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Abstract

We describe a class of two-step continuous methods for the numerical integration of initial-value problems based on
stiff ordinary differential equations (ODEs). These methods generalize the class of two-step Runge–Kutta methods.
We restrict our attention to methods of orderp = m, wherem is the number of internal stages, and stage orderq = p to
avoid order reduction phenomenon for stiff equations, and determine some of the parameters to reduce the contribution
of high order terms in the local discretization error. Moreover, we enforce the methods to beA-stable andL-stable.
The results of some fixed and variable stepsize numerical experiments which indicate the effectiveness of two-step
continuous methods and reliability of local error estimation will also be presented.

Keywords: Two-step almost collocation methods, two-step continuousmethods, order conditions, error propagation,
local error estimation,A-stability,L-stability, variable stepsize implementation.

1. Introduction

Assume that the functionf : R
d → R

d is sufficiently smooth and consider the initial-value problem for systems
of ordinary differential equations (ODEs)


y′(t) = f (y(t)), t ∈ [t0,T],

y(t0) = y0.
(1.1)

Let be given a constant stepsizeh > 0 and define the gridtn = t0 + nh, n = 0,1, . . . ,N, whereNh = T − t0. For the
numerical solution of (1.1) consider the class of two-stepm-stage continuous methods defined by



P(tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn + h
m∑

j=1

(
χ j(s) f (P(tn−1 + c jh)) + ψ j(s) f (P(tn + c jh))

)
,

yn+1 = P(tn+1),

(1.2)

s ∈ (0,1], n = 1,2, . . . ,N−1. Here,c = [c1, . . . , cm]T is the abscissa vector,P(tn+ sh) is an approximation toy(tn+ sh)
on the interval [tn, tn+1], andϕ0(s), ϕ1(s), χ j(s), andψ j(s), j = 1,2, . . . ,m, are polynomials which define the method.
Setting

Y[n−1]
j = P(tn−1 + c jh), Y[n]

j = P(tn + c jh),

j = 1,2, . . . ,m, two-step continuous methods (1.2) can be regarded as a special class of two-step Runge–Kutta
methods [20], having the form



yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn + h
m∑

i=1

(
χi(1) f (Y[n−1]

i ) + ψi(1) f (Y[n]
i )

)
,

Y[n]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn + h

m∑

j=1

(
χ j(ci) f (Y[n−1]

j ) + ψ j(ci) f (Y[n]
j )

)
,

(1.3)
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i = 1,2, . . . ,m, or equivalently, in tensor form,


yn+1 = θyn−1 + θ̃yn + h

(
(vT ⊗ I )F [n−1]

+ (wT ⊗ I )F [n]
)
,

Y[n]
= (u⊗ I )yn−1 + (̃u⊗ I )yn + h

(
(A⊗ I )F [n−1]

+ (B⊗ I )F [n]
)
,

(1.4)

where

Y[n]
=

[
Y[n]

1 Y[n]
2 . . . Y[n]

m

]T
∈ R

md, F [n]
=

[
f (Y[n]

1 ) f (Y[n]
2 ) . . . f (Y[n]

m )
]T
∈ R

md,

and
θ = ϕ0(1), θ̃ = ϕ1(1), v j = χ j(1), w j = ψ j(1),

ui = ϕ0(ci), ũi = ϕ1(ci), ai j = χ j(ci), bi j = ψ j(ci).

Two-step continuous methods (1.2) were introduced in [12, 13] and further investigated in [9, 14, 15], also in the
context of Volterra Integral Equations [10, 11]. In this paper we follow a similar approach to that in [13], but restrict
our attention to methods of orderp = m and stage orderq = p to avoid order reduction phenomenon [3] for stiff
equations. Moreover, we are mainly interested in methods which areA-stable andL-stable. In the follow up paper
[9] we investigate algebraic stability properties of thesemethods. In the next section we review continuous order
conditions obtained before in [13] and investigate error propagation of these methods up to the terms of orderp+ 2,
in order to derive methods of type (1.2) with narrowed contribution of such high order terms. In Sections 3–6 we
describe the construction of methods withp = q = m for m = 1, 2, 3, and 4. In Section 7 we describe the variable
stepsize implementation of these methods for stiff differential systems. In Section 8 we present the results of some
fixed and variable stepsize numerical experiments which indicate the effectiveness of two-step continuous methods
and reliability of local error estimation. Finally, in Section 9 some concluding remarks are given and plans for future
research are briefly outlined.

2. Error propagation

Let us consider the local discretization errorξ(tn + sh) associated to the method (1.2), which is defined as the
residuum obtained by replacing in (1.2)P(tn + sh) by y(tn + sh), yn−1 by y(tn−1) andyn by y(tn), wherey(t) is the
solution to the problem (1.1). That is,

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn−1) − ϕ1(s)y(tn) − h
m∑

j=1

(
χ j(s) f (P(tn−1 + c jh)) + ψ j(s) f (P(tn + c jh))

)
. (2.1)

We now analyze the local discretization error considering the terms up to orderp+ 2. The following result arises.

Theorem 2.1. If P(tn + sh) is an approximation of uniform order p to y(tn + sh), s ∈ [0,1], then the local truncation
error (2.1) of the method (1.2) takes the form

ξ(tn + sh) = hp+1Cp(s)y(p+1)(tn) + hp+2Cp+1(s)y(p+2)(tn) + hp+2Gp+1(s)
∂ f
∂y

(
y(tn)

)
y(p+1)(tn) +O(hp+3), (2.2)

where

Cν(s) =
sν+1

(ν + 1)!
−

(−1)ν+1

(ν + 1)!
ϕ0(s) −

m∑

j=1

(
χ j(s)

(c j − 1)ν

ν!
+ ψ j(s)

cνj
ν!

)
, (2.3)

with ν = p, p+ 1, and

Gp+1(s) =
m∑

j=1

η j

(
χ j(s) + ψ j(s)

)
. (2.4)
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Proof: It is known that (see for example [13]), ifP(tn + sh) is an approximation of uniform orderp to y(tn + sh),
s ∈ [0,1], the stage order is also equal top and the local discretization error (2.1) takes the form

ξ(tn + sh) = hp+1Cp(s)y(p+1)(tn) +O(hp+2), (2.5)

whereCp(s) is the error function of the method (1.2). Hence, the stage valuesP(tn−1 + c jh) andP(tn + c jh) in (1.2)
satisfy the relations

P(tn−1 + c jh) = y(tn−1 + c jh) − η jh
p+1y(p+1)(tn) +O(hp+2), (2.6)

P(tn + c jh) = y(tn + c jh) − η jh
p+1y(p+1)(tn) +O(hp+2), (2.7)

where
η j = Cp(c j), j = 1,2, . . . ,m,

are the stage error constants, which we put together in the vector

η =
[
η1 η2 . . . ηm

]T
.

