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Abstract

We describe a class of two-step continuous methods for theerigal integration of initial-value problems based on
stiff ordinary diferential equations (ODES). These methods generalize #iss off two-step Runge—Kutta methods.
We restrict our attention to methods of orgeee m, wheremis the number of internal stages, and stage ogderp to
avoid order reduction phenomenon foiffstiquations, and determine some of the parameters to redricerttribution

of high order terms in the local discretization error. Moreo we enforce the methods to Bestable and_-stable.
The results of some fixed and variable stepsize numericarerpnts which indicate theffectiveness of two-step
continuous methods and reliability of local error estimatwill also be presented.

Keywords: Two-step almost collocation methods, two-step continunaghods, order conditions, error propagation,
local error estimationA-stability, L-stability, variable stepsize implementation.

1. Introduction

Assume that the functiofi : RY — RY is sufficiently smooth and consider the initial-value problem fgstems
of ordinary diferential equations (ODES)

{ y @) = f(y@®), telt,Tl,

1.1
y(to) = Yo. R

Let be given a constant stepsize- 0 and define the grith = to + nh,n =0,1,..., N, whereNh =T —t,. For the
numerical solution of (1.1) consider the class of two-stegtage continuous methods defined by

P(tn + SH) = @o(¥n-1 + @1(In + h >~ (ki(9F (Pltn-1 + ¢j) + y5(9F (Pt + ;1)) 1.2)
=1 :

Yn+1 = P(tn+1),

se(0,1],n=1,2,...,N-1. Herec = [C1,...,Cn]" is the abscissa vectd?(t, + sh) is an approximation tg(t, + sh
on the interval {, tn+1], andeo(s), ¢1(9), xj(9), andy;(s), j = 1,2,..., m, are polynomials which define the method.
Setting

YU =Pty g +ch), YT = Pty + gjh),

j = 1,2,...,m, two-step continuous methods (1.2) can be regarded as #&bpkxss of two-step Runge—Kutta
methods [20], having the form

Yn+1 = @o(L)Yn-1 + w1(1)yn + h

Y™ = go(@)yn-1 + ea(@dyn + h Y (i@ FOY™ ) + w(e) FYIM)),
j=1

(@) + wa@)F(v™M)),

= (1.3)
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i=1,2,...,m,or equivalently, in tensor form,

Yne1 = OYn 1+ Oyn + h((VT @ FI™2 4 W' @ 1)FI), 1.4)
YU = (U@ )1 + (T® 1)y + h((Ae FI™ + (B )FI), '
where
T T
YO = [y oy v er™ R = per) £y L D) | er™,
and

0=go(l). 6=¢i(1)., Vvj=xj1). wj=y;l)
U =¢o(Ci), U =¢i(c), aj=x;j(c), bij=yjc).

Two-step continuous methods (1.2) were introduced in [B2ahd further investigated in [9, 14, 15], also in the
context of Volterra Integral Equations [10, 11]. In this pagve follow a similar approach to that in [13], but restrict
our attention to methods of ordgr = m and stage ordeq) = p to avoid order reduction phenomenon [3] forfisti
equations. Moreover, we are mainly interested in methodshwdre A-stable and_-stable. In the follow up paper
[9] we investigate algebraic stability properties of thesethods. In the next section we review continuous order
conditions obtained before in [13] and investigate erra@ppgation of these methods up to the terms of opder2,
in order to derive methods of type (1.2) with narrowed cdmifion of such high order terms. In Sections 3—6 we
describe the construction of methods with= g = mform = 1, 2, 3, and 4. In Section 7 we describe the variable
stepsize implementation of these methods fdf diiferential systems. In Section 8 we present the results of some
fixed and variable stepsize numerical experiments whiclcéte the &ectiveness of two-step continuous methods
and reliability of local error estimation. Finally, in Seart 9 some concluding remarks are given and plans for future
research are briefly outlined.

2. Error propagation

Let us consider the local discretization erégt, + sh) associated to the method (1.2), which is defined as the
residuum obtained by replacing in (1.BJt, + sh) by y(t, + sh), yn-1 by y(t,-1) andy, by y(t,), wherey(t) is the
solution to the problem (1.1). That is,

m
&(ta + sh) = y(ta + sh) — po()y(tn-1) — e2(IY(t) — hz (X9 F(Pltas + ) + ui(9F(P(ta + ch))).  (2.1)
=1
We now analyze the local discretization error considerivegterms up to ordep + 2. The following result arises.

Theorem 2.1. If P(t, + sh) is an approximation of uniform order p tdty + sh), s [0, 1], then the local truncation
error (2.1) of the method (1.2) takes the form

&(ta + sh) = hPHC(9yP*D(ty) + hP*2Cp,1 (Y PH2Atn) + hp+ZGp+1(s)%(y(tn))y(p”)(tn) +O(hP*3), 2.2)
where . ) ( ) .
e (_1)v+ m ci — 1) V
SO =G e ]Z; (XJ'(S) St ‘”"(S)y_:)’ (2:3)
withv = p, p+ 1, and
Gpa(9) = D mi(xi(9) + i(9)- (2.4)
j=1



Proof. It is known that (see for example [13]), H(t, + sh) is an approximation of uniform ordey to y(t, + sh),
s e [0, 1], the stage order is also equalg@nd the local discretization error (2.1) takes the form

E(ty + sh) = P IC,(9yP(t,) + O(hP*?), (2.5)

whereCp(s) is the error function of the method (1.2). Hence, the stajeesP(t,-1 + c;h) andP(t, + c;h) in (1.2)
satisfy the relations

