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Abstract In this paper we consider the family of General Linear Methods
(GLMs) for the numerical solution of special second order Ordinary Differ-
ential Equations (ODEs) of the type y′′ = f(y(t)), with the aim to provide
a unifying approach for the analysis of the properties of consistency, zero-
stability and convergence. This class of methods properly includes all the clas-
sical methods already considered in the literature (e.g. linear multistep meth-
ods, Runge-Kutta-Nyström methods, two-step hybrid methods and two-step
Runge-Kutta-Nyström methods) as special cases. We deal with formulation of
GLMs and present some general results regarding consistency, zero-stability
and convergence. The approach we use is the natural extension of the GLMs
theory developed for first order ODEs.
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1 Introduction

It is the purpose of this paper to introduce a general family of numerical
methods suited to numerically integrate initial value problems based on special
second order Ordinary Differential Equations (ODEs)

y′′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rd,

y′(t0) = y′0 ∈ Rd,

(1.1)

where the function f : Rd → Rd does not explicitly depend on y′ and is sup-
posed to be smooth enough to ensure that the corresponding problem (1.1) is
Hadamard well-posed. Although the problem (1.1) could be transformed into a
system of twice the dimension first order ODEs and solved by standard formu-
lae for first order differential systems, the development of numerical methods
for its direct integration is more natural and efficient.

The development of a general family of numerical methods for the solu-
tion of first order ODEs is due to John C. Butcher (compare [2,3,11] and
the references therein), who provided a unifying theory approaching the basic
questions of convergence, linear and nonlinear stability of numerical methods
for ODEs. His studies lead to the introduction of the family of General Linear
Methods (GLMs), later used not only as a framework for the analysis of ac-
curacy and stability matters: in fact, it is worth observing that the discovery
of a GLM theory “opened the possibility of obtaining essentially new meth-
ods which were neither Runge-Kutta nor linear multistep methods nor slight
variations of these methods” (compare [13]).

For second order ODEs (1.1) many linear and nonlinear methods appeared
in the literature (see, for instance, [7–10] and references therein), but a sys-
tematic investigation on GLMs has never been in considered till now. In order
to transfer to second order ODEs of the same benefits obtained in the case of
first order ODEs, the purpose of this paper is the foundation of a theory of
GLMs for the numerical solution of (1.1). The paper is organized as follows:
the formulation of GLMs for (1.1) is introduced in Section 2; Section 3 is de-
voted to the introduction of the concept of consistency for GLM; the study of
zero-stability for GLMs is carried out in Section 4 where, together with the
definition of zero-stability, a criterion to analyze zero-stability is also proved;
Section 5 concerns with the convergence analysis of GLMs and a useful char-
acterization for GLMs is provided; Section 6 contains some conclusions and
possible further development of this research.

2 Representation of General Linear Methods

In this section, we discuss a general representation formula of GLMs for second
order ODEs (1.1), in order to properly embrace a wide number of classical
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numerical methods for (1.1) and with the initial aim to establish the necessary
results for the development of a unifying theory of numerical methods for
(1.1). Thus, following the lines drawn in [2,3,11], we consider in this paper the
uniform grid

Ih = {tn = t0 + nh, n = 0, 1, ..., N, Nh = T − t0},

which provides the discrete counterpart of the interval of the definition I of
the problem (1.1), considering in our preliminary analysis a fixed stepsize h.
We assume as a point of reference of our analysis the family of GLMs for first
order ODEs (compare [2,3,11] and references therein), i.e.

Y
[n]
i =

s∑
j=1

aijhf(Y
[n]
j ) +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i =

s∑
j=1

bijhf(Y
[n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(2.1)

introduced by Burrage and Butcher [1] in 1980. In order to adapt such for-
mulation to second order ODEs (1.1) and achieve the mentioned purpose of
gaining a very general class of numerical methods to solve this problem, we
inherit the same structure as in (2.1) but also include explicit dependence on
the approximations to the first derivative of the solution. Thus, we introduce
the abscissa vector c = [c1, c2, . . . , cs] and define the following supervectors

y[n−1] =


y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r

 ∈ Rrd, y′[n−1] =


y′

[n−1]
1

y′
[n−1]
2

...

y′
[n−1]
r′

 ∈ Rr′d, Y [n] =


Y

[n]
1

Y
[n]
2

...