We now analyze the local discretization error considering the terms up to orderp+ 2. Substituting the relations (2.6)
and (2.7) into (2.1), we obtain

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn) − h
m∑

j=1

(
χ j(s) f

(
y(tn−1 + c jh) − η jh

p+1y(p+1)(tn)
)

+ ψ j(s) f
(
y(tn + c jh) − η jh

p+1y(p+1)(tn)
))
+O(hp+3),

and sincef is sufficiently smooth, this formula can be rewritten as

ξ(tn + sh) = y(tn + sh) − ϕ0(s)y(tn − h) − ϕ1(s)y(tn) − h
m∑

j=1

(
χ j(s)y

′(tn−1 + c jh) + ψ j(s)y
′(tn + c jh)

)

+ hp+2
m∑

j=1

(
η j

(
χ j(s) + ψ j(s)

)∂ f
∂y

(
y(tn)

)
y(p+1)(tn)

)
+O(hp+3).

Expandingy(tn+ sh), y(tn− h), y′(tn−1+ c jh) andy′(tn+ c jh) into Taylor series aroundtn and collecting the terms with
the same powers ofh, we obtain

ξ(tn + sh) = (1− ϕ0(s) − ϕ1(s))y(tn)

+

p+2∑

k=1

(
sk

k!
−

(−1)k

k!
ϕ0(s)

)
hky(k)(tn)

−

p+2∑

k=1

m∑

j=1

(
χ j(s)

(c j − 1)k−1

(k− 1)!
+ ψ j(s)

ck−1
j

(k− 1)!

)
hky(k)(tn)

+

m∑

j=1

(
η j

(
χ j(s) + ψ j(s)

)
hp+2∂ f

∂y

(
y(tn)

)
y(p+1)(tn)

)
+O(hp+3).

Equating to zero terms of orderO(hk), k = 0,1, . . . , p, we obtain the continuous order conditions (see [12, 13])


ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m∑

j=1

(
χ j(s)

(c j − 1)k−1

(k− 1)!
+ ψ j(s)

ck−1
j

(k− 1)!

)
=

sk

k!
,

(2.8)

s ∈ [0,1], k = 1,2, . . . , p and, considering the remaining terms, we can conclude that the local discretization error of
two-step continuous methods takes the form (2.2), withCν(s), ν = p, p+ 1, andGp+1(s) are given by (2.3) and (2.4)
respectively.
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We have previously provided in [13] an estimation to the leading term of the local truncation error (2.5), having
the form

hp+1y(p+1)(tn) = α0yn−1 + α1yn + h
m∑

j=1

(
β j f (P(tn−1 + c jh)) + γ j f (P(tn + c jh))

)
. (2.9)

The following result holds (see [12, 13]).

Theorem 2.2. Assume that the solutioñy(t) to the problem (1.1) is sufficiently smooth. Then the constantsα0, α1, β j ,
andγ j , j = 1,2, . . . ,m appearing in (2.9) satisfy the system of equations



α0 + α1 = 0,

(−1)k

k!
α0 +

m∑

j=1

(
β j

(c j − 1)k−1

(k− 1)!
+ γ j

ck−1
j

(k− 1)!

)
= 0, k = 1,2, . . . , p,

( (−1)p+1

(p+ 1)!
−Cp(−1)

)
α0 +

m∑

j=1

(
β j

(c j − 1)p

p!
+ γ j

cp
j

p!

)
= 1.

Concerning the high order terms, in order to narrow their contribution in the local discretization error (2.5), we
derive in the following sections methods such that the stageerror constantGp+1(1) is equal to zero. This condition
implies that terms of orderp+ 2 only depend on the derivatives of the solution and not on theform of the equation.
Moreover, this feature is of practical utility in the implementation of such methods in a variable stepsize-variable order
environment (which will be treated in forthcoming papers),since it simplifies the order changing strategy.

3. Construction of methods with m = 1

We now analyze two-step continuous methods (1.2) withp = q = m = 1, assuming that the continuous approxi-
mantP(tn + sh) satisfies the interpolation condition

P(tn) = yn, (3.1)

which implies that
ϕ0(0) = 0, ϕ1(0) = 1, χ(0) = 0, ψ(0) = 0.

Let us assume the following expression for the basis functions

ϕ0(s) = p0 + p1s, χ(s) = r0 + r1s, ϕ1(s) = q0 + q1s, ψ(s) = s0 + s1s.

Therefore, we havep0 = r0 = s0 = 0 andq0 = 1. We next impose the set of order conditions (2.8), obtaining

p1 = −q1, r1 = 1− q1 − s1.

Hence, the resulting family of one stage methods (1.2) depends onq1, s1, andc, which must be determined in order
to achieve the desired stability properties (e.g.A-stability andL-stability). We next consider the associated local
truncation error (2.2)

ξ(tn + sh) = h2E(s)y(2)(tn) + h3
(
F(s)y(3)(tn) +G(s)

∂ f
∂y

(y(tn))y(2)(tn)
)
+O(h4), (3.2)

whereE(s) = C1(s), F(s) = C2(s) andG(s) = G2(s) can be derived from formulae (2.3) and (2.4). In particular, the
constantG(s) takes the following form

G(s) =
c2

2
(1− q1)(2− c− q1 + 2cq1 − 2s1)s.
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Solving the equationG(1) = 0 with respect tos1 we obtain

s1 =
2− c− q1 + 2cq1

2
.

As a consequence, the basis functions in (1.2) form = 1, which now depend only on the parameterq1 and the value
of the abscissac, take the following form

ϕ0(s) = −q1s, χ(s) = −
s
2

(q1 + 2cq1 − c),

ϕ1(s) = 1+ q1s, ψ(s) = −
s
2

(q1 − 2cq1 + c− 2).
(3.3)

We next consider the linear stability analysis of this classof methods, first deriving the expression of the stability
polynomial, i.e. the characteristic polynomial of the stability matrix (see [12, 13])

M(z) =



M11(z) M12(z) M13(z)

1 0 0

Q(z)ϕ1(c) Q(z)ϕ0(c) zQ(z)A


∈ C

(m+2)×(m+2), (3.4)

where
M11(z) = ϕ1(1)+ zwT Q(z)ϕ1(c),

M12(z) = ϕ0(1)+ zwT Q(z)ϕ0(c),

M13(z) = z(vT
+ zwT Q(z)A),

andA = (χ j(ci))m
i, j=1, B = (ψ j(ci))m

i, j=1, v = (χ j(1))mj=1, w = (ψ j(1))mj=1, Q(z) = (I − zB)−1 ∈ C
m×m andI is the identity

matrix of orderm.
In the casem= 1, the stability function takes the form

p(ω, z) = ω(p2(z)ω2
+ p1(z)ω + p0(z)), (3.5)

wherep0(z), p1(z) and p2(z) are polynomials of degree less than or equal 2 with respect to z. Applying the Schur
criterion (see [22, 25]) to the polynomial (3.5), we obtain the following result, which characterizesA-stable methods
with p = m= 1.

