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Abstract

This paper investigates the conservative behaviour of two-step Runge-Kutta (TSRK)

methods and multistep Runge-Kutta methods (MRK) for the numerical integration

of Hamiltonian systems. In particular, the attention is focused on the existence of G-

symplectic TSRK and MRK methods, according to the definition provided in Butcher’s

2008 monograph.
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1. Introduction

Let us consider two-step Runge-Kutta (TSRK) methods of the following
type:

(1)


Y

[n]
i = uiyn−1 + (1− ui)yn + h

s∑
j=1

(
aijf(Y

[n]
j ) + bijf(Y

[n−1]
j )

)
,

yn+1 = ϑyn−1 + (1− ϑ)yn + h
s∑

j=1

(
vjf(Y

[n]
j ) + wjf(Y

[n−1]
j )

)
,

i = 1, 2, . . . , s, introduced by Jackiewicz and Tracogna in [1] (compare
also [2]), and the family of multistep Runge-Kutta methods (MRK)

(2)


Y

[n]
i =

k∑
j=1

uijyn+1−j + h
s∑

j=1
aijf(Y

[n]
j ), i = 1, 2, . . . , s,

yn+1 =
k∑

j=1
vjyn+1−j + h

s∑
j=1

bjf(Y
[n]
j ),
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i = 1, 2, . . . , s, with k = 2, introduced by Burrage in [3,4]. It is the purpose
of this paper to analyze the conservative behaviour of (1) and (2) when
applied to Hamiltonian problems

(3)

ṗ(t) = − ∂

∂q
H(p(t), q(t), t),

q̇(t) =
∂

∂p
H(p(t), q(t), t),

where H(p(t), q(t), t) is the Hamiltonian of the system. Here, p(t) and q(t)
respectively represent generalized momenta and coordinates. The classical
numerical approach to Hamiltonian problems mostly consists in using sym-
plectic (or canonical) Runge-Kutta (RK) methods [5–9], i.e. methods nu-
merically preserving some quadratic invariants of the continuous problem.
It is known that symplectic RK methods satisfy the following property.

Definition 1.1. (Cooper, 1987; Lasagni, 1988; Sanz-Serna, 1988; Suris,
1988) A RK method (A, bT , c) is symplectic if the following constrain on
the its coefficients holds

(4) diag(b)A+ATdiag(b)− bbT = 0,

where diag(x) represents the diagonal matrix having the vector x on the
diagonal.

We observe that the matrix M = diag(b)A+ ATdiag(b)− bbT in (4) is
also connected to the nonlinear stability properties of a RK method, since
it is the matrix to be analyzed to decide whether the corresponding RK
method is algebraically stable or not (see [5]).

Symplecticity is mostly a prerogative of one step methods, and therefore
of RK methods. In fact, Tang (1993) proved that multistep methods cannot
possess a symplectic behaviour. More in general, Butcher and Hewitt [10]
proved that multivalue methods cannot be symplectic, unless they actually
pass only one single value from the current step to the following one.

A large family of multistep - multivalue numerical methods for the solu-
tion of ordinary differential equations is given by General Linear Methods
(GLMs)

(5)


Y

[n]
i =

s∑
j=1

aijhF
[n]
j +

r∑
j=1

uijy
[n]
j , i = 1, 2, . . . , s,

y
[n+1]
i =

s∑
j=1

bijhF
[n]
j +

r∑
j=1

vijy
[n]
j , i = 1, 2, . . . , r,

introduced by Butcher (compare [2,5]), with the aim to create an unifying
approach to analyze the properties of a numerical method for ODEs, e.g.
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convergence, consistency and stability. Such methods are generally repre-
sented by means of their four coefficient matrices A ∈ Rs×s, U ∈ Rs×r,
B ∈ Rr×s, V ∈ Rr×r, which are put together in the following partitioned
(s+ r)× (s+ r) matrix [

A U

B V

]
.

We observe that many classical methods can be regarded as GLMs, such
as RK methods, TSRK methods (1) and MRK formulae (2) (compare [2]).

According to the results by Tang and Butcher, GLMs cannot be sym-
plectic, unless they reduce to RK methods (the formal notions of equiv-
alence and reducibility for GLMs will be clarified in Definitions 2.1 and
2.2). However, it makes interest to analyze if it is possible to achieve some
conservation properties by annihilating the nonlinear stability matrix of a
GLM

(6) M =

[
DA+ATD −BTGB DU−BTGV

UTD −VTGB G−VTGV

]
.

In fact, since the algebraic stability matrix of a symplectic RK method is
equal to the zero matrix, it makes interest to investigate the canonical prop-
erties of GLMs whose algebraic stability matrix (6) is the zero matrix. This
remark gives rise to the notion of G-symplecticity, introduced by Butcher
in [5].