Y
[n]
s

 ∈ Rsd.

The vector y[n−1] is denoted as input vector of the external stages, and
contains all the informations we want to transfer advancing from the point
tn−1 to the point tn of the grid. It is important to observe that such a vector
could also contain not only approximations to the solution of the problem in
the grid points inherited from the previous steps, but also other informations
computed in the past that we want to use in the integration process. The vector
y′[n−1] instead contains previous approximations to the first derivative of the

solution computed in previous step points, while the values Y
[n−1]
j , denoted as

internal stage values, provide an approximation to the solution in the internal
points tn−1 + cjh, j = 1, 2, . . . , s.

Our formulation of GLMs for second order ODEs then involves nine co-
efficient matrices A ∈ Rs×s, P ∈ Rs×r′ , U ∈ Rs×r, C ∈ Rr′×s, R ∈ Rr′×r′ ,
W ∈ Rr′×r, B ∈ Rr×s, Q ∈ Rr×r′ , V ∈ Rr×r, which are put together in the
following partitioned (s+ r′ + r)× (s+ r′ + r) matrixA P U

C R W
B Q V

 , (2.2)
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which is denoted as the Butcher tableau of the GLM. Using these notations,
a GLM for second order ODEs can then be expressed as follows:

Y [n] = h2(A⊗ I)F [n] + h(P⊗ I)y′[n−1] + (U⊗ I)y[n−1],

hy′[n] = h2(C⊗ I)F [n] + h(R⊗ I)y′[n−1] + (W ⊗ I)y[n−1],

y[n] = h2(B⊗ I)F [n] + h(Q⊗ I)y′[n−1] + (V ⊗ I)y[n−1],

(2.3)

where ⊗ denotes the usual Kronecker tensor product, I is the identity matrix

in Rd×d and F [n] = [f(Y
[n]
1 ), f(Y

[n]
2 ), . . . , f(Y

[n]
s )]T . Componentwise,

Y
[n]
i = h2

s∑
j=1

aijf(Y
[n]
j ) + h

r′∑
j=1

pijy
′[n−1]
j +

r∑
j=1

uijy
[n−1]
j i = 1, ..., s,

hy′
[n]
i = h2

s∑
j=1

cijf(Y
[n]
j ) + h

r′∑
j=1

rijy
′[n−1]
j +

r∑
j=1

wijy
[n−1]
j i = 1, ..., r′

y
[n]
i = h2

s∑
j=1

bijf(Y
[n]
j ) + h

r′∑
j=1

qijy
′[n−1]
j +

r∑
j=1

vijy
[n−1]
j i = 1, ..., r.

(2.4)
We are aware that a more compact representation could be provided by

merging, for instance, the approximations of the first derivative into the input
vector of the external stages. However, we have decided to explicitly represent
the approximations to the first derivative, as it is usually done in the context
of numerical methods for second order ODEs: this is typical, for instance, of
Runge-Kutta-Nyström methods (see [7]).

We also observe that, if the methods do not explicitly depend on approx-
imations to the first derivative (as it happens in the case of linear multistep
methods [7] or Coleman hybrid methods [4]), the weights of the first deriva-
tive appearing in each equation of (2.3) are equal to zero, i.e. the matrices
P,Q,C,R,W are all equal to the zero matrix.

3 Preconsistency and consistency

Following [2,3,11], we first address our attention on the definition of some
minimal accuracy requirements for GLMs, i.e. preconsistency and consistency,
which guarantee the coherence of GLMs with respect to problems whose solu-
tion is a constant or a linear polynomial.