P(tn_1 + ¢;h)
P(t, + ¢;h)

Y(tn-1 + cjh) — ;hPyPH () + O(hP*2), (2.6)
y(tn + cjh) — ;P 1yPH(t) + O(hP+2), (2.7)

where
nj= Cp(Cj), j =12,..., m,
are the stage error constants, which we put together in ttterve

77=[771 n ... Um]T~

We now analyze the local discretization error considerrggterms up to ordep + 2. Substituting the relations (2.6)
and (2.7) into (2.1), we obtain

ot S = Yo+ S = (9o =) = a(9) 0 ) [ {Wtr + o) Py
i=1

+ w0 f(y(tn +ch) - mhp+1y(p+1>(tn))) + O(h"),

and sincef is suficiently smooth, this formula can be rewritten as

Eth+sh) = y(ta+ sh) — @o(9)y(th — h) — ¢1()y(tn) — h Z(XJ(S)Y(tn—l + o)+ ¥i(9Y (ta + ¢ h))
=t
+ hP Z(UJ(X i9+ %(S)) (y(tn))y(p*l)(tn)) + O(hP*3).

j=1

Expandingy(t, + sh), y(t, — h), y'(t.-1 + c;h) andy’(t, + c;h) into Taylor series arounti and collecting the terms with
the same powers d&f, we obtain

v s = (1 o9 - Syt
p+2 é( (_1)k
: ;(H—T%(s))hky@(tn)
p+2 m k—
ky (K
) Zl.zl‘( O G g g

el + P (o) + O,

=1
Equating to zero terms of ord@(h*), k= 0,1, ..., p, we obtain the continuous order conditions (see [12, 13])

@o(s) + ¢1(s) = 1,

_1 K m )t & 2.8
( ) ¢o(9) + Z(XJ(S)((]k_ 1))! l”J(S)(k 1)|) K -
I=

se[0,1],k=1,2,..., pand, considering the remaining terms, we can conclude ltledbtal discretization error of
two-step continuous methods takes the form (2.2), @itfs), v = p, p + 1, andGy.1(s) are given by (2.3) and (2.4)
respectively.



O

We have previously provided in [13] an estimation to the iegderm of the local truncation error (2.5), having
the form

PP (t) = aoyna + @ayn +h D (B F(Pltas + Gh)) +; F(P(ta + ¢1)) (2.9)
j=1

The following result holds (see [12, 13]).

Theorem 2.2. Assume that the solutigift) to the problem (1.1) is gficiently smooth. Then the constants a1, §j,
andyj, j =1,2,...,mappearing in (2.9) satisfy the system of equations

ag+ay =0,

¥, (T DAL R VP
k! Z(ﬁl k= 1)! YJ(k—l)l)_O’ k=12...,p,

" m _ p
(%5 e S0 o)-

Concerning the high order terms, in order to narrow theirtidoution in the local discretization error (2.5), we
derive in the following sections methods such that the seager constanG,,1(1) is equal to zero. This condition
implies that terms of ordep + 2 only depend on the derivatives of the solution and not oridhra of the equation.
Moreover, this feature is of practical utility in the implemtation of such methods in a variable stepsize-varialderor
environment (which will be treated in forthcoming papessijce it simplifies the order changing strategy.

3. Construction of methodswith m= 1

We now analyze two-step continuous methods (1.2) withq = m = 1, assuming that the continuous approxi-
mantP(t, + sh) satisfies the interpolation condition

P(tn) = Yn, (3.2)
which implies that
©(0)=0, ¢i(0)=1 x(0)=0, y(0)=0.
Let us assume the following expression for the basis funstio
@o(S) = Po+ 1S, x(S) =To+T1S ¢1(s) =CGo+ S, ¥(S) =S+
Therefore, we havey = rp = 55 = 0 andgp = 1. We next impose the set of order conditions (2.8), obtaginin
p1 = —0s, n=1l-h-s

Hence, the resulting family of one stage methods (1.2) dépenq;, s;, andc, which must be determined in order
to achieve the desired stability properties (eAystability andL-stability). We next consider the associated local
truncation error (2.2)

£(tn + sh) = WPE(9YP(tn) + W(F(9y ¥ (ty) + G(s)%(y(tn»yﬁktn)) +0(h%), (3.2)

whereE(s) = C1(9), F(s) = Cu(s) andG(s) = G,(s) can be derived from formulae (2.3) and (2.4). In particuiae
constant(s) takes the following form

C2
G(s) = 5(1 - gu)(2-c—au + 2con - 2s1)s.
4



Solving the equatiofs(1) = 0 with respect tes; we obtain

_2-c-Qgi+2cq
=

As a consequence, the basis functions in (1.20vfot 1, which now depend only on the parameaggeiand the value
of the abscissa, take the following form

ol = -ths  x(9) = —(ch + 2cq - ©),
2 (3.3)
e1(s) =1+ s, ¥(s) = —§(q1 —-2cq +Cc-2).

We next consider the linear stability analysis of this clamethods, first deriving the expression of the stability
polynomial, i.e. the characteristic polynomial of the digbmatrix (see [12, 13])

M11(2 M12(2  Mi3(2)
M(2) = 1 0 0 |eCmaxm2) (3.4)

Q@¢p1(c) QD¢o(c) zQA

where
M11(2) = ¢1(1) + ZW Q(2)¢(c),
Mi2(2) = @o(1) + ZW Q(2)¢0(C),
Mi3(2) = Zv" +zw' Q(2)A),
andA = (,\/j(ci)){f‘jzl, B= (wj(ci)){]‘jzl, V= (Xj(l))fj‘ll, w = (w,—(l))‘j“:l, Q@ = (I —zB™ € C™™M and|I is the identity
matrix of ordem.
In the casenm = 1, the stability function takes the form

P(w,2) = w(P(Dw® + P1(Dw + Po(2), (3.5)

where po(2), p1(2) and p2(2) are polynomials of degree less than or equal 2 with respezt Applying the Schur
criterion (see [22, 25]) to the polynomial (3.5), we obtdie following result, which characterizésstable methods
withp=m=1.