Theorem 3.1. Each one stage continuous method of type (1.2) which satisfies the restrictions discussed above is
A-stable if and only if

c > 1,
c− 1
2c
≤ q1 ≤ 1. (3.6)

Figure 3.1 shows the corresponding region ofA-stability in the parameter space (c,q1).
Let us provide an example ofA-stable method. Settingc = 5

4 andq1 =
1
2, the basis functions (3.3) take the form

ϕ0(s) = −
s
2
, ϕ1(s) =

2+ s
2

, χ(s) = −
s
4
, ψ(s) =

3s
4
. (3.7)

We can estimate the local truncation error associated to this method with the one-parameter family of estimators (2.9),
where

α1 = −α0, β =
5
8
α0, γ =

3
8
α0. (3.8)

The derivedA-stable methods are alsoL-stable if

lim
z→−∞

p0(z)
p2(z)

= 0 and lim
z→−∞

p1(z)
p2(z)

= 0.
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Figure 3.1: Region ofA-stability in the (c,q1)-plane for two-step methods (2.1) withp = q = m= 1 and satisfying the restrictions discussed above.

These conditions are equivalent to the system of equations


(−1+ c)(−c+ q1 + 2cq1) = 0,

2− 3c+ 2c2 − (1− 2c+ 4c2)q1 = 0,

which has a unique solutions (c,q1) = (1, 1
3). Correspondingly, we obtain theL-stable method with

ϕ0(s) = −
s
3
, ϕ1(s) =

3+ s
3

, χ(s) = 0, ψ(s) =
2s
3
,

and a one-parameter family of local error estimators of the type (2.9), with

α1 = −α0, β =
1
2
α0, γ =

1
2
α0.

We also observe that the derivedL-stable method is also superconvergent sinceE(1) = 0 and, therefore, its uniform
order is equal to 2.

4. Construction of methods with m = 2

We now consider two-stage continuous methods (2.1) withp = q = m = 2. We always assume that [c1, c2] =
[ 1

2 ,1]. We next impose the interpolation condition (3.1), whichleads to

ϕ0(0) = 0, χ1(0) = 0, χ2(0) = 0,

ϕ1(0) = 1, ψ1(0) = 0, ψ2(0) = 0.

Correspondingly, we set

ϕ0(s) = s(p1 + p2s), χ1(s) = s(q1 + q2s), χ2(s) = s(r1 + r2s),
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and deriveϕ1(s), ψ1(s) andψ2(s) by imposing the system of order conditions (2.8) up top = 2, obtaining

ϕ1(s) = 1− p1s− p2s2,

ψ1(s) = s(2+ 3p1 − 3q1 − 2r1 − s+ 3p2s− 3q2s− 2r2s),

ψ2(s) = −s(1+ 2p1 − 2q1 − r1 − s+ 2p2s− 2q2s− r2s).

This leads to a six-parameter family of methods depending onp1, p2, q1, q2, r1 and r2. These parameters will be
chosen in order to obtain methods which areA-stable andL-stable. We next consider the linear stability analysis,
deriving the stability polynomial (compare [12, 13])

p(ω, z) = ω(p3(z)ω3
+ p2(z)ω2

+ p1(z)ω + p0(z)), (4.1)

where
p0(z) = (p2q1 − p1q2)z, (4.2)

andp1(z), p2(z), p3(z) are polynomials of degree 2 with respect toz. However, by imposing

q1 =
p1q2

p2
,

the polynomial (4.2) annihilates and, correspondingly, the stability function (4.1) takes the form

p(ω, z) = ω2(p̃2(z)ω2
+ p̃1(z)ω + p̃0(z)),

where p̃0(z), p̃1(z), p̃2(z) are polynomials of degree 2 with respect toz. Therefore, the stability properties of the
resulting methods depend on the quadratic function (see [8])

p̃(ω, z) = p̃2(z)ω2
+ p̃1(z)ω + p̃0(z).

We next impose the system of equations leading toL-stability, i.e.

lim
z→−∞

p̃0(z)
p̃2(z)

= 0, lim
z→−∞

p̃1(z)
p̃2(z)

= 0.

This system takes the form


p2r1 − p1r2 = 0,

p2(−q2 − r1 + 3p2r1 − 2q2r1 − 2r2) − p1(q2 + 3p2r2 − 2q2r2) = 0

and has a unique solution given by

p1 = −
p2(q2 + 2r2)

q2 + r2
, r1 = −

r2(q2 + 2r2)
q2 + r2

.

This leads to a three-parameter family of methods dependingon p2, q2, r2. We next apply the Schur criterion to
determine the set of conditions involving these parameters, in order to be the corresponding methodsA- andL-stable.
Let us fix, for example,q2=2: we carry out a computer search ofL-stable methods in the parameter space (p2, r2),
using this criterion. The result is shown in Fig. 4.2.

We now consider the expression of the corresponding local truncation error (2.2)

ξ(tn + sh) = h3E(s)y(3)(tn) + h4
(
F(s)y(4)(tn) +G(s)

∂ f
∂y

(y(tn))y(3)(tn)
)
+O(h5),

whereE(s) = C2(s), F(s) = C3(s) andG(s) = G3(s) can be derived from formulas (2.3) and (2.4). Forr2 = 1, we
obtain

G(1) = 945− 714p2 + 133p2
2,
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Figure 4.2: Region ofL-stability in the (p2, r2)-plane for two-step methods (1.2) withp = q = m= 2, q2 = 2 and satisfying the restriction discussed
above.

and its roots arep2=3, p2 =
45
19. Anyway, only in correspondence to the valuesp2 =

45
19 andr2 = 1 the Schur criterion

together with theL-stability requirements are satisfied. The basis functionsof the correspondingL-stable method take
the form

ϕ0(s) = −
15s
19

(4− 3s), ϕ1(s) = 1+
60
19

s−
45
19

s2,

χ1(s) = −2s

(
4
3
− s

)
, χ2(s) = −s

(
4
3
− s

)
,

ψ1(s) =
2s
19

(
91
3
− 18s

)
, ψ2(s) = −

s
19

(
77
3
− 24s

)
.