In order to satisfy such minimal accuracy requirements, we assume that
there exist three vectors

q0 = [q1,0 q2,0 . . . qr,0]T ,

q1 = [q1,1 q2,1 . . . qr,1]T ,

q2 = [q1,2 q2,2 . . . qr,2]T ,
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such that the components of the input and the output vectors of the external
stages respectively satisfy

y
[n−1]
i = qi,0y(tn−1) + qi,1hy

′(tn−1) + qi,2h
2y′′(tn−1) +O(h3),

y
[n]
i = qi,0y(tn) + qi,1hy

′(tn) + qi,2h
2y′′(tn) +O(h3),

i = 1, 2, . . . , r and, moreover, that there exist two vectors

q′1 = [q′1,1 q′2,1 . . . q′r′,1]T , q′2 = [q′1,2 q′2,2 . . . q′r′,2]T ,

such that the components of the input and the output vectors associated to
the first derivative approximations satisfy

hy′i
[n−1] = q′i,1hy

′(tn−1) + q′i,2h
2y′′(tn−1) +O(h3),

hy′i
[n] = q′i,1hy

′(tn) + q′i,2h
2y′′(tn) +O(h3),

i = 1, . . . , r′. We finally assume that the components of the stage vector Y [n]

satisfy the condition

Y
[n]
i = y(tn−1 + cih) +O(h3), i = 1, . . . , s.

which, by expanding the right hand side in Taylor series around the point
tn−1, leads to the condition

Y
[n]
i = y(tn−1) + cihy

′(tn−1) +
(cih)2

2
y′′(tn−1) +O(h3), i = 1, . . . , s.

Substituting these relations in the GLM (2.4) and comparing the powers of h
up to h2 leads to the following definitions.

Definition 3.1 A GLM (2.4) is preconsistent if there exist vectors q0, q1 and
q′1 such that

Uq0 = e, Wq0 = 0, Vq0 = q0,

Pq′1 + Uq1 = c, Rq′1 + Wq1 = q′1, Qq′1 + Vq1 = q0 + q1.

In the context of GLMs for first order ODEs, Butcher [3] observed that precon-
sistency is equivalent to the concept of covariance of a GLM, which essentially
ensures that numerical approximations are appropriately transformed by a
shift of origin and a constant value times q0 persists from step to step.

Definition 3.2 A preconsistent GLM (2.4) is consistent if exist vectors q2

and q′2 such that

Ce+ Rq′2 + Wq2 = q′1 + q′2, Be+ Qq′2 + Vq2 =
q0

2
+ q1 + q2.

Definition 3.3 A consistent GLM (2.4) is stage-consistent if

Ae+ Pq′2 + Uq2 =
c2

2
.
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4 Zero-stability

Another basic requirement in the context of the numerical integration of ODEs
is, together with consistency, also zero-stability. In order to define such minimal
stability requirement, we apply the GLM (2.3) to the problem

y′′ = 0,

obtaining the recurrence relation[
hy′[n]

y[n]

]
=

[
R W
Q V

] [
hy′[n−1]

y[n−1]

]
.

The matrix

M0 =

[
R W
Q V

]
is denoted as the zero-stability matrix of the GLM (2.3). The following defini-
tion occurs.

Definition 4.1 A GLM (2.3) is zero-stable if there exist two real constants
C and D such that

‖Mm
0 ‖ ≤ mC +D, ∀m = 1, 2, . . . . (4.1)

A criterion equivalent to condition (4.1) is given in the following theorem. This
result follows the lines drawn by Butcher in [2].

Theorem 4.1
The following statements are equivalent:

(i) M0 satisfies the bound (4.1);
(ii) the roots of the minimal polynomial of the matrix M0 lie on or within the

unit circle and the multiplicity of the zeros on the unit circle is at most
two;

(iii) there exist a matrix B similar to M0 such that

sup
m
{‖Bm‖∞ , m ≥ 1} ≤ m+ 1.

Proof The result holds by proving the implications (i) ⇒ (ii), (ii) ⇒ (iii),
and (iii)⇒ (i). We first prove that (i)⇒ (ii). Suppose that λ is an eigenvalue
of M0 and denote by v the corresponding eigenvector. As a consequence, we
obtain

‖Mm
0 ‖∞ = sup

x 6=0

‖Mm
0 x‖∞
‖x‖∞

≥
‖Mm

0 v‖∞
‖v‖∞

=
‖λmv‖∞
‖v‖∞

= |λ|m ,

and, taking into account that M0 satisfies assumption (i), we obtain |λ| ≤ 1.
Since λ is an element of the spectrum of M0, it is also a root of its minimal

polynomial. We suppose that λ is a repeated zero of the minimal polynomial
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with multiplicity µ(λ) = 3: then there exist three nonzero vectors u, v and w
such that

M0w = λw + u, M0u = λu+ v, M0v = λv.