Definition 1.2. (Butcher, 2008) A GLM (A,U,B,V) is G-symplectic if
there exist a positive semi-definite symmetric r × r matrix G and an s× s
diagonal matrix D such that

(7)
G = VTGV,
DU = BTGV,
DA+ATD = BTGB.

It is known that a symplectic method is able to preserve some of the
invariants possessed by the continuous problem. Similarly, a G-symplectic
method is able to preserve such invariants in a suitable norm, as it has been
described in [5] and in particular in [11], where G-symplectic GLMs are
introduced, analyzed and tested on several Hamiltonian problems. In [12],
partitioned G-symplectic GLMs are introduced for the numerical treatment
of separable Hamiltonian problems.

In this paper, we want to investigate the G-symplecticity properties
of TSRK methods (1) and MRK methods (2). These formulae, according
to the results above provided, cannot be symplectic. However, we aim to
analyze theoretically if they can be G-symplectic. This topic is the object
of the following sections.
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2. Non-existence of irreducible G-symplectic TSRK methods

In this section we analyse the effects of conditions (7) on TSRK meth-
ods, in order to understand if irreducible G-symplectic TSRK formulae (1)
exist: in fact, if G-symplectic TSRK methods exist, it is our aim to under-
stand whether they are equivalent to canonical RK methods or not. The no-
tions of equivalence and reducibility known in the literature (compare [13])
are formalized as follows.

Definition 2.1. A GLM (Â, Û, B̂, V̂) is equivalent to the GLM
(A,U,B,V) if there exist a permutation matrix P and a nonsingular ma-
trix Q such that [

Â Û

B̂ V̂

]
=

[
P TAP P TUQ

Q−1BP Q−1VQ

]
.

Definition 2.2. A GLM is reducible if s = s1 + s2 and r = r1 + r2 + r3
with s2 + r2 + r3 > 0, so that an equivalent GLM has sparsity pattern



s1 s2 r1 r2 r3

s1 A11 0 U11 0 U13

s2 A21 A22 U21 U22 0
r1 B11 0 V11 0 V13

r2 B21 B22 V21 V22 V23

r3 0 0 0 0 V33

.

In this case the method may be reduced to the GLM (A11, U11, B11, V11)
with s1 internal stages and r1 external ones.

2.1. TSRK methods with ϑ = 0 and u = 0

We first analyze the G-symplectic behaviour of TSRK methods (1) with
ϑ = 0 and u = 0

Y
[n]
i = yn + h

s∑
j=1

(
aijf(Y

[n]
j ) + bijf(Y

[n−1]
j )

)
,

yn+1 = yn + h
s∑

j=1

(
vjf(Y

[n]
j ) + wjf(Y

[n−1]
j )

)
,

i = 1, 2, . . . , s, which can be represented as GLMs (5) with respect to the
Butcher tableau

[
A U

B V

]
=

 A e B

vT 1 wT

I 0 0

 ∈ R(2s+1)×(2s+1),
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where e = [1, . . . , 1]T ∈ Rs. For this family of methods, we prove the fol-
lowing result.

Theorem 2.1. A TSRK method with ϑ = 0 and ui = 0, i = 1, 2, . . . , s, is
G-symplectic if and only if

B = ewT , DA+ATD = α(v + w)(v + w)T ,

with

(8) D = α diag(v + w), G = α

[
1 wT

w wwT

]
, α ≥ 0.

Proof. We assume the following partition for the matrix G

G =

[
g11 G12

GT
12 G22

]
,

with G12 ∈ Rs, G22 ∈ Rs×s and consider the first condition in (7), whose
right hand side assumes the form

VTGV = g11

[
1 wT

w wwT

]
.

This gives the form (8) of the G matrix, with α = g11. We next analyze the
second condition in (7), which provides that

D[e B] = α[v + w (v + w)wT ],

or, equivalently, that D assumes the form (8) and B = ewT . Finally, the
right hand side of the third condition in (7) assumes the form

BTGB = α[v I]

[
1 wT

w wwT

] [
vT

I

]
= α(v + w)(v + w)T ,

which gives the thesis.

We remind that a consistent TSRK method satisfies the condition

Ae+Be = c,

while if it is stage consistent the condition

(v + w)T e = 1
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holds (compare with [2]). Taking into account these further conditions, the
following result is straightforward.

Corollary 2.1. Consider a stage consistent G-symplectic TSRK method
(1) with ϑ = 0 and ui = 0, i = 1, 2, . . . , s. Then,

vT c+ wT (c− e) =
1

2
.

Another consequence of Theorem 2.1 is that, actually, a G-symplectic
TSRK method (1) with ϑ = 0 and ui = 0, i = 1, 2, . . . , s, necessarily reduces
to a symplectic RK method, as it is explained in the following result.

Corollary 2.2. G-symplectic irreducible TSRK method do not exist.