(4.3)

We next estimate the local truncation error associated to this method, using a two-parameter family of estimators of
the type (2.9), with

α1 = −α0, β1 =
8
3
+

4
9
α0 +

1
3
γ1, β2 = −4+

4
3
α0 − γ1, γ2 =

4
3
−

7
9
α0 −

1
3
γ1.

We observe that the error constantE(1) is equal to 0 and, therefore, the above method has uniformorder of convergence
equal to 3.

5. Construction of methods with m = 3

We now focus our attention on two-step continuous methods oforderp = q = m= 3, assuming thatϕ0(s) = 0 and
imposing not only the interpolation condition (3.1), but also the collocation condition

P′(tn + cih) = f (tn + cih,P(tn + cih)), (5.1)
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for i = 1,2,3. We next assume [c1, c2, c3] = [ 1
2 ,

3
4 ,1] and

χ1(s) = p0 + p1s+ p2s2
+ p3s3

+ p4s4,

χ2(s) = r0 + r1s+ r2s2
+ r3s3

+ r4s4,

χ3(s) = s0 + s1s+ s2s2
+ s3s3

+ s4s4.

Therefore, imposing the set of conditions (3.1) and (5.1), we obtain

χ1(s) =
s
4

(−6p4 + 13p4s− 12p4s2
+ 4p4s3),

χ2(s) =
s
4

(−6r4 + 13r4s− 12r4s2
+ 4r4s3),

χ3(s) =
s
4

(−6s4 + 13s4s− 12s4s2
+ 4s4s3).

We next compute the remaining basis functions via order conditions (2.8) forp = m= 3, whose expressions are here
omitted for brevity. We have now 3 free parameters (p4, r4 ands4) to play with in order to achieve the desired stability
properties. We next analyze the stability polynomial associated to this family of methods, i.e.

p(ω, z) = ω3(p2(z)ω2
+ p1(z)ω + p0(z)),

wherep0(z), p1(z) andp2(z) are polynomials of degree 3 with respect to z. The stabilityproperty of resulting methods
now depend on the quadratic function (compare [8])

p̃(ω, z) = p2(z)ω2
+ p1(z)ω + p0(z).

We next solve the system of equations leading toL-stability

lim
z→−∞

p0(z)
p2(z)

= 0, lim
z→−∞

p1(z)
p2(z)

= 0,

with respect tos4, obtaining

s4 = −
1
8

(4p4 − 3r4).

At this point, everything depends on the parametersp4, r4. We have next applied the Schur criterion to determine
the set of conditions involvingp4, r4, in order to be the corresponding methodsL-stable and carried out a computer
search ofL-stable methods in the parameter space (p4, r4), according to these conditions. The results are given in Fig.
5.3.

We now consider the expression of the local truncation errorwhich is, in our case,

ξ(tn + sh) = h4E(s)y(4)(tn) + h5
(
F(s)y(5)(tn) +G(s)

∂ f
∂y

(y(tn))y(4)(tn)
)
+O(h6),

whereE(s) = C3(s), F(s) = C4(s) andG(s) = G4(s) are computed using formulas (2.6) and (2.7). In particular, the
expression ofG4(1) is

G(1) = −(784+ 60p4 + 57r4)(16+ 108p4 + 69r4),

and it annihilates for

r4 = −
−4(196+ 15p4)

57
, r4 = −

4(4+ 27p4)
69

,

but only the first one is acceptable for us, because the liner4 = −
4(4+27p4)

69 does not lie inside theL-stability region in
Fig. 5.3. Correspondingly, in order to achieveL-stability, we obtain from the Schur criterion that

µ < p4 <
554
21

,
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Figure 5.3: Region ofL-stability in the (p4, r4)-plane for two-step methods (2.1) withp = q = m= 3 satisfying the restrictions discussed above.

whereµ is the negative root of the polynomial

q(x) = −5045494028660092− 341657542579860x− 5937877049931x2

+ 80771782176x3
+ 136188864x4.

Moreover, we have

E(1) =
554− 21p4

912
, F(1) =

16841− 315p4

54720
.

We observe that the error constantE(1) annihilates inp4 =
554
21 : in correspondence of this value, we gain one order

more of convergence, but theL-stability constraint are not satisfied. Therefore, we decide to choose a value ofp4

which allows us to achieveL-stability and, at the same time, provides a small error constant. For example, taking
p4 = 20, we obtain theL-stable method withE(1) = 67

456, F(1) = 10541
54720, G(1) = 0, and basis functions

ϕ0(s) = 0, ϕ1(s) = 1,

χ1(s) = 5s(−6+ 13s− 12s2
+ 4s3), χ2(s) = −

496s
57

(−3+ 2s)(2− 3s+ 2s2),

χ3(s) = −
219s
38

(−3+ 2s)(2− 3s+ 2s2), ψ1(s) = −
s

37
(15594− 34129s+ 31720s2 − 10624s3),

ψ2(s) =
16s
57

(1182− 2580s+ 2402s2 − 807s3), ψ3(s) = −
s
6

(684− 1491s+ 1388s2 − 468s3).

We can estimate the local truncation error of this method, using a three-parameter family of estimators of type
(2.9), with

α1 = −α0,

β1 = −
96
5
+

5723
57

α0 +
3
10
β3 +

1
2
γ3, β2 = 32−

9437
57

α0 − β3 − γ3,

γ1 = −32+
9418
57

α0 −
1
2
β3 +

5
2
γ3, γ2 =

96
5
−

5647
57

α0 +
1
5
β3 − 3γ3.
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6. Construction of methods with m = 4

We now derive four-stage continuous methods (1.2) of orderp = q = m = 4, with ϕ0(s) = 0 and satisfying the
interpolation condition (3.1) and the collocation condition (5.1) fori = 1,2,3,4. We assume in advance the collocation
abscissa [c1, c2, c3, c4] = [0, 1

2 ,
3
4 , 1] and the following form for the basis functions

χ1(s) = s(p1 + p2s+ p3s2
+ p4s3

+ p5s4),

χ2(s) = s(q1 + q2s+ q3s2
+ q4s3

+ q5s4),

χ3(s) = s(r1 + r2s+ r3s2
+ r4s3

+ r5s4),

χ4(s) = s(s1 + s2s+ s3s2
+ s4s3

+ s5s4),

wherepi ,qi , r i , si , for i = 1,2,3,4, are derived in order to satisfy the collocation conditions. We next deriveψi(s), for
i = 1,2,3,4 imposing the set of order conditions (2.8), forp = m= 4. We omit their expressions for brevity. We have
now 4 free parameters (p4, q4, r4 ands4) to compute in order to achieve the desired stability properties.