It is easy to prove by induction that

Mm
0 w = λmu+mλm−1u+

m(m− 1)

2
λm−2v, for any m ≥ 2.

As a consequence, the following bound holds:

‖Mm
0 ‖∞ = sup

x 6=0

‖Mm
0 x‖∞
‖x‖∞

≥
‖Mm

0 w‖∞
‖w‖∞

=

∥∥∥λmw +mλm−1u+ m(m−1)
2 λm−2v

∥∥∥
∞

‖w‖∞

= |λ|m−2
(
|λ|2 −m|λ|

‖u‖∞
‖w‖∞

− m(m− 1)

2

‖v‖∞
‖w‖∞

)
.

If |λ| = 1, then

‖Mm
0 ‖∞ ≥ 1−m

‖u‖∞
‖w‖∞

− m(m− 1)

2

‖v‖∞
‖w‖∞

,

and, by setting C :=
‖u‖∞
‖w‖∞

and D :=
‖v‖∞
‖w‖∞

, we obtain

‖Mm
0 ‖∞ ≥ 1 +mC +

m(m− 1)

2
D,

which means that ‖Mm
0 ‖ cannot be linearly bounded as m→∞, against the

hypothesis (i). In conclusion, if µ(λ) = 3, then |λ| < 1. In correspondence of
µ(λ) = 2, we have

‖Mm
0 ‖∞ ≥ |λ|

m−1
(
m
‖v‖∞
‖u‖∞

− |λ|
)
,

which, for |λ| = 1, leads to the bound

‖Mm
0 ‖∞ ≥ mC − 1,

which can coherently be combined with the assumption (i). We next suppose
that (ii) holds: then, we can choose the matrix B as the Jordan canonical form
of M0

B =

[
J1 0
0 J2

]
,

where the block J1 assumes the form

J1 =

[
λ a
0 λ

]
,
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with |λ| = 1 and

a =

{
1, if µ(λ) = 2,

0, if µ(λ) = 1,

while the block J2 contains the eigenvalues λi of modulus less than 1 on the
diagonal and 1 − |λi| on the upper co-diagonal. Since B is a block diagonal
matrix, we have

Bm =

[
Jm
1 0
0 Jm

2

]
,

with

Jm
1 =

[
λm amλm−1

0 λm

]
.

It follows that

‖Bm‖∞ = max

{∥∥∥∥(λm amλm−1

0 λm

)∥∥∥∥
∞
, ‖Jm

2 ‖∞

}
≤ m+ 1.

Finally, if (iii) is true, since B is similar to M0, then there exists a matrix P
such that B = P−1M0P . As a consequence,

‖Mm
0 ‖∞ =

∥∥PBmP−1
∥∥
∞ ≤ m+ 1,

i.e. M0 satisfies the zero-stability bound (4.1). ut

Remark 1 Let us note that condition (ii) in Theorem 4.1 is peculiar in the
numerical solution of second order ODEs (1.1). In fact, the notion of zero-
stability for GLMs solving first order ODEs (compare [2,3,11]) implies that
the minimal polynomial of its zero-stability matrix can possess at most one
root of modulus one, while all the others have modulus less than one. Instead,
in the case of second order ODEs, two roots of the minimal polynomial of the
zero-stability matrix lying on the unit circle are allowed, taking into account
also the case of complex conjugate roots of modulus one, as might happen
in second order ODES (1.1) in the oscillatory case. This is made clear in [7],
where the authors prove the necessity for convergence of such a zero-stability
condition in the context of linear multistep methods.