Theorem 3.1. Each one stage continuous method of type (1.2) which satigfeerestrictions discussed above is

A-stable if and only if
c-1
— <o <1 .
c>1, % <g<1 (3.6)

Figure 3.1 shows the corresponding regioredtability in the parameter space ;).
Let us provide an example @é€stable method. Setting= % andq; = % the basis functions (3.3) take the form

w9=-5 e®=" (9=-5 w=7. @7

We can estimate the local truncation error associatedgorbihod with the one-parameter family of estimators (2.9),
where

5 3
a1 =-ap, B= g% ¥ = gao. (3.8)

The derivedA-stable methods are aléestable if

im 2@ _o and  tim 2@ _

=0.
p A pz(z) p A pz(z)




Figure 3.1: Region of-stability in the €, g1)-plane for two-step methods (2.1) with= g = m = 1 and satisfying the restrictions discussed above.

These conditions are equivalent to the system of equations
(-1+c)(-c+ o+ 2cq) =0,
2-3c+2c2-(1-2c+4c%)q; =0,

which has a unique solutions, 1) = (1, %). Correspondingly, we obtain tHestable method with

3 2
w9 =5 e9="5 MI=0, w(9=7.

and a one-parameter family of local error estimators of ype {2.9), with

@1 =-ao, B= >0 ¥ = 500.

We also observe that the deriveestable method is also superconvergent siat = 0 and, therefore, its uniform
order is equal to 2.
4. Construction of methodswith m= 2

We now consider two-stage continuous methods (2.1) with g = m = 2. We always assume that[c;] =
[%, 1]. We next impose the interpolation condition (3.1), whieads to

¢0(0) =0, x1(0)=0, x2(0)=0,
¢1(0)=1, ¥1(0)=0, u2(0)=0.
Correspondingly, we set

®o(S) = S(p1 + P295),  x1(S) = S(Ch + G29),  x2(S) = S(r1 + 129),
6



and derivep1 (), ¥1(S) andy,(s) by imposing the system of order conditions (2.8) ugpte 2, obtaining

e1(9 = 1-piS-pS,
Y1(s) = S(2+3p1— 30— 2r1 — S+ 3p2S— 3025 - 2r29),
Ya(s) = —S(1+2p1—201—r1— S+ 2p2S— 2025 I29).

This leads to a six-parameter family of methods dependingQrp,, 0i, 02, r1 andr,. These parameters will be
chosen in order to obtain methods which @stable and_-stable. We next consider the linear stability analysis,
deriving the stability polynomial (compare [12, 13])

P, 2) = w(Ps(Dw’ + P2(Dw’ + Pr@w + Po(2), (4.1)
where
Po(2) = (P20 — P10R)Z (4.2)
andpy(2), p2(2), ps(2) are polynomials of degree 2 with respeciztatHowever, by imposing
0 = 0

the polynomial (4.2) annihilates and, correspondinglg,stability function (4.1) takes the form

P(w,2) = W*(P2(De” + Pr(@w + Po(D).

wherepo(2), p1(2), p2(2) are polynomials of degree 2 with respectzto Therefore, the stability properties of the
resulting methods depend on the quadratic function (sée [8]

P(w,2) = P2(Do? + Pr(Dw + Po(2).
We next impose the system of equations leadinig-gtability, i.e.

RO, PO _
TR T AR

This system takes the form

pari — pir2 =0,
P2(—02 — r1 + 3pary — 202r1 — 2r) — P1(Q2 + 3P2ra — 200r2) = 0

and has a unique solution given by

P+ 2r2) _ I(gp +2rp)
pp=—"—"7""— =
Q2+ 12 02+ 12
This leads to a three-parameter family of methods depenaling, @, r.. We next apply the Schur criterion to
determine the set of conditions involving these paramgieisrder to be the corresponding meth@dsaandL-stable.
Let us fix, for exampleq,=2: we carry out a computer searchloktable methods in the parameter spgeert),
using this criterion. The result is shown in Fig. 4.2.
We now consider the expression of the corresponding logat#tion error (2.2)

&(ta+ sh) = PE(9)y(tn) + h*(F(9y“(tn) + G(s)%(y(tn»%@(tn)) +0(h°),

whereE(s) = Cx(9), F(s) = C3(s) andG(s) = Gz(s) can be derived from formulas (2.3) and (2.4). Feor= 1, we
obtain
G(1) = 945 714p, + 133p3,

7



Figure 4.2: Region off -stability in the 2, r2)-plane for two-step methods (1.2) with= g = m = 2, gz = 2 and satisfying the restriction discussed
above.

and its roots arg@,=3, p, = ‘l‘—g. Anyway, only in correspondence to the valyss= ‘1‘—3 andr, = 1 the Schur criterion
together with the _-stability requirements are satisfied. The basis functadtise corresponding-stable method take
the form

@o(s) = —11—595(4— 39, ¢i(9=1+ (15_(9)5_ i’_gsz’

aofi-). s
2s(91 s (77

¢49=E(§—wﬁ w©=—E(§—mﬁ

We next estimate the local truncation error associatedisontiethod, using a two-parameter family of estimators of
the type (2.9), with