We next develop the linear stability analysis, studying thestability polynomial

p(ω, z) = ω4(p2(z)ω2
+ p1(z)ω + p0(z)),

wherep0(z), p1(z), p2(z), p3(z) are polynomials of degree 4 with respect to z. Hence, the stability properties of the
stability polynomial depend on the quadratic function

p̃(ω, z) = p2(z)ω2
+ p1(z)ω + p0(z).

We next solve the conditions forL-stability

lim
z→−∞

p0(z)
p2(z)

= 0, lim
z→−∞

p1(z)
p2(z)

= 0,

with respect top5 andr5, obtaining

p5 =
3072+ 17792q5 − 21s5

99840
, r5 = −

3072+ 9472q5 − 21s5

3120
.

At this point, everything depends on the parametersq5, s5. We now consider the expression of the local truncation
error (2.2)

ξ(tn + sh) = h5E(s)y(5)(tn) + h6
(
F(s)y(6)(tn) +G(s)

∂ f
∂y

(y(tn))y(5)(tn)
)
+O(h7),

whereE(s) = C4(s), F(s) = C5(s) andG(s) = G5(s) have been computed using (2.3) and (2.4). In particular,G(1)
takes the form

G(1) = −s5(5768192− 258048q5 − 265631s5),

and annihilates for

q5 =
5768192− 265631s5

258048
.

With this position, it is possible to prove using the Schur criterion that, for anys5 < 0, the corresponding method is
A-stable andL-stable. If we chooses5 = −1, we obtain

11



ϕ0(s) = 0, ϕ1(s) = 1,

χ1(s) = −
12999029s2

148635648
(45− 130s+ 135s2 − 48s3),

χ2(s) = −
6033823s2

12386304
(45− 130s+ 135s2 − 48s3),

χ3(s) =
3482603s2

2322432
(45− 130s+ 135s2 − 48s3),

χ4(s) =
s2

48
(45− 130s+ 135s2 − 48s3),

ψ1(s) = s

(
1−

58553863
8257536

s+
602930779
37158912

s2 −
42497543
2752512

s3
+

8132507
1548288

s4

)
,

ψ2(s) = −
s2

1769472
(364272993− 1066499978s+ 1117591587s2 − 399882480s3),

ψ3(s) =
s2

2322432
(603731871− 1755124342s+ 1835968221s2 − 657192720s3),

ψ4(s) = −
s2

1835008
(164345193− 476610010s+ 497623099s2 − 178237552s3),

(6.1)

andE(1) = 1
36864, F(1) = 69411889

1486356480, G(1) = 0. We finally estimate the local truncation error of this method using a
four-parameter family of estimators (2.9) with

α1 = −α0, β1 =
128
3
+

517
1440

α0 −
5
12
γ3 −

5
3
γ4,

β2 = −384−
511
480

α0 +
21
4
γ3 + 20γ4, β3 =

2048
3
+

277
90

α0 −
35
3
γ3 −

128
3
γ4,

γ1 = −384−
751
480

α0 − β4 +
35
4
γ3 + 30γ4, γ2 =

128
3
+

277
1440

α0 −
35
12
γ3 −

20
3
γ4.

7. Implementation of two-step continuous methods

This section is devoted to the description of the issues we have considered for the variable stepsize implementation
of two-step continuous methods (1.2) for the numerical solution of stiff problems (1.1). In particular, we discuss the
following aspects:

• the construction of a starting procedure;

• a reliable estimation of the local truncation error and its assessment for large values of the stepsize;

• a stepsize control strategy;

• the solution of the nonlinear system of equations in the internal stages.

Starting procedure.
Concerning the starting procedure, we proceed as follows. We choose an initial stepsizeh0 and compute the missing
starting valuesy1 ≈ y(t0 + h0) andY[0] ≈

(
y(t0 + c jh0)

)m
j=1, using them-stage Runge–Kutta method


y1 = y0 + h0(bT ⊗ I )F [0] ,

Y[0]
= (e⊗ I )y0 + h0(A⊗ I )F [0] ,

(7.1)
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based on the Gaussian nodes (see [3]), of orderp = 2mand stage orderq = m. In the integration of stiff systems, such
methods suffer from order reduction (for instance, see [4]) and, therefore, their effective order is equal tom. These are
implicit methods and, therefore, the stage vectorY[0] has to be determined by solving the nonlinear system in (7.1):
its solution is computed by using Newton iterations, in the following way. We set

Φ(Y[0]) = Y[0] − (e⊗ I )y0 − h0(A⊗ I )F [0]

and aim to solve the systemΦ(Y[0]) = 0, of dimensionmd×md. We take as initial guess the vector

Y[0],0
= [y0, . . . , y0]T ∈ R

md,

and start the following Newton-type iterative procedure

Y[0],i+1
= Y[0],i −

(
∂Φ(Y[0],i)

)−1
Φ(Y[0],i), (7.2)

for i = 0,1, . . . , ν − 1, where
∂Φ(Y[0]) = Imd− h(A⊗ Id)J ∈ R

md×md,

andJ is the Jacobian matrix ofF [0] , i.e. the block diagonal matrix

J =



∂ f (Y[0]
1 )

. . .

∂ f (Y[0]
m )


,

where∂ f (Y[0]
j ) is the Jacobian matrix off evaluated inY[0]

j , for j = 1,2, . . . ,m. The expression (7.2) is equivalent to
the linear system

−∂Φ(Y[0],i)δY[0]
= Φ(Y[0],i), (7.3)

whereδY[0]
= Y[0],i+1 − Y[0],i . We next solve the system (7.3) with respect toδY[0] , for example by Gaussian elimina-

tion, and derive
Y[0],i+1

= Y[0],i
+ δY[0] .

We stop the iterative scheme at theν-th step, when‖δY[0]‖∞ < tol and‖ΦY[0],ν‖∞ < tol, and takeY[0]
= Y[0],ν. We

next compute the valuêy1, applying the Runge–Kutta methods twice, i.e. with two steps of stepsizeh0/2, in order to
estimate the local error by means of Richardson extrapolation (see [17])

est(t1) =
22m(y1 − ŷ1)

1− 22m
.

