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Abstract. It is the purpose of this paper to derive diagonally implicit exponentially fitted methods for the numerical solution
of initial value problems based on first order ordinary differential equations. The approach used takes into account the
contribution to the error originated from the computation of the internal stages approximations. The derived methods are
then compared to those obtained by neglecting the contribution of the error associated to the internal stages, as classically
done in the classical derivation of multistage EF-based methods (compare [3] and references therein). Standard and revised
EF methods are then compared in terms of linear stability and numerical performances.
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INTRODUCTION

For a given Hadamard well-posed initial value problems based on first order Ordinary Differential Equations (ODEs){
y′ = f (x,y(x)), x ∈ [x0,X ]
y(x0) = y0,

(1)

we aim to provide an adaptation of Runge-Kutta methods

Yi = yn +h
s

∑
j=1

ai j f (xn + c jh,Yj),

yn+1 = yn +h
s

∑
i=1

bi f (xn + cih,Yi),

following the spirit of the exponential fitting (EF) technique (compare [3] and references therein). Such a technique
allows the derivation of numerical methods which are able to accurately integrate problems whose solution exhbits
a certain qualitative behaviour which is known a-priori. In particular, in the remainder of this paper, we focus our
attention on the family of two-stage singly diagonally-implicit (SDIRK) methods

Y1 = yn +hλ f (xn + c1h,Y1),

Y2 = yn +h(a21 f (xn + c1h,Y1)+λ f (xn + c2h,Y2)) , (2)

yn+1 = yn +h
2

∑
i=1

bi f (xn + cih,Yi)

which can be represented in terms of the Butcher tableau

c1 λ
c2 a21 λ

b1 b2

.

It is known from the literature that such methods are suitable for an efficient parallel implementation, since the
coefficient matrix of the nonlinear system for the computation of the internal stages is lower triangular (see, for
instance, [1]). We focus our attention on the derivation of two different EF versions of (2): the first one, in accordance



to the standard EF technique [3], is derived by assuming that the values of the approximations inherited from the
computation of the internal stages are exact and, thus, they do not provide any further contribution to the discretization
error of the overall scheme; the second version, which follows the spirit of [2, 4], instead takes into account the error
provided by the internal stages computation, which cumulates to the truncation error of the overall scheme. Later on,
we refer to the former version as standard EF-technique, while the latter is denoted as revised EF-technique.

STANDARD EF-BASED SDIRK METHODS

We first aim to introduce the family of standard EF-based SDIRK methods (2) applying, as announced, the classical
approach presented in [3] and references therein for the derivation of EF multistage methods. To this purpose, we
introduce the following linear operators associated to (2)

L1[h,a]z(x) = z(xn + c1h)− z(x)−hλ z′(x+ c1h),

L2[h,a]z(x) = z(xn + c2h)− z(x)−h
(
a21z′(x+ c1h)+λ z′(x+ c2h)

)
,

L [h,b]z(x) = z(xn +h)− z(x)−h
(
b1z′(x+ c1h)+b2z′(x+ c2h)

)
,

where z(x) is assumed to be a smooth enough function. We next define the so-called the fitting space, i.e. the functional
basis of the linear space whose elements are the solution of all the problems (1) which are exactly integrated by the
EF-method. For the derivation of the standard version of the EF-method (2), we choose the following basis

F = {1,eµx}, F̂ = {1,eµx,xeµx}, (3)

which are respectively associated to the internal and external stages computation: i.e. the internal stages approxima-
tions are exact on the linear space spanned by F , while the external stage is exact on the linear space generated by F̂ .
Thus, we next derive the coefficients λ , a21, b1 and b2 by imposing that

Li[h,a]z(x) = 0, i = 1,2, for any z(x) ∈ F ,

and
L [h,b]z(x) = 0, for any z(x) ∈ F̂ .

We obtain

λ =
1− e−c1z

z
, a21 =

ec2z − ec1z

ze2c1z , b1 =
1+ c2z+ ez(−1+ z− c2z)

(c1 − c2)z2ec1z , b2 =−1+ c1z− ez(1− z+ c1z)
(c1 − c2)z2ec2z ,

with z = µh. We observe that the methods belonging to the derived family have order 2, since

lim
z→0

b1 +b2 = 1, lim
z→0

b1c1 +b2c2 =
1
2
,

which means that the classical conditions of order 2 for Runge-Kutta methods are satisfied when z tends to zero.