8 4 1 4 4 7 1
@1 = —ao, ﬂ1=§+§ao+§)’1, ﬂ2=—4+§010—71, Y2=3 - g%~ 30

We observe that the error const&tl) is equal to 0 and, therefore, the above method has unidoder of convergence
equal to 3.
5. Construction of methodswith m= 3

We now focus our attention on two-step continuous methodsdsrp = q = m = 3, assuming thage(s) = 0 and
imposing not only the interpolation condition (3.1), bud@the collocation condition

P'(t, + Gh) = f(ty + cih, P(ty + G 1)), (5.1)



fori = 1,2,3. We next assume{, ¢, c] = [3, 2, 1] and

X1(9 = Po+ piS+ P + Pss’ + past,
¥2(S) = ro+T1S+rS + 138 + 1,8,
139 = S+55+ 9+ %S + st

Therefore, imposing the set of conditions (3.1) and (5.8 oltain

S
xi(® = Z(—6p4 +13pss— 12p4S° + 4psS°),
Va9 = Z(—eu + 1305 — 121, + 41,8,
Ya(9 = 2(—634 + 1355 128, + 4.

We next compute the remaining basis functions via orderitiond (2.8) forp = m = 3, whose expressions are here
omitted for brevity. We have now 3 free parametgug (4, ands,) to play with in order to achieve the desired stability
properties. We next analyze the stability polynomial agged to this family of methods, i.e.

P(w,2) = *(P2(De” + P1(@w + Po(D),

wherepo(2), p1(2) andp2(2) are polynomials of degree 3 with respect to z. The stalpliperty of resulting methods
now depend on the quadratic function (compare [8])

Pw,2) = p(Dw? + pr@w + Po(2).
We next solve the system of equations leading-stability

Po@ _ o o P
M@ =% MM e =0

s

with respect ts,, obtaining
1
&= —§(4I04 - 3ry).

At this point, everything depends on the paramefarsr,. We have next applied the Schur criterion to determine
the set of conditions involvingy, r4, in order to be the corresponding methddstable and carried out a computer
search ol -stable methods in the parameter spazer(), according to these conditions. The results are givengn Fi
5.3.

We now consider the expression of the local truncation evtoch is, in our case,

£(tn + SH) = H*E(9Y9(tn) + h(F(IyDta) + G(s)%(y(tn»y“)(tn)) +O(h"),

whereE(s) = C3(9), F(S) = C4(s) andG(s) = G4(s) are computed using formulas (2.6) and (2.7). In particule
expression 064(1) is
G(1) = —(784+ 60p, + 57r4)(16 + 108p, + 69r4),

and it annihilates for

_ —4(196+ 15p,) _A(4+ 27py)

g =

4 57 69
but only the first one is acceptable for us, because therliﬁe—% does not lie inside thie-stability region in
Fig. 5.3. Correspondingly, in order to achidwstability, we obtain from the Schur criterion that

554

H< p4<z,

9



Figure 5.3: Region oE-stability in the a4, r4)-plane for two-step methods (2.1) with= g = m = 3 satisfying the restrictions discussed above.

whereu is the negative root of the polynomial

a(x) = -5045494028660092 341657542579860- 593787704993¢
+ 80771782178° + 136188864".

Moreover, we have
554 21p, 16841- 315p,

912 ° 54720

We observe that the error consta&{tl) annihilates inp, = %‘: in correspondence of this value, we gain one order
more of convergence, but thestability constraint are not satisfied. Therefore, we dedd choose a value qf;
which allows us to achieve-stability and, at the same time, provides a small error tamts For example, taking
ps = 20, we obtain thé.-stable method withE(1) = &%, F(1) = 1928 G(1) = 0, and basis functions

EQ) = F(1) =

¢o(s) =0, ¢i(s) =1,
x1(S) = 55(—6 + 135 - 128> + 45%), y2(9) = —%s(—S +29)(2 - 35+ 259,

ya(s) = -%S(—s +29)(2-3s+25), yi(s) = —3—57(15594— 3412% + 31726 - 10624°),

Wo(s) = %5(1182— 25805 + 240 — 8075%),  y3(s) = —2(684— 1491s + 13887 — 4685°).

We can estimate the local truncation error of this methodhgua three-parameter family of estimators of type
(2.9), with

a1 = —Qo,
96 5723 3 1 9437
,31=—€+ 57 ao+l—0ﬁ3+§7’3, B2 =32- 57 @ — Pz — 3,
y1=-32+ 9418CYo - },33 + §3’3 Y2 = % _ 56470/0 + }/33 - 3ya.
57 2 277 5 57 5

10



6. Construction of methodswith m= 4

We now derive four-stage continuous methods (1.2) of opderq = m = 4, with ¢o(s) = 0 and satisfying the
interpolation condition (3.1) and the collocation corafit(5.1) fori = 1,2, 3,4. We assume in advance the collocation
abscissad;, ¢;, c3, ¢4] =[O, % %, 1] and the following form for the basis functions

Xx1() = S(pL+ PoS+ PaS’ + pas’ + pss?),
x2(9) = S(O1+ QS+ G + S + gsSY),
x3(9) S(r1 + r2S+ 13 + 148 + 1557,
xa(9) = S(S1+ S5+ %S + S+ 5557),

wherep;, i, ri, S, fori = 1,2, 3,4, are derived in order to satisfy the collocation condiiowe next derive;(s), for
i = 1,2, 3,4 imposing the set of order conditions (2.8), foe m = 4. We omit their expressions for brevity. We have
now 4 free parameterg4, g4, r4 ands,) to compute in order to achieve the desired stability priger