It is well known that Richardson extrapolation is accurate,but also expensive. However, its usage in our implementa-
tion is only restrict to the very first step of the integration, so its contribution to the overall cost of the algorithm is not
significant. Finally, the stepsizeh0 is adjusted until‖est(t1)‖ < tol.

Assessment of the local error estimation for large step sizes
We have provided in Section 2 the estimation (2.9) to the local truncation error, following the ideas reported in [12, 13].
Such an estimate is asymptotically correct forhn tending to 0: this property can be tested by means of Taylor series
expansion arguments, or may be obvious from its construction. However, in order to approach stiff systems, this
property of correctness is not sufficient, since their solution also requires the usage of largestepsizes with respect to
certain features of the problem. Shampine and Baca in [24] focused their attention on the assessment of the quality
of the error estimate for large values of the stepsize, by using similar arguments as in the classical theory of absolute
stability. We now specialize the results proposed in [24] toour class of methods (1.2).

Following the lines drawn in [24], we consider a restricted class of problems of the formy′ = Jy, whereJ is a
constant matrix that can be diagonalized by a similarity transformationM−1JM = diag(ξi). Then, it is sufficient to
consider the scalar problem 

y′(t) = ξy, t ≥ 0,

y(0) = 1,
(7.4)
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whereξ ∈ C is one the eigenvalues ofJ, which is supposed to have negative real part. The solution of the problem
(7.4) isy(t) = eξt and, therefore,

Y[n]
= eξ(tn+chn)

+O(hp+1
n )

and
Y[n−1]

= eξ(tn+(c−e)hn−1)
+O(hp+1

n ).

As a consequence, we obtain

le(tn) = eξtn
(
ezδn − ϕ0(1)e−z − ϕ1(1)− zδn(vT ⊗ I )ez(c−e) − zδn(wT ⊗ I )ezcδn

)
+O(zp+2),

wherez= ξhn−1 andδn =
hn

hn−1
. We next achieve an analogous expression also for the error estimate est(tn), obtaining

est(tn) = Cp(1)eξtn
(
α0e−z

+ α1 + zδn(βT ⊗ I )ez(c−e)
+ zδn(γT ⊗ I )ezcδn

)
+O(zp+2).

To investigate the behaviour of error estimates for large values ofz, we define the functionsRle(z, δ) andRest(z, δ),
respectively defined by

Rle(z, δ) = ezδ − ϕ0(1)e−z − ϕ1(1)− zδ(vT ⊗ I )ezcδ − zδ(wT ⊗ I )ez(c−e)δ,

Rest(z, δ) = α0e−z
+ α1 + zδ(βT ⊗ I )ez(c−e)δ

+ zδ(γT ⊗ I )ezcδ,

corresponding to le(tn) and est(tn). To assess the quality of est(tn) for large step sizes, we examine the ratio

r(z, δ) =
Rest(z, δ)
Rle(z, δ)

. (7.5)

If r(z, δ) ∼ constant· zµ, for Re(z) < 0 as|z| → ∞ with a positive integerµ, the error is grossly overestimated for large
z. To compensate for this, Shampine and Baca proposed in [24],in the context of RK methods, premultiplying est(tn)
by the so-calledfilter matrix, (

I − hnJ(tn)
)−µ

whereJ(tn) is an approximation to th Jacobian matrix of the problem (1.1) at the pointtn. This choice is suitable to
damp the large, stiff error components.

Concerning two-step continuous methods (1.2), we observe that the ratio (7.5) behaves in the following way:

r(z, δ) ∼ −
α1

ϕ0(1)
, |z| → ∞, Re(z) < 0,

and this behaviour would suggest that the original estimateest(tn) can be used for all the values of the stepsize.
However, it is important to observe that the denominator appearing in the above expression is equal toϕ0(1) which,
for zero-stability requirements, is always between -1 and 1: this means that, for small values ofϕ0(1) close to zero,
the ratior(z, δ) results to be very large and, therefore, the error estimateest(tn) would not be reliable at all. On the
contrary, the filtered estimation

est′(tn) = (I − hnJ)−1est(tn), (7.6)

corresponding to the filter matrix (I − hnJ)−1 proposed in [24], results to be much more reliable than the original
estimation est(tn), as it has also been verified experimentally. As observed in[24], the improved error estimator does
not alter the behaviour for smallhn but it corrects the behaviour of the estimate for large values ofhn.

Stepsize control strategy
Once we have derived an estimation to the local error, we can decide whether to increase or decrease the stepsize in
the advancing from the pointtn to the pointtn+1 according to the following control (see [1])

‖est(n)‖ ≤ Rtol ·max{‖yn−1‖, ‖yn‖} + Atol, (7.7)
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whereAtol andRtol are given absolute and relative tolerances. In our numerical experiments we have usedAtol =
Rtol= tol. If the control (7.7) is not satisfied, the stepsizehn is halved. Otherwise, the stepsize is accepted and a new
stepsize for the following step is computed, according to a suitable control strategy. The standard step control strategy
(see [17])

hn+1 = hn ·min

(
2,

( f ac · tol
‖est(tn)‖

) 1
p+1

)
, (7.8)

which only depends on the estimate computed in the previous step, can often determine useless stepsize rejections,
“with disruptive and wasteful increases and decreases” of the stepsize (see [4]). Gustafsson, Lundh and Söderlind [16,
26, 27] introduced a different stepsize control, the so-called PI stepsize control,based on control theory arguments.
The PI control involve the estimation of the local errors related to the two most recent step points, as follows

hn+1 = hn ·min

(
2,

( tol
‖est(tn)‖

)σ1( tol
‖est(tn−1)‖

)σ2
)
, (7.9)

whereσ1 andσ2 must be suitably chosen. In [18, 26, 27] the derivation ofσ1 andσ2 is discussed, according to some
control theory arguments. In our case, we have experimentally found some values forσ1 andσ2 in order to obtain a PI
stepsize control which is competitive with the standard onein the implementation of our methods: they areσ1 ≈ 0.3
andσ2 ≈ 0.04.

When we advance fromtn to tn+1 with stepsizehn, another problem occurs, i.e. the computation of the missing
approximations̃yn−1 to y(̃tn−1), with t̃n−1 = tn − hn, andỸ[n−1]

i to y(̃tn−1 + cihn), with i = 1,2, . . . ,m. The computation
of such approximations can be efficiently derived taking into account the special structure of the methods we are
implementing: continuous methods are particularly suitable for the design of a numerical solver in a variable stepsize
environment, since every time the stepsize changes, the missing approximations to the solution in previous points can
be suitably computed by evaluating the continuous approximant in these points. In fact, let us suppose thatk is the
minimum integer such that̃tn−1 belongs to the interval [tk, tk+1] of lengthhk. The point̃tn−1 is then uniquely determined
by the time scaled variable

s̃=
t̃n−1 − tk

hk
.

