052989

362983
242337

113267199
1560178

−74577173
857027

−47044078
1109361

235718822
1493617

−133917767
940808

72166703
1095884

−20375991
1277015

803050
485413

46503998
596239

−98294310
1051067

−55888789
1227983

1581139891
9332284

−605910987
3965800

38271901
542181

−13717940
807873

1586639
871379




,

v =
[ −16048057

1189994
119831339
1117729

−132088075
362786

325044759
479995

−463100999
636186

329337818
757593

−101397601
676674

20020383
763726

]T
,

w =
[

46503998
596239

−98294310
1051067

−55888789
1227983

1581139891
9332284

−605910987
3965800

38271901
542181

−13717940
807873

1586639
871379

]T
.

The stability polynomial p(ω, z) of this method is

p(ω, z) = ω8
((

1 − 1
5
z
)8

− p1(z)ω + p0(z)
)

with

p1(z) = 1 +
7274497
6752382

z − 699451
758229

z2 +
122005
454009

z3 − 37033
1217147

z4,

p0(z) =
2266669
1351361

z +
852169
1159661

z2 +
124134
983293

z3 +
10532

1176849
z4.
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8 Numerical experiments

In this section we will demonstrate that the TSRK methods of order p
and stage order q = p do not suffer from order reduction which is the case
for classical Runge-Kutta formulas. To illustrate this we have applied the
Runge-Kutta-Gauss method of order p = 4 and stage order q = 2 and
TSRK method of order p = 4 and stage order q = 4 given in Example 4 in
Section 7 to the van der Pol oscillator (see VDPOL problem in [22])

{
y′1 = y2, y1(0) = 2,

y′2 =
(
(1 − y2

1)y2 − y1

)
/ε, y2(0) = −2/3,

(8.1)

t ∈ [0, T ], with a stiffness parameter ε. We have implemented both methods
with a fixed stepsize h = T/N , and observed the order of convergence of
numerical approximations to the slowly varying parts of the solution, where
the problem is stiff for small values of the parameter ε (the problem is not
stiff on the interval where the solution is changing rapidly). Similarly as in
[22], in order to reduce the influence of round-off errors the TSRK methods
(1.4) (with θ = 0 and u = 0) were rewritten in the form





Z [n] = h(A ⊗ Im)f(Z [n−1] + (e ⊗ Im)yn−2)

+ h(B ⊗ Im)f(Z [n] + (e ⊗ Im)yn−1),

yn = yn−1 + h(vT ⊗ Im)f(Z [n−1] + (e ⊗ Im)yn−2)

+ h(wT ⊗ Im)f(Z [n] + (e ⊗ Im)yn−1),

(8.2)

n = 2, 3, . . ., N , where

Z [n] := Y [n] − (e ⊗ Im)yn−1

is usually smaller than Y [n]. Define

G(Z [n]) := Z [n] − h(A ⊗ Im)f(Z [n−1] + (e ⊗ Im)yn−2)

− h(B ⊗ Im)f(Z [n] + (e ⊗ Im)yn−1),

and denote by J = J(yn−1) the Jacobian of the right hand side of (8.1)
computed at yn−1. Then similarly as in [22] an approximation to Z [n] is
computed by simplified Newton iterations





(
I − h(B ⊗ J)

)
∆Z

[n]
k = −G(Z [n]

k ), k = 0, 1, 2, . . .,

Z
[n]
k+1 = Z

[n]
k + ∆Z

[n]
k ,

with Z
[n]
0 = 0 and a stopping criterion similar to that used in [22] in case

of Runge-Kutta methods.
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ε = 10−1 ε = 10−3 ε = 10−6

N ‖eRKG
h (T )‖ p ‖eRKG

h (T )‖ p ‖eRKG
h (T )‖ p

32 3.02 · 10−7 2.19 · 10−3 5.83 · 10−3

64 1.88 · 10−8 4.00 2.25 · 10−4 3.28 1.49 · 10−3 1.97
128 1.18 · 10−9 4.00 1.68 · 10−5 3.74 3.71 · 10−4 2.01
256 8.21 · 10−11 3.84 1.11 · 10−6 3.93 8.84 · 10−5 2.07
512 1.43 · 10−11 2.52 7.02 · 10−8 3.98 1.87 · 10−5 2.24

Table 8.1: Numerical results for Runge-Kutta-Gauss method of order p = 4
and stage order q = 2