We next develop the linear stability analysis, studyingstadbility polynomial

P, 2 = W} (P2(9w® + Pr(Dw + Po(2),

wherepo(2), p1(2), p2(2), ps(2) are polynomials of degree 4 with respect to z. Hence, tHalgyaproperties of the
stability polynomial depend on the quadratic function

Pw,2) = p(Dw? + pr@w + Po(2).
We next solve the conditions fdrstability

@ _ o @

Z——00 pZ(Z) - Z——00 pz(z) -
with respect tqps andrs, obtaining
3072+ 177925 - 21s5 . 3072+ 94725 — 21s5
s = 99840 > o 3120

At this point, everything depends on the parametgrsss. We now consider the expression of the local truncation
error (2.2)

£(tn + sh) = WPE(9YP(ta) + h®(F(9)yO(ty) + G(s)%(y(tn»y@(tn)) +0O(h"),

whereE(s) = C4(9), F(s) = Cs(s) andG(s) = Gs(s) have been computed using (2.3) and (2.4). In partic@ét)
takes the form

G(1) = —s5(5768192- 2580485 — 26563 %s),
and annihilates for
_ 5768192~ 2656315

®= 258048

With this position, it is possible to prove using the Schutecion that, for anyss < 0, the corresponding method is
A-stable and_-stable. If we choose; = —1, we obtain

11



¢o(9 =0, ¢i(9) =1,
1299902¢?

X1U(8) =~ asae e 45— 1305+ 135¢% — 48s%),

xa2(s) = %(45 130s + 1355* - 485°),

x3(9) = %(45— 130s + 1355% — 48s%),

xa(s) = 4%45_ 130s + 1355 — 48s%), 6.1)
58553863 602930779, 42497543, 8132507,

va(s) = S(l " 82575365 37158012° ~ 2752512° ' 1548288

Yal8) = — 5574364272993 1066499978 + 111759158 — 399882486°),

Ya(s) = 532943 2(603731871— 1755124348 + 183596822% — 657192728°),

Va(9) = ~ Tgasg04 164345193 476610016 + 497623099 — 178237552°%),

andE(1) = 5555, F(1) = 2942883 G(1) = 0. We finally estimate the local truncation error of this noettusing a

four-parameter family of estimators (2.9) with

128 517 5 5

1 = —ao, B1= 3 F 120 T 1273 3"
511 21 2048 277 35 128
B2 = —-384- g0t 7 et 20y4, Bs=—F3—+gp% - 33" 3 V4
751 35 128 277 35 20
= -384- ,34 + ‘}/3 + 30}/4, Y2 =

3 Y Taac 137

7. Implementation of two-step continuous methods

This section is devoted to the description of the issues we bansidered for the variable stepsize implementation
of two-step continuous methods (1.2) for the numericaltsmiuof stiff problems (1.1). In particular, we discuss the
following aspects:

e the construction of a starting procedure;

e areliable estimation of the local truncation error and #sessment for large values of the stepsize;
e a stepsize control strategy;

¢ the solution of the nonlinear system of equations in theiratestages.

Starting procedure.
Concerning the starting procedure, we proceed as folloveschose an initial stepsitg and compute the missing
starting valueg: ~ Y(to + ho) and Yl ~ (y(to + c;ho))}Z;, using them-stage Runge—Kutta method

(7.1)

Y1 = Yo + ho(b” ® 1)F[!
YO = (e® 1)y + ho(A® 1)F
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based on the Gaussian nodes (see [3]), of ogpde2m and stage orday = m. In the integration of sff systems, such
methods sfier from order reduction (for instance, see [4]) and, theesftheir éfective order is equal to. These are
implicit methods and, therefore, the stage veaf8l has to be determined by solving the nonlinear system in:(7.1)
its solution is computed by using Newton iterations, in thiéofving way. We set

oY) = Y — (e® I)yo — ho(A® I)F°
and aim to solve the systed(Y%) = 0, of dimensiormdx md. We take as initial guess the vector
YOO = [yo,.... 0] € R™,

and start the following Newton-type iterative procedure

YIO+L = yIOM (oY) o(YIOH), (7.2)
fori=0,1,...,v-1, where

AD(YO) = g — h(A® 19)d € RM&MA,
andJ is the Jacobian matrix d¥[, i.e. the block diagonal matrix

af (vl
J = s
FHS)

whered f(Y!")) is the Jacobian matrix of evaluated inv!”), for j = 1,2,...,m. The expression (7.2) is equivalent to
the linear system _ _
—00(YOH)sYOl = (YY), (7.3)

wheres YO = YO+l _ y[0li We next solve the system (7.3) with respecs ¥, for example by Gaussian elimina-
tion, and derive
Y[O],i+l — Y[O],i + 6Y[0]

We stop the iterative scheme at tih step, whenlsY?||,, < tol and||®Y%||,, < tol, and takeY® = YOIV Wwe

next compute the valug, applying the Runge—Kutta methods twice, i.e. with two stepstepsizéy/2, in order to
estimate the local error by means of Richardson extrapoldtee [17])

22"(y1 — V1)
1-22m
It is well known that Richardson extrapolation is accurate,also expensive. However, its usage in our implementa-

tion is only restrict to the very first step of the integratiso its contribution to the overall cost of the algorithm @ n
significant. Finally, the stepsi#® is adjusted untilles{t,)|| < tol.

es(ty) =

Assessment of the local error estimation for large stepssize
We have provided in Section 2 the estimation (2.9) to thel kmaacation error, following the ideas reported in [12, 13]
Such an estimate is asymptotically correctligtending to O: this property can be tested by means of Tayliese
expansion arguments, or may be obvious from its constnuctldowever, in order to approach fstsystems, this
property of correctness is notfigient, since their solution also requires the usage of largpsizes with respect to
certain features of the problem. Shampine and Baca in [2]ded their attention on the assessment of the quality
of the error estimate for large values of the stepsize, hygusimilar arguments as in the classical theory of absolute
stability. We now specialize the results proposed in [24]uoclass of methods (1.2).