5 Convergence

In this section we focus our attention on the convergence analysis of GLMs
(2.4), first extending the ideas introduced by Butcher [3] in order to formulate
a rigorous definition of convergence for a GLM (2.4). In force of the nature of
GLMs, a starting procedure is needed in order to determine the missing start-
ing values y[0] and y′[0] to be used as input for the first step of the integration
process: in the context of convergence analysis, we only need to assume that
there exist a starting procedure

Sh : R2d → Rdr,
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associating, for any value of the stepsize h, a starting vector y[0] = Sh(y0, y
′
0)

such that

lim
h→0

Sh(y0, y
′
0)− (q0 ⊗ I)y(t0)

h
= (q1 ⊗ I)y′(t0), (5.1)

and, moreover, the initial vector y′[0] is provided in order to ensure that

lim
h→0

y′[0] = (q′1 ⊗ I)y′(t0). (5.2)

We now introduce the following definition.

Definition 5.1 A preconsistent GLM (2.4) is convergent if, for any well-posed
initial value problem (1.1), there exist a starting procedure Sh satisfying (5.1)
such that the sequence of vectors y[n], computed using n steps with stepsize
h = (t̄−t0)/n and using y[0] = Sh(y0, y

′
0), converges to q0y(t̄), and the sequence

of vectors y′[n], computed using n steps with the same stepsize h starting from
y′[0] satisfying (5.2), converges to q′1y

′(t̄), for any t̄ ∈ [t0, T ].

Proving the convergence of a numerical method is generally a nontrivial
task: however, the following results create a very close connection among the
concepts of convergence, consistency and zero-stability and allow to prove
the convergence of a numerical scheme by checking some algebraic conditions
involving the coefficients of the method: indeed, we prove that a GLM (2.4) is
convergent if and only if it is consistent and zero-stable. This powerful result
has already been proved in the context of GLMs for first order ODEs [3,11].
We now extend it to the case of GLMs (2.4) for second order ODEs, by first
proving the sufficiency of consistency and zero-stability, while their necessity
is object of Theorem 5.2.

Theorem 5.1 A GLM (2.4) is convergent if it is consistent and zero-stable.

Proof We introduce the vectors

ŷ[n−1] =


ŷ
[n−1]
1

ŷ
[n−1]
2

...

ŷ
[n−1]
r

 , ŷ[n] =


ŷ
[n]
1

ŷ
[n]
2

...

ŷ
[n]
r

 , ŷ′[n−1] =


ŷ′

[n−1]
1

ŷ′
[n−1]
2

...

ŷ′
[n−1]
r′

 , ŷ′[n] =


ŷ′

[n]
1

ŷ′
[n]
2

...

ŷ′
[n]
r′

 ,

defined by

ŷ
[n−1]
i = qi0y(tn−1) + qi1hy

′(tn−1) + qi2h
2y′′(tn−1),

ŷ
[n]
i = qi0y(tn) + qi1hy

′(tn) + qi2h
2y′′(tn),

hŷ′
[n−1]
i = q′i1hy

′(tn−1) + q′i2h
2y′′(tn−1),

hŷ′
[n]
i = q′i1hy

′(tn) + q′i2h
2y′′(tn),
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where qi,0, qi,1 and q′i,1 are the components of the preconsistency vectors q0,
q1 and q′1, while qi,2 and q′i,2 are the components of the consistency vectors
q2 and q′2. We next denote by

ξi(h), ηi(h), ζi(h),

the residua arising after replacing in (2.4) y
[n−1]
i , y

[n]
i , y′

[n−1]
i , y′

[n]
i by ŷ

[n−1]
i ,

ŷ
[n]
i , ŷ′

[n−1]
i , ŷ′

[n]
i respectively and, moreover, Y

[n]
i by y(tn−1 + cih). The men-

tioned replacements lead to the following equations:

y(tn−1 + cih) = h2
s∑

j=1

aijy
′′(tn−1 + cjh)

+ h

r′∑
j=1

pij(q
′
j1y
′(tn−1) + hq′j2y

′′(tn−1))

+

r∑
j=1

uij(qj0y(tn−1) + qj1hy
′(tn−1) + qj2h

2y′′(tn−1))

+ ξi(h), i = 1, 2, . . . , s,

(5.3)

q′i1hy
′(tn) + q′i2h

2y′′(tn) = h2
s∑

j=1

cijy
′′(tn−1 + cjh)

+ h

r′∑
j=1

rij(q
′
j1y
′(tn−1) + hq′j2y

′′(tn−1))

+

r∑
j=1

wij(qj0y(tn−1) + qj1hy
′(tn−1) + qj2h

2y′′(tn−1))

+ ζi(h), i = 1, 2, . . . , r′,

(5.4)

qi0y(tn) + qi1hy
′(tn) + qi2h

2y′′(tn) = h2
s∑

j=1

bijy
′′(tn−1 + cjh)

+ h
r′∑

j=1

aij(q
′
j1y
′(tn−1) + hq′j2y

′′(tn−1))

+

r∑
j=1

vij(qj0y(tn−1) + qj1hy
′(tn−1) + qj2h

2y′′(tn−1))

+ ηi(h), i = 1, 2, . . . , r.