Proof. In force of Theorem 2.1, the Butcher tableau of a G-symplectic
TSRK method (1) with ϑ = 0 and ui = 0, i = 1, 2, . . . , s, regarded as GLM
assumes the form [

A U

B V

]
=

 A e ewT

vT 1 wT

I 0 0

 .

Such a GLM is equivalent (and, therefore, it reduces to) the GLM[
A U

B V

]
=

[
A e

vT 1

]
,

which is the Butcher tableau of the RK method (c, A, v).

2.2. TSRK methods with ϑ ̸= 0 and u ̸= 0

Similar results can be obtained in the more general setting of TSRK
methods (1) with ϑ ̸= 0 and u ̸= 0, whose GLM formulation corresponds
to the Butcher tableau

[
A U

B V

]
=


A e− u u B

vT 1− ϑ ϑ wT

0 1 0 0
I 0 0 0

 ∈ R(2s+2)×(2s+2).

The following result holds.

Theorem 2.2. If a TSRK method (1) is G-symplectic, then

G =
α

ϑ


1 ϑ wT

ϑ ϑ2 ϑwT

w ϑw wwT

 , α > 0,
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and

D =
αϑ

1 + ϑ
diag(v + w), u =

ϑ

1 + ϑ
e, B =

1

1 + ϑ
ewT .

Proof. The first condition in (7) provides the following representation of
the matrix G

G =
α

ϑ


1 ϑ wT

ϑ ϑ2 ϑwT

w ϑw wwT

 , α > 0,

with α ∈ R and ϑ ̸= 0. We observe that the spectrum of the matrix G is
equal to

σ(G) = {σ1, σ2(ϑ,w)},

where σ1 = 0 with multiplicity r − 1 and

σ2(ϑ,w) =
α

ϑ2

(
1 + ϑ2 +

s∑
i=1

w2
i

)
.

Therefore, the matrix G is positive semi-definite if α > 0.
We next analyze the second condition in (7), which assumes the follow-

ing compact form

D[e− u u B] =
[α
ϑ
(v + w) α(v + w)

α

ϑ
(v + w)wT

]
,

and provides the last part of the thesis.

Theorem 2.2 provides some necessary conditions of G-symplecticity for
TSRK methods, according to which the tableau of a G-symplectic TSRK
method must exhibit the form

(9)

[
A U

B V

]
=


A 1

1+ϑe
ϑ

1+ϑe
1
ϑew

T

vT 1− ϑ ϑ wT

0 1 0 0
I 0 0 0

 ,

with the additional constraint given by the third equality in (7). Once the
input value

zn = ϑyn−1 + yn + h

s∑
j=1

wjf(Y
n−1
j ), n > 1,
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is provided at each time step, then method (9) is equivalent to apply the
following method

(10)

(1 + ϑ)Y
[n]
i = zn + h

s∑
j=1

aijf(Y
[n]
j ), i = 1, 2, . . . , s,

yn+1 = zn − ϑyn + h

s∑
i=1

vif(Y
[n]
i ),

which can be represented as the GLM corresponding to the tableau

[
A U

B V

]
=

 A 1 0

vT 1 −ϑ
0 1 0

 ,

with input vector [zn yn]
T . This tableau is representative of the GLM

formulation of MRK methods (2) with k = 2, thus G-symplectic TSRK
methods reduce to (and, therefore, are equivalent to) MRK methods of the
form (10).

3. G-symplectic multistep Runge-Kutta methods

The results contained in the previous section essentially assert that
TSRK methods cannot be G-symplectic, unless they reduce to canonical
RK methods or MRKmethods corresponding to the GLM (10). MRKmeth-
ods (2) with k = 2 depend on the approximations to the solution in two
consecutive step points but, unlike TSRK methods (1), they do not contain
any dependency on past stage derivatives.

We focus our attention of MRK methods (2) with k = s = 2, whose
GLM representation is given by the tableau

(11)

[
A U

B V

]
=


a11 a12 u11 u12
a21 a22 u21 u22
b1 b2 v1 v2
0 0 1 0

 ,

in correspondence of the input vector y[n−1] = [yn yn−1]
T .

We aim to investigate if MRK methods (2) can be genuine G-symplectic
methods or if they reduce to known canonical formulae. We prove in the
remainder of this paper the existence of such methods in a constructive
way, i.e. by exhibiting an example of G-symplectic method falling in the
class (11). It is worth remarking that Burrage in [3] was able to find many
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algebraically stable methods belonging to the family (2): for this reason,
the investigation of the G-symplecticity properties of such methods seems
particularly reasonable, since G-symplecticity and algebraic stability are
strongly connected each other, as we have seen.