Following the lines drawn in [24], we consider a restrictéass of problems of the forry = Jy, whereJ is a
constant matrix that can be diagonalized by a similaritpgfarmationM—1JM = diag¢;). Then, it is stfficient to
consider the scalar problem

yt)=¢y, t>0, (7.4)
y(0) =1, '
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where¢ € C is one the eigenvalues df which is supposed to have negative real part. The solufidheoproblem
(7.4) isy(t) = €' and, therefore,
vl = gltarchn) O(hﬁﬂ)

and
yin-1 = gt (c-ehna) O(hﬁﬂ).

As a consequence, we obtain

le(t,) = e»‘tn(ezﬁn — po(L)e 7 = p1(1) = Z, (V" @ N — z5,W ® |)e2°6n) + 0@,

hn
Ppo1”

wherez = ¢h,_; andé, = We next achieve an analogous expression also for the estiorage est(,), obtaining

estt,) = Cp(l)e‘ftn(aoe-Z o+ 26087 ® NEF + 25,( ® I)ezc“") + O(z"?).

To investigate the behaviour of error estimates for lardaesofz, we define the functionRe(z 6) and Res(z 6),
respectively defined by

Re(z6) = € — ¢o(1)e” - ¢1(1) - 5(v" ® 1) — z5(W" ® 1)e#*,
Res{Z 6) = ape? + a1 + 258" ® 1) + z5(yT ® )&%,
corresponding to l&() and esti,). To assess the quality of eg)(for large step sizes, we examine the ratio

_ Res(z9)
Re(z6)
If r(z 6) ~ constant 7', for Re@) < 0 as|zl — oo with a positive integey, the error is grossly overestimated for large

z To compensate for this, Shampine and Baca proposed inif2die context of RK methods, premultiplying eg}(
by the so-calledilter matrix,

r(z o) (7.5)

(I = hnd(ta)) ™
whereJ(t,) is an approximation to th Jacobian matrix of the problem )&t the point,. This choice is suitable to
damp the large, dtierror components.
Concerning two-step continuous methods (1.2), we obséatghe ratio (7.5) behaves in the following way:

r(zo) ~ - |4 >, Re@) <0,

a1
@o(1)’
and this behaviour would suggest that the original estineat¢,) can be used for all the values of the stepsize.
However, it is important to observe that the denominatoreapipg in the above expression is equapfl) which,
for zero-stability requirements, is always between -1 anthis means that, for small values @f(1) close to zero,
the ratior(z 6) results to be very large and, therefore, the error estimsti) would not be reliable at all. On the
contrary, the filtered estimation

est(ty) = (I — hnJd) testtn), (7.6)

corresponding to the filter matriX ¢ h,J)~* proposed in [24], results to be much more reliable than thginad
estimation estf), as it has also been verified experimentally. As observ§®4f) the improved error estimator does
not alter the behaviour for smdi}, but it corrects the behaviour of the estimate for large \&hfdn,,.

Stepsize control strategy
Once we have derived an estimation to the local error, we eaitld whether to increase or decrease the stepsize in
the advancing from the poim to the pointt,.1 according to the following control (see [1])
llestn)ll < Rtol- max{|lyn-all, [lyall} + Atol, (7.7)
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whereAtol andRtol are given absolute and relative tolerances. In our numegigeeriments we have usettol =
Rtol = tol. If the control (7.7) is not satisfied, the stepsigds halved. Otherwise, the stepsize is accepted and a new
stepsize for the following step is computed, according toitable control strategy. The standard step control giyate
(see [17])

fac- tol );111)
lles(tn)ll ’

which only depends on the estimate computed in the previys san often determine useless stepsize rejections,
“with disruptive and wasteful increases and decreasedies$tepsize (see [4]). Gustafsson, Lundh abdieslind [16,

26, 27] introduced a ¢lierent stepsize control, the so-called Pl stepsize cortagled on control theory arguments.
The PI control involve the estimation of the local errorstet] to the two most recent step points, as follows

. tol ot tol o2
vt = - m'”(z’(nes(tn)n) (ues(tn_l)n) ) (7.9)

whereo; ando, must be suitably chosen. In [18, 26, 27] the derivatioorpindo; is discussed, according to some
control theory arguments. In our case, we have experimgiitaind some values far; ando-, in order to obtain a Pl
stepsize control which is competitive with the standard iartee implementation of our methods: they arg~ 0.3
ando ~ 0.04.