(5.5)

By expanding y(tn−1 + cih), y′′(tn−1 + cjh) in Taylor series around tn−1,
replacing the obtained expansions in (5.3) and using the hypothesis of precon-
sistency of the method, we obtain that

ξi(h) = O(h2), i = 1, 2, . . . , s.
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In particular, we observe that if the method (2.4) is also stage consistent, we
have

ξi(h) = O(h3), i = 1, 2, . . . , s.

Proceeding in analogous way for (5.4) and (5.5), using in these cases the pre-
consistency and consistency conditions, we obtain

ζi(h) = O(h3), i = 1, 2, . . . , r′,

and

ηi(h) = O(h3), i = 1, 2, . . . , r.

Subtracting the equations for y
[n]
i and ŷ

[n]
i , we obtain

y
[n]
i − ŷ

[n]
i = h2

s∑
j=1

bij

(
f(Y

[n]
j )− f(y(tn−1 + cjh))

)
+ h

r′∑
j=1

qij(y
′[n−1]
j − ŷ′[n−1]j )

+

r∑
j=1

vij(y
[n−1]
j − ŷ[n−1]j )− ηi(h)

or, equivalently, in tensor form

y[n] − ŷ[n] = h2(B⊗ I)
(
F (Y [n])− F (y(tn−1 + ch))

)
+ h(Q⊗ I) ·

· (y′[n−1] − ŷ′[n−1]) + (V ⊗ I)(y[n−1] − ŷ[n−1])− η(h). (5.6)

By means of analogous arguments, we obtain the following representation of
the difference between hy′[n] and hŷ′[n]:

h(y′[n] − ŷ′[n]) = h2(C⊗ I)
(
F (Y [n])− F (y(tn−1 + ch))

)
+ h(R⊗ I) ·

· (y′[n−1] − ŷ′[n−1]) + (W ⊗ I)(y[n−1] − ŷ[n−1])− ζ(h).(5.7)

In order to provide a more compact version of formulae (5.6) and (5.7), we
introduce the notations

un = y[n] − ŷ[n],
vn = h(y′[n] − ŷ′[n]),
wn = h2(B⊗ I)

(
F (Y [n])− F (y(tn−1 + ch))

)
− η(h),

zn = h2(B⊗ I)
(
F (Y [n])− F (y(tn−1 + ch))

)
− ζ(h).

With these notations, formulae (5.6) and (5.7) respectively assume the form

un = wn + (Q⊗ I)vn−1 + (V ⊗ I)un−1, (5.8)

vn = zn + (R⊗ I)vn−1 + (W ⊗ I)un−1. (5.9)
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Observe that, by applying the Lipschitz continuity of the function F , the
following bound for wn arises

‖wn‖ ≤ h2L‖B‖‖Y [n] − y(tn−1 + ch)‖+ ‖η(h)‖, (5.10)

where L is the Lipschitz constant of F . In order to establish a bound for
‖Y [n] − y(tn−1 + ch)‖, we use the following representation to the difference
inside the norm:

Y [n] − y(tn−1 + ch) = h2(A⊗ I)
(
F (Y [n])− F (y(tn−1 + ch))

)
+ (P⊗ I)vn−1

+ (U⊗ I)un−1 − ξ(h).

As a consequence, the following bound holds:

‖Y [n] − y(tn−1 + ch)‖ ≤ h2L‖A‖‖Y [n] − y(tn−1 + ch)‖+ ‖P‖‖vn−1‖
+ ‖U‖‖un−1‖+ ‖ξ(h)‖.