REVISED EF-BASED SDIRK METHODS

In standard derivations of EF Runge-Kutta methods, we have computed the coefficients b1 and b2 with the underlying
assumption that Y1 = y(xn + c1h) and Y2 = y(xn + c2h), i.e. the error in the computation of the internal stages is
completely neglected. This is the case only if the solution to the problem (1) is linear combinations of the elements of
the functional set F , i.e. 1 and eµx. Since these two functions are solutions of the differential equation y′′−µy′ = 0,
the leading term of the error in the computation of each internal stage is

εi = Yi − y(xn + cih) = h2Fi(y′′(x)−µy′(x)), i = 1,2, (4)

where Fi is the i-th stage error constant. The stage errors (4) are generally non-zero and, thus, we want to consider
their contribution to the error associated to the overall integration process. The knowledge of these errors needs the



calculation of the values of the stage error constants Fi in (4): this is done by following the procedure used in [2], i.e.
by solving the linear system

Li[h,a]x = εi

∣∣∣
y(x)=x

, i = 1,2,

with respect to F1 and F2, where εi is defined in (4). The obtained values are

Fi =
1
z

2

∑
j=1

ai j − ci. (5)

We now consider the local error associated to the external stage yn+1 in (2)

L̂ [h,b]y(x)
∣∣∣
x=xn

= y(xn +h)− y(xn)−h
(
bR

1 f (xn + c1h,Y1)+bR
2 f (xn + c2h,Y2)

)
, (6)

where the superscript R denotes that we are considering revised EF methods. Taking into account that

y′(xn + cih) = f (xn + cih,Yi + εi) = f (xn + cih,Yi)+ εi fy(xn + cih,Yi)+O(ε2
i ) (7)

we obtain

L̂ [h,b]y(x)
∣∣∣
x=xn

= y(xn +h)− y(xn)−h
2

∑
i=1

bR
i
(
y′(xn + cih)− fy(xn + cih,Yi)εi

)
.

Hereinafter f (i)y is the short-hand notation for fy(xn + cih, Yi). We next evaluate L̂ R[h,b]y(x) in correspondence to
the elements of F̂ in (3): in particular, we observe that L̂ R[h,b]1 is automatically equal to zero, while the requested
values of bR

1 (z) and bR
2 (z) are those satisfying

L̂ R[h,b]eµx
∣∣∣
x=0

= L̂ R[h,b]xeµx
∣∣∣
x=0

= 0,

i.e.

bR
1 (z) =

α(z)z3b1 + e−c1z (−1+ ez) f (2)y h
(
−2ec1z + ec2z + e2c1z (1− c2z)

)
α(z)z3 +β (z)hz

,

bR
2 (z) =

α(z)z3b2 +(−1+ ez) f (1)y h(1+ ec1z (−1+ c1z))
α(z)z3 +β (z)hz

,

where
α(z) = (c1 − c2)e(2c1+c2)z,

β (z) =
(
−2ec1z f (2)y + ec2z

(
f (1)y + f (2)y

)
+ e(c1+c2)z f (1)y (−1+ c1z)+ e2c1z f (2)y (1− c2z)

)
.

LINEAR STABILITY ANALYSIS

We next consider the linear stability analysis of the derived methods with respect to the classical test problem
y′ = ωy, with Re(ω) < 0. The application of the SDIRK method to such problem leads to the recurrence relation
yn+1 = R(ν ,z)yn, where

R(ν ,z) = 1+νbT (z)(I −νA(z))−1e,
is the stability function of the method, being e ∈ Rs the unit vector. In correspondence to this notion, we recall the
following definition of stability region [2].

Definition 1 The region of the three-dimensional (Re(ν), Im(ν),z) space on which the inequality

|R(ν ,z)|< 1 (8)

is satisfied is called a region of stability Ω for the EF-based method (2).

Fig. 1 presents a selection of sections through the stability region by planes z = const for fixed values of the nodes
c1 = 0 and c2 = 1: we can advise from the picture that the regions corresponding to revised EF methods are larger
than those corresponding to standard EF methods. Such a behaviour is more and more visible when the exponential
behaviour of the solution becomes more prominent.
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FIGURE 1. Section through the stability regions by planes z =−2 (left) and z =−4 (right) for (2), with c1 = 0, c2 = 1

NUMERICAL EXPERIMENTS

We finally provide a numerical evidence to assert the effectiveness of our approach, by considering the numerical
solution of the nonlinear problem

y′(x) =
λy2(x)+2x3e2λx

y(x)
, y(1) = eλ , (9)

with x ∈ [1,5], whose exact solution is y(x) = x2eλx ̸∈ F ∩ F̂ , hence neither the standard EF-based SDIRK method
nor the revised one are able to exactly solve it. The computations have been done on a node with CPU Intel Xeon 6
core X5690 3,46GHz, belonging to the E4 multi-GPU cluster of Mathematics Department of Salerno University. The
results, reported in Table 1, suggest that, by integrating both methods with the same constant stepsize h, the revised
EF one is more accurate.

TABLE 1. Performance of the two versions for the problem (9) for λ = −2.
err is the global error achieved in the last integration point, cd is the number of
gained correct digits, p is an estimate to the order of convergence of the method

Standard EF-SDIRK Revised EF-SDIRK
h err cd p err cd p

λ =−2 1/ 32 5.82(-04) 3.23 1.24(-04) 3.90
1/64 1.42(-04) 3.85 2.03 3.21(-05) 4.49 1.95
1/128 3.51(-05) 4.45 2.02 8.13(-06) 5.09 1.98
1/256 8.72(-06) 5.06 2.01 2.05(-06) 5.69 1.99
1/512 2.17(-06) 5.66 2.01 5.14(-07) 6.29 2.00
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