When we advance from, to t,,1 with stepsizeh,, another problem occurs, i.e. the computation of the missin
approximationg_1 to y(tn-1), with To_1 = tn — hn, andY!" ™ to y(t,1 + G hy), withi = 1,2,...,m. The computation
of such approximations can bdfieiently derived taking into account the special structur¢he methods we are
implementing: continuous methods are particularly sigtédr the design of a numerical solver in a variable stepsize
environment, since every time the stepsize changes, ttengiapproximations to the solution in previous points can
be suitably computed by evaluating the continuous apprastrm these points. In fact, let us suppose the the
minimum integer such that_; belongs to the intervaty, ty.1] of lengthhy. The poinft,_; is then uniquely determined
by the time scaled variable

Nneg = by - n1h1(2,( (7.8)

the1 — t

he
The value ofy,,_; can next be computed by evaluating the continuous apprawiR(§ + shy) (1.2) in correspondence
to s='5, obtaining

S=

Vo1 = o1 + L1+ M > (@ T + yi(9 F(YX)).
i=1

In an analogous way, we can derive the valuegi[BT”, i =1,2,...,m Letusassume thatis the minimum integer
such that,_1 + ¢ih, for a fixed value of the indeix belongs to the intervat] t,,1] of lengthh,. The pointt,_; + cih
corresponds to the value of the time scaled variable

to1 +Ch =t

5= n

The missing value o¥!"™! can then be computed by evaluating the continuous approxiP@ + sh) (1.2) in
correspondence t®=§, obtaining

Y = oS+ G+ e ) (@) + w9 ),
=1

Computation of the stage values
Two-step continuous methods are implicit formulae andgfoee, they require the solution of a system of nonlinear
equations of dimensiomd x mdat each time step. We solve this system by means of Newtanitgmations, in the
following way. We define

oY) = Y1 — (e )y 1 — @ 1)y - h((A® 1)FI™Y - (Be 1)FIT),
15



and aim to solve the syste@(Y[") = 0. We take as initial guess the vector
YO = Ty, Lyl T € R™
and start the following Newton-type iterative procedure
yiied = Yl Go(YIy) (v, (7.10)

fori=0,1,...,u—-1, where
AD(Y) = g — h(B® 19)J € RM&MA,

andJ is the Jacobian matrix d¥[", i.e. the block diagonal matrix

af (vl
J = .'. )
af (Yl

whereaf(YJ[”]) is the Jacobian matrix of evaluated in{}“], forj=1,2,...,m. The expression (7.10) is equivalent to
the linear system _ .
—00(YIsY = @y, (7.11)

wheresYIW = ylli+1 _ vyInli - We next solve the system (7.11) with respects¥d”, for instance by Gaussian
elimination, and derive
I+ — Il syt

We stop the iterative scheme at fia¢h step, whenis Y ||, < tol and||@YIM#||,, < tol, and takeylW = YN,

The numerical solution of the nonlinear systdrfy") = 0 can be #iciently approached if the matri® has a
structured shape, e.g. lower triangular or diagonal: iseteases, instead of solving a nonlinear system of dimension
md, we solvem successive or independent nonlinear systems of dimeséod, in particular, when these systems
are independent, their solution can be fastly computed irallel environment. The construction of such numerical
methods is treated in [15].

8. Numerical examples

In this section we present some fixed and variable stepsimeernical experiments which aim to indicate the
effectiveness of two-step continuous methods, especiallgarimplementation of dti problems, and the reliability
of the local error estimation. The implementation issuefhiage used in order to carry out the following experiments
are the ones described in Section 7. We aim to solve the fwitpproblems:

1. The Prothero-Robinson problem

{ y () = Ay - GM) + G'(1), telto,Tl, 6.1)

y(to) = Yo,

where Re{) < 0 andG(t) is a slowly varying function on the intervalp[ T]. As observed by Hairer and
Wanner [18] in the context of Runge-Kutta methods this équairovides much new insight into the behaviour
of numerical methods for $fiproblems. This equation witly = 0, G(t) = expfut), andy, = 1, was also used
by Butcher [3] to investigate the order reduction for Rukgeta-Gauss methods of ordpr= 2m;

2. The van der Pol oscillator (see VDPOL problem in [18])

Y1 (1) = y2(1), te[0,T],
1 — y2(1)ya(t) — ya(t
yi(t) = (1-yi( ))};2() ya( )’ 62)
y1(0) = 2,
y2(0) =0,

16



k ef(T) fe p k e (T) fe p

6 3.70-10° 384 6 7.90-10° 384

7 4.74-1077 768 2.96 7 1.98-10° 768 1.99
8 6.00-10°8 1536 2.98 8 4.96-10°10 1536 2.00
9 7.55-10°° 3072 299 9 123.10°10 3072 201
10 9.46-10°10 6144 3.00 10 303.101 6144 2.02
11 1.18-1071° 12288 3.00 11 7.36-107%2 12288 2.04

Table 8.1: Numerical results for Radau IIA method of order 3 and stage ordey = 2 for the Prothero-Robinson problem.

with T > 0 ande = 1075, This equation constitutes a challenging problem for nicaémethods: small
oscillations are amplified, while large oscillations areng@d (compare [17]).

8.1. Fixed stepsize experiments

We first present some fixed stepsize numerical results whadffirm that two-step continuous methods do not
sufer from order reduction in the integration offstlifferential systems, which is the case for classical RungéaKut
formulae. This phenomenon does not occur for two-step woatis methods (1.2), because they possess high stage
order equal to their order of convergence. Indeed the omerargence of (1.2) is the same over the entire integration
interval. On the other hand, Runge-Kutta methods do notgsssthe same feature, because their stage order is only
equal tom, wherem is the number of stages. To illustrate this we have appliedito-stage Radau [IA method
(compare [3, 22]) of ordep = 3 and stage ordey = 2 and thel-stable two-step continuous method (4.3) of uniform
order ordem = 3 to the Prothero-Robinson problem (8.1), w@&ft) = G’(t) = expt), Yo = 1,to = 0 andT = 2. We
have implemented both methods with fixed stepsize(T — to)/2¥, in correspondence toftiérent integer values of
k, and listed norms of errofen(T)|| at the endpoint of integratioh, the numberf e of function evaluations and the
observed order of convergenpeomputed from the formula

_ log (llen(T)Il/llen2(T)II)
- log(2) ’
wheree,(T) andey»(T) are errors corresponding to stepsinemdh/2.