The value of̃yn−1 can next be computed by evaluating the continuous approximant P(tk+ shk) (1.2) in correspondence
to s= s̃, obtaining

ỹn−1 = ϕ0(s̃)yk−1 + ϕ1(s̃)yk + hk

m∑

i=1

(
χi(s̃) f (Y[k−1]

i ) + ψi(s) f (Y[k]
i )

)
.

In an analogous way, we can derive the values ofỸ[n−1]
i , i = 1,2, . . . ,m. Let us assume thatr is the minimum integer

such that̃tn−1 + cih, for a fixed value of the indexi, belongs to the interval [tr , tr+1] of lengthhr . The point̃tn−1 + cih
corresponds to the value of the time scaled variable

s̃i =
t̃n−1 + cihr − tr

hr
.

The missing value of̃Y[n−1]
i can then be computed by evaluating the continuous approximant P(tr + shr ) (1.2) in

correspondence tos= s̃i , obtaining

Ỹ[n−1]
i = ϕ0(s̃i)yr−1 + ϕ1(s̃i)yr + hr

m∑

j=1

(
χ j(s̃i) f (Y[r−1]

j ) + ψ j(si) f (Y[r]
j )

)
.

Computation of the stage values
Two-step continuous methods are implicit formulae and, therefore, they require the solution of a system of nonlinear
equations of dimensionmd×mdat each time step. We solve this system by means of Newton-type iterations, in the
following way. We define

Φ(Y[n]) = Y[n] − (u⊗ I )yn−1 − (̃u⊗ I )yn − h
(
(A⊗ I )F [n−1] − (B⊗ I )F [n]

)
,
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and aim to solve the systemΦ(Y[n]) = 0. We take as initial guess the vector

Y[n],0
= [yn, . . . , yn]T ∈ R

md,

and start the following Newton-type iterative procedure

Y[n],i+1
= Y[n],i −

(
∂Φ(Y[n],i)

)−1
Φ(Y[n],i), (7.10)

for i = 0,1, . . . , µ − 1, where
∂Φ(Y[0]) = Imd− h(B⊗ Id)J ∈ R

md×md,

andJ is the Jacobian matrix ofF [n] , i.e. the block diagonal matrix

J =



∂ f (Y[n]
1 )

. . .

∂ f (Y[n]
m )


,

where∂ f (Y[n]
j ) is the Jacobian matrix off evaluated inY[n]

j , for j = 1,2, . . . ,m. The expression (7.10) is equivalent to
the linear system

−∂Φ(Y[n],i)δY[n]
= Φ(Y[n],i), (7.11)

whereδY[n]
= Y[n],i+1 − Y[n],i . We next solve the system (7.11) with respect toδY[n] , for instance by Gaussian

elimination, and derive
Y[n],i+1

= Y[n],i
+ δY[n] .

We stop the iterative scheme at theµ-th step, when‖δY[n]‖∞ < tol and‖ΦY[n],µ‖∞ < tol, and takeY[n]
= Y[n],µ.

The numerical solution of the nonlinear systemΦ(Y[n]) = 0 can be efficiently approached if the matrixB has a
structured shape, e.g. lower triangular or diagonal: in these cases, instead of solving a nonlinear system of dimension
md, we solvem successive or independent nonlinear systems of dimensiond and, in particular, when these systems
are independent, their solution can be fastly computed in a parallel environment. The construction of such numerical
methods is treated in [15].

8. Numerical examples

In this section we present some fixed and variable stepsize numerical experiments which aim to indicate the
effectiveness of two-step continuous methods, especially in the implementation of stiff problems, and the reliability
of the local error estimation. The implementation issues wehave used in order to carry out the following experiments
are the ones described in Section 7. We aim to solve the following problems:

1. The Prothero-Robinson problem


y′(t) = λ
(
y(t) −G(t)

)
+G′(t), t ∈ [t0,T],

y(t0) = y0,
(8.1)

where Re(λ) < 0 andG(t) is a slowly varying function on the interval [t0,T]. As observed by Hairer and
Wanner [18] in the context of Runge-Kutta methods this equation provides much new insight into the behaviour
of numerical methods for stiff problems. This equation witht0 = 0, G(t) = exp(µt), andy0 = 1, was also used
by Butcher [3] to investigate the order reduction for Runge-Kutta-Gauss methods of orderp = 2m;

2. The van der Pol oscillator (see VDPOL problem in [18])


y′1(t) = y2(t), t ∈ [0,T],

y′2(t) =
(1− y2

1(t))y2(t) − y1(t)

ε
,

y1(0) = 2,

y2(0) = 0,

(8.2)
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λ = −10 λ = −105

k eRK
h (T) f e p k eRK

h (T) f e p

6 3.70 · 10−6 384 6 7.90 · 10−9 384

7 4.74 · 10−7 768 2.96 7 1.98 · 10−9 768 1.99

8 6.00 · 10−8 1536 2.98 8 4.96 · 10−10 1536 2.00

9 7.55 · 10−9 3072 2.99 9 1.23 · 10−10 3072 2.01

10 9.46 · 10−10 6144 3.00 10 3.03 · 10−11 6144 2.02

11 1.18 · 10−10 12288 3.00 11 7.36 · 10−12 12288 2.04

Table 8.1: Numerical results for Radau IIA method of orderp = 3 and stage orderq = 2 for the Prothero-Robinson problem.

with T > 0 andε = 10−6. This equation constitutes a challenging problem for numerical methods: small
oscillations are amplified, while large oscillations are damped (compare [17]).