The results of numerical experiments for fixed stepsize implementations
of Runge-Kutta-Gauss method of order p = 4 and stage order q = 2 and
TSRK method (8.2) of order p = 4 and stage order q = 4 given in Example
4 in Section 7 are presented in Table 1 and Table 2, respectively. These
results correspond to T = 2/3, h = T/N , and N = 32, 64, 128, 256 and 512.
In these tables we have listed norms of errors ‖eRKG

h (T )‖ and ‖eTSRK
h (T )‖

at the endpoint of integration T and the observed order of convergence p
computed from the formula

p =
log
(
‖eh(T )‖/‖eh/2(T )‖

)

log(2)
,

where eh(T ) and eh/2(T ) are errors corresponding to stepsizes h and h/2
for Runge-Kutta-Gauss and TSRK methods. We can observe that for the
values of ε = 10−1 and ε = 10−3 for which the problem (8.1) is not stiff and
mildly stiff both methods are convergent with expected order p = 4 (al-
though there is an unexpected reduction to order p = 2.52 only for Runge-
Kutta method for N = 512). However, for small values of ε (ε = 10−6)
for which the van der Pol oscillator (8.1) is stiff the Runge-Kutta Gauss
method exhibits order reduction phenomenon and its order of convergence
drops to about p = 2 which corresponds to the stage order q = 2. This
is not the case for TSRK method which preserves order of convergence
p = q = 4, which leads to higher accuracy.

We also present in Fig. 5 the comparison of fixed stepsize implemen-
tations of SDIRK method of order p = 3 and stage order q = 2 (see [9],
p. 234) and TSRK method of order p = 3 and stage order q = 3 given in
Example 3 in Section 7. These results correspond to T = 3/4 and ε = 10−4.
We can see again that in contrast to SDIRK formula TSRK method does
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ε = 10−1 ε = 10−3 ε = 10−6

N ‖eTSRK
h (T )‖ p ‖eTSRK

h (T )‖ p ‖eTSRK
h (T )‖ p

32 7.83 · 10−7 1.85 · 10−4 2.44 · 10−4

64 1.03 · 10−7 2.93 1.94 · 10−5 3.25 2.65 · 10−5 3.21
128 7.67 · 10−9 3.75 1.57 · 10−6 3.62 2.20 · 10−6 3.59
256 5.17 · 10−10 3.89 1.09 · 10−7 3.85 1.59 · 10−7 3.79
512 4.21 · 10−11 3.62 6.52 · 10−9 4.06 1.08 · 10−8 3.89

Table 8.2: Numerical results for TSRK method of order p = 4 and stage
order q = 4
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Figure 5: Numerical results for SDIRK formula with p = 3 and q = 2 and
TSRK method with p = q = 3 on the problem (8.1) with ε = 10−4

not suffer from order reduction phenomenon. Additional results which con-
firm that TSRK methods constructed in this paper preserve the order of
convergence for stiff problems are given in [18].

9 Concluding remarks and future work

We described the construction of highly stable TSRK methods with IQS
properties, i.e., methods for which stability properties are determined by
quadratic stability polynomials. We also imposed the condition that the
coefficient matrix B has a one point spectrum σ(B) = {λ}, λ > 0, which
facilitates the efficient implementation of these methods similarly as in the
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case of SIRK methods. The interest in IQS property lies in its ability
to handle the problem of deriving A-stable, L-stable, and possibly alge-
braically stable TSRK methods, and also succeeding in managing the com-
putations in a symbolic environment for large number of stages s. The
methods which were derived have uniform order p = q = s, where s is
the number of stages. Examples of methods are presented up to the order
eight. These methods do not suffer from the order reduction phenomenon
(see [9, 11, 22]), which usually occurs in the numerical integration of stiff
problems by Runge-Kutta formulas.

The implementation issues related to these methods and comparisons
with other methods are the subject of current work and will be reported
elsewhere. They include the choice of appropriate starting procedures, es-
timation of local discretization errors for small and large stepsizes, filtering
error estimates for stiff problems, construction of continuous interpolants,
design of stepsize and order changing strategies, and strategies for efficient
solution of system of nonlinear equations which take advantage of one point
spectrum of the coefficient matrix B. All these implementation issues were
already investigated in the context of two step almost collocation methods
in the recent paper [20]. It is hoped that this work, which is also described
in the Ph.D. thesis of the second author [18], will lead to efficient variable-
stepsize variable-order algorithms for the numerical solution of stiff systems
of ODEs.
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