We first ensure the convergence of (11), by applying the GLM conver-
gence analysis described in [2,5], i.e. by assuming the following preconsis-
tency, consistency and stage consistency conditions

u11 + u12 = 1,

u21 + u22 = 1,

v1 + v2 = 1,

b1 + b2 + v1 = 2,

a11 + a12 − u12 = c1,

a21 + a22 − u22 = c2,

with −1 < v2 ≤ 1 for zero-stability requirements. In order to avoid reduc-
tion to GLMs with r = 1, we assume in advance two values for v1 and v2,
e.g. v1 = 1/3 and v2 = 2/3; we remark that such assumptions are in ac-
cordance with zero-stability and preconsisistency requirements, thus they
do not affect the convergence of the scheme. We solve the above equalities
with respect to u11, u21, b1, a11, a21 and, under these assumptions, the
resulting methods are consistent and zero-stable and, therefore, convergent
(see Theorem 2.3.4 in [2]). We use the remaining parameters to achieve
G-symplecticity via conditions (7), order 2 and stage order 2 by assuming

Ac− Uq2 =
c2

2
,

Bc+ V q2 = q2 + q1 +
q0
2
,

with q0 = [1 1]T , q1 = [0 − 1]T , q2 = [0 1
2 ]

T . Then, we finally ob-
tain the G-symplectic MRK method corresponding to the following GLM
representation

(12)

[
A U

B V

]
=



1
4

15−14
√
30

60
3
5

2
5

15+14
√
30

60
1
4

3
5

2
5

5
6

5
6

1
3

2
3

0 0 1 0

 ,

9
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with abscissa vector

c =
[
3−

√
7

30
3+

√
7

30

]T
,

and

G =

[
3
5

2
5

2
5

4
15

]
, D =

[
3
4 0

0 27
8

]
.

We now show the numerical evidence originated from the application of
the derived MRK method to the simple pendulum problem

(13)


ṗ(t) = − sin(q(t)),
q̇(t) = p(t),
p(0) = 0,
q(0) = 2.3,

with t ∈ [0, 1000]. It is known that the Hamiltonian of this dynamical
system, i.e.

H(p(t), q(t)) =
p(t)2

2
− cos(q(t)),

which provides the total energy of the system, is preserved along the time.
Table 1 reports the infinity norm of the vector eH of the Hamiltonian de-
viations

eHn =
Hn −H(p(0), q(0))

H(p(0), q(0))
, n = 1, . . . , N,

where Hn is approximated value of the Hamiltonian computed in the point
tn of the discretization and N = 1000/h, being h = 1/2k the (fixed) value
of the stepsize and k an integer value. The results confirm the ability of
method (12) to preserve for long time the total energy of the dynamical
system described by (13).

We also notice that the total energy is accurately preserved for long
time since the method (12) does not exhibit any parasitic behaviour, as it
happens for the G-symplectic GLM

(14)

[
A U

B V

]
=



3+
√
3

6 0 1 − 3+2
√
3

3

−
√
3
3

3+
√
3

6 1 3+2
√
3

3

1
2

1
2 1 0

1
2 −1

2 0 −1

 ,

described in [5]. Figures 1 and 2 show the Hamiltonian deviation associated
to methods (12) and (14) respectively, when applied to problem (13) with

10
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Table 1. Numerical re-
sults for the G-symplec-
tic MRK method (12)
on problem (13)

k ∥eH∥∞

5 2.66 · 10−3

6 6.66 · 10−4

7 1.66 · 10−4

8 4.16 · 10−5

9 1.04 · 10−5

10 2.60 · 10−6

stepsize h = 10−2. It can be advised that method (14) exhibits a parasitic
behaviour which destroys the overall accuracy of the conservation, since
∥eH∥∞ = 2.99. Such a behaviour is not advisable on our method (12) and
the infinity norm of the achieved Hamiltonian error is ∥eH∥∞ = 2.73 ·10−4.

0 100 200 300 400 500 600 700 800 900 1000
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

t

eH

Figure 1. Hamiltonian error of the method (12) applied to (13) with stepsize h = 10−2.

4. Conclusions

We have focused our attention on the conservative properties of TSRK
methods, proving that irreducible G-symplectic TSRK methods do not ex-
ist, since such methods are equivalent to (and, therefore, they reduce to)
symplectic RK methods or G-symplectic two-step MRK methods. The exis-
tence of genuine G-symplectic MRKmethods (2) is discussed in Section 3 by
means of constructive arguments: in particular, an example of G-symplectic
MRK method has been provided, tested and compared with a known G-
symplectic method due to Butcher [5]. Future investigations will concern
the extensive analysis of the conservative properties of MRK methods, also

11
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0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

t

eH

Figure 2. Hamiltonian error of the method (14) applied to (13) with stepsize h = 10−2.

in comparison to known canonical formulae. Our purpose will also be the
investigation of G-simplecticity of other classes of non-symplectic methods
already known in the literature (such as DIMSIMs, peer methods, almost
RK methods, and so on [2,5]).
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