The results are presented in Tables 8.1 and 8.2, for the REdemethod and the two-step continuous one respec-
tively, in correspondence to two values of thdfatiss parameter.

We can observe that in the case- —10, for which the Prothero-Robinson problem is nafistioth methods are
convergent with expected ordpr= 3. However, forl = —1°, the problem is sff and the Radau 1A method exhibits
the order reduction phenomenon: in fact, its order of cayeece drops to aboyt = 2 which corresponds to the
stage ordeq = 2. This is not the case for the method (4.3), which preserwdsrmf convergence = q = 3 and
provides higher accuracy. Therefore, the two-step coatisumethod (4.3) is able to achieve better accuracy for the
stiff Prothero-Robinson problem (8.1) at a lower computationst.c

Additional results confirming that two-step continuous noets preserve the order of convergence fdf ptiob-
lems can be found in [12, 14, 15].

8.2. Variable stepsize experiments
We now present the results originated by implementing®s¢able two-step continuous method (1.2) of uniform
order 2, corresponding to the basis functions
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1=-10 1=-10°
K el sqT) fe p k el sqT) fe p
6 2.31-10°° 378 3 6.60-10°8 42
7 401-107 762 2.53 4 9.11-10°° 90 2.86
8 6.01-10°8 1530 2.74 5 1.20-10°° 186 2.92
9 8.28.107° 3066 2.86 6 1.55-10710 378 2.95
10 1.09.-10°° 6138 2.92 7 1.87-101 762 3.05
11 1.40-10710 12282 2.95 8 2481012 1530 2.92

Table 8.2: Numerical results for two-step continuous metHo8) (of uniform orderp = 3 for the Prothero-Robinson problem.

wo =0, p1=1,
S 7
X1 = 6(7 -39), x2= —25(5 - S), (8.3)
2
1= Z(A47-219, Y2 =-5(5-39)

The used implementation issues are the ones describedtinrséc Concerning the Prothero-Robinson problem
(8.1), we choos&(t) = sin(t), o = 1,to = 0 andT = 2r. It is known that the problem (8.1) is much morefsti
when the stthess parametet is negative and large in modulus. The experimental resafisrted in Figures 8.4
and 8.5 are referred to the case- —1e6, while Figure 8.6 contains the results regarding the dase-1€10. We
observe that, in correspondence to both these values, didepr (8.1) is very sfi. In particular, Figures 8.5 and
8.6 (bottom) show the reliability of the error estimate oalghen the problem is very &ti Moreover, as suggested
by Figures 8.4 and 8.6 (top), the stepsize pattern is veryosmespecially because of the high stability properties
of the implemented method and in force of the used stepsizgaistrategy: this control also avoid useless stepsize
refusions. In particular, we observe that the stepsizesiefis at the beginning of the integration are only due to the
presence of an initial transient in the poigt the exact solution, i.ey(t) = sin(), is equal to 0 irntg = 0, while we
have chosery = 1. This causes an initial transient in the solution, whidjuiees a certainféort to be overcome.

Figures 8.7 and 8.8 report the results concerning the ngalesolution of the Van der Pol problem for= 1e—- 6
andtol = 1e — 4. In correspondence to this value of thefatss parameter, the problem is sff. We observe that
also in this case the error estimate is absolutely reliabtethe stepsize pattern is very smooth. Also the number of
refused stepsize is very low: its percentage with respetitadotal number of steps is lower then 1%: most of the
refusions occur at the very first step point, because of thegnce of an initial transient. We also observe that no
hump phenomena (see [18]) occur: this is due totstability of the method we have implemented.

9. Concluding remarks

We have introduced a class of highly stable continuous naistiod the type (1.2) based on a modification of the
two-step collocation technique [12, 13]. We have analytediocal truncation error, with special attention to the
terms of ordeip + 2, in order to narrow their contribution in the error propé@a We have constructedlstable and
L-stable methods witim stagesm = 1, 2, 3,4 having uniform order of convergenge= m. We have presented the
issues for their variable stepsize implementation: sonmtberh take special advantage from the special structure of
the considered methods. For instance, by suitably evaly#iie continuous approximant associated to the method,
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Figure 8.5: Comparison between the local error and its egtificaitthe solution of the Prothero-Robinson problem (8.1hwol = 1e — 6 and
A = -1e6, using the method (8.3). The circles represent the trué¢dwoar in each step point, while the dots represent the spmeding estimation.

we are able to recover the starting values needed wheneavstepsize is changed. Moreover, the integration €f sti
systems takes benefit from the usage of two-step continuetisoais since they have high stage order and, therefore,
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Figure 8.7: Stepsize pattern related to the solution of thre dér Pol oscillator (8.2) wittol = 1e — 4 ande = 1e - 6, using the method (8.3).

no order reduction phenomena occur when these methodsiedan contrast with Runge—Kutta methods, which
exhibit order reduction. Some experiments off glioblems have also been reported.

Future investigation will address the construction of higgtable methods (e.gA-stable,L-stable, algebraically
stable) of high order (e.g. up to 8) and their variable stepable order implementation, also addressing lardge sti
problems.
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