8.1. Fixed stepsize experiments
We first present some fixed stepsize numerical results which confirm that two-step continuous methods do not

suffer from order reduction in the integration of stiff differential systems, which is the case for classical Runge-Kutta
formulae. This phenomenon does not occur for two-step continuous methods (1.2), because they possess high stage
order equal to their order of convergence. Indeed the order convergence of (1.2) is the same over the entire integration
interval. On the other hand, Runge-Kutta methods do not possess the same feature, because their stage order is only
equal tom, wherem is the number of stages. To illustrate this we have applied the two-stage Radau IIA method
(compare [3, 22]) of orderp = 3 and stage orderq = 2 and theL-stable two-step continuous method (4.3) of uniform
order orderp = 3 to the Prothero-Robinson problem (8.1), withG(t) = G′(t) = exp(t), y0 = 1, t0 = 0 andT = 2. We
have implemented both methods with fixed stepsizeh = (T − t0)/2k, in correspondence to different integer values of
k, and listed norms of errors‖eh(T)‖ at the endpoint of integrationT, the numberf e of function evaluations and the
observed order of convergencep computed from the formula

p =
log

(
‖eh(T)‖/‖eh/2(T)‖

)

log(2)
,

whereeh(T) andeh/2(T) are errors corresponding to stepsizesh andh/2.
The results are presented in Tables 8.1 and 8.2, for the RadauIIA method and the two-step continuous one respec-

tively, in correspondence to two values of the stiffness parameterλ.
We can observe that in the caseλ = −10, for which the Prothero-Robinson problem is nonstiff, both methods are

convergent with expected orderp = 3. However, forλ = −105, the problem is stiff and the Radau IIA method exhibits
the order reduction phenomenon: in fact, its order of convergence drops to aboutp = 2 which corresponds to the
stage orderq = 2. This is not the case for the method (4.3), which preserves order of convergencep = q = 3 and
provides higher accuracy. Therefore, the two-step continuous method (4.3) is able to achieve better accuracy for the
stiff Prothero-Robinson problem (8.1) at a lower computational cost.

Additional results confirming that two-step continuous methods preserve the order of convergence for stiff prob-
lems can be found in [12, 14, 15].

8.2. Variable stepsize experiments
We now present the results originated by implementing theA-stable two-step continuous method (1.2) of uniform

order 2, corresponding to the basis functions
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λ = −10 λ = −105

k eTSC
h (T) f e p k eTSC

h (T) f e p

6 2.31 · 10−6 378 3 6.60 · 10−8 42

7 4.01 · 10−7 762 2.53 4 9.11 · 10−9 90 2.86

8 6.01 · 10−8 1530 2.74 5 1.20 · 10−9 186 2.92

9 8.28 · 10−9 3066 2.86 6 1.55 · 10−10 378 2.95

10 1.09 · 10−9 6138 2.92 7 1.87 · 10−11 762 3.05

11 1.40 · 10−10 12282 2.95 8 2.48 · 10−12 1530 2.92

Table 8.2: Numerical results for two-step continuous method (4.3) of uniform orderp = 3 for the Prothero-Robinson problem.

ϕ0 = 0, ϕ1 = 1,

χ1 =
s
6

(7− 3s), χ2 = −2s
(

7
3 − s

)
,

ψ1 =
s
6

(47− 21s), ψ2 = −
2
3

s(5− 3s).

(8.3)

The used implementation issues are the ones described in Section 7. Concerning the Prothero-Robinson problem
(8.1), we chooseG(t) = sin(t), y0 = 1, t0 = 0 andT = 2π. It is known that the problem (8.1) is much more stiff
when the stiffness parameterλ is negative and large in modulus. The experimental results reported in Figures 8.4
and 8.5 are referred to the caseλ = −1e6, while Figure 8.6 contains the results regarding the caseλ = −1e10. We
observe that, in correspondence to both these values, the problem (8.1) is very stiff. In particular, Figures 8.5 and
8.6 (bottom) show the reliability of the error estimate, also when the problem is very stiff. Moreover, as suggested
by Figures 8.4 and 8.6 (top), the stepsize pattern is very smooth, especially because of the high stability properties
of the implemented method and in force of the used stepsize control strategy: this control also avoid useless stepsize
refusions. In particular, we observe that the stepsize refusions at the beginning of the integration are only due to the
presence of an initial transient in the pointt0: the exact solution, i.e.y(t) = sin(t), is equal to 0 int0 = 0, while we
have choseny0 = 1. This causes an initial transient in the solution, which requires a certain effort to be overcome.

Figures 8.7 and 8.8 report the results concerning the numerical solution of the Van der Pol problem forε = 1e− 6
andtol = 1e− 4. In correspondence to this value of the stiffness parameterε, the problem is stiff. We observe that
also in this case the error estimate is absolutely reliable and the stepsize pattern is very smooth. Also the number of
refused stepsize is very low: its percentage with respect tothe total number of steps is lower then 1%: most of the
refusions occur at the very first step point, because of the presence of an initial transient. We also observe that no
hump phenomena (see [18]) occur: this is due to theL-stability of the method we have implemented.

9. Concluding remarks

We have introduced a class of highly stable continuous methods of the type (1.2) based on a modification of the
two-step collocation technique [12, 13]. We have analyzed the local truncation error, with special attention to the
terms of orderp+ 2, in order to narrow their contribution in the error propagation. We have constructedA-stable and
L-stable methods withm stages,m = 1,2,3,4 having uniform order of convergencep = m. We have presented the
issues for their variable stepsize implementation: some ofthem take special advantage from the special structure of
the considered methods. For instance, by suitably evaluating the continuous approximant associated to the method,
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Figure 8.4: Stepsize pattern related to the solution of the Prothero-Robinson problem (8.1) withtol = 1e− 6 andλ = −1e6, using the method (8.3).
The crosses represent the refused stepsizes.
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Figure 8.5: Comparison between the local error and its estimate for the solution of the Prothero-Robinson problem (8.1) with tol = 1e− 6 and
λ = −1e6, using the method (8.3). The circles represent the true local error in each step point, while the dots represent the corresponding estimation.

we are able to recover the starting values needed whenever the stepsize is changed. Moreover, the integration of stiff

systems takes benefit from the usage of two-step continuous methods since they have high stage order and, therefore,
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Figure 8.6: Numerical results for Prothero-Robinson problem (8.1) withtol = 1e− 6 andλ = −1e10, using the method (8.3). Top: stepsize pattern
related to the solution. Bottom: comparison between the localerror and its estimate.
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Figure 8.7: Stepsize pattern related to the solution of the Van der Pol oscillator (8.2) withtol = 1e− 4 andε = 1e− 6, using the method (8.3).

no order reduction phenomena occur when these methods are applied, in contrast with Runge–Kutta methods, which
exhibit order reduction. Some experiments on stiff problems have also been reported.

Future investigation will address the construction of highly stable methods (e.g.A-stable,L-stable, algebraically
stable) of high order (e.g. up to 8) and their variable step-variable order implementation, also addressing large stiff

problems.
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Figure 8.8: Comparison between the local error and its estimate for the solution of the Van der Pol oscillator (8.2) withtol = 1e− 4 andε = 1e− 6,
using the method (8.3).
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