Assuming that h < h0 and h0L‖A‖ < 1, we obtain

‖Y [n] − y(tn−1 + ch)‖ ≤ ‖P‖
1− h20L‖A‖

‖vn−1‖ (5.11)

+
‖U‖

1− h20L‖A‖
‖un−1‖+

‖ξ(h)‖
1− h20L‖A‖

.

Substituting in (5.10), we obtain

‖wn‖ ≤ h2(D‖vn−1‖+ E‖un−1‖) + h2δ(h), (5.12)

where

D =
L‖B‖‖P‖

1− h20L‖A‖
, E =

L‖B‖‖U‖
1− h20L‖A‖

, δ(h) =
L‖B‖‖ξ(h)‖
1− h20L‖A‖

+ ‖η(h)‖.

In analogous way, we obtain the following bound for zn:

‖zn‖ ≤ h2(D̄‖vn−1‖+ Ē‖un−1‖) + h2δ̄(h), (5.13)

where

D̄ =
L‖C‖‖P‖

1− h20L‖A‖
, Ē =

L‖C‖‖U‖
1− h20L‖A‖

, δ̄(h) =
L‖C‖‖ξ(h)‖
1− h20L‖A‖

.

We put together the two bounds (5.12) and (5.13) obtaining, in vector form,

‖en‖ ≤ h2‖Λ‖ · ‖dn−1‖+ h2‖σ‖, (5.14)

where

en =

[
wn

zn

]
, Λ =

[
D E
D̄ Ē

]
, σ =

[
δ(h)
δ̄(h)

]
, dn−1 =

[
un−1
vn−1

]
.

Proceeding in analogous way for Equations (5.8) and (5.9), we obtain

dn = M0dn−1 + en. (5.15)
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Applying Equation (5.15) n times, we obtain

dn = Mn
0d0 +

n∑
j=1

Mn−j
0 ej , n ≥ 0

and, passing through the norm, we obtain the bound

‖dn‖ ≤ ‖Mn
0‖ · ‖d0‖+

n∑
j=1

‖Mn−j
0 ‖‖ej‖.

Since the hypothesis of zero-stability holds, there exist C1, D1 ∈ R such that
‖Mn

0‖ ≤ nC1 +D1. By using this bound and the estimation (5.14), we obtain

‖dn‖ ≤ (n+ C1 +D1)‖d0‖+

n∑
j=1

((n− j)C1 +D1) (C2‖dj−1‖+D2) ,

where C2 = h2‖Λ‖ and D2 = h2‖σ‖. This bound, after some calculations, can
be rewritten as

‖dn‖ ≤ α(n) +

n∑
j=2

βj(n)‖dj‖, (5.16)

where

α(n) = (nC1 + (n− 1)C1C2 +D1 + C2D1)‖d0‖+

(
n(n− 1)

2
C1 + nD1

)
D2,

βj(n) = ((n− j − 1)C1C2 + C2D1) .

We set j = i1 and apply the corresponding inequality (5.16) for ‖di1‖, i.e.

‖di1‖ ≤ α(n) +

i1∑
i2=2

βi2(n)‖di2‖.

Replacing this inequality in (5.16) leads to

‖dn‖ ≤ α(n) +

n∑
i1=2

βj(n)α(j) +

n∑
i1=2

i1∑
i2=2

βi1(n)βi2(i1)‖di2‖.

By iterating this process, we obtain

‖dn‖ ≤ α(n) +

n∑
i1=2

i1∑
i2=2

i2∑
i3=2

· · ·
2∑

iN=2

N∏
j=1

βij (ij−1)α(ij), (5.17)

under the assumption that i0 = n. We observe that the right hand side of the
inequality (5.17) is expressed as the summation of α(n), which can be bounded
by D1‖d0‖ as n tends to infinity, plus a series whose principal term behaves
as O(1/n2) and, therefore, it converges. Then, the following bound holds

‖dn‖ ≤
(
D1 + C2

1‖Λ‖(t̄− t0)
)
‖d0‖+O(h2), (5.18)

which completes the proof. ut
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We now prove that consistency and zero-stability are also implied by con-
vergence: thus, Theorems 5.1 and 5.2 provide a necessary and sufficient con-
dition for convergence of GLMs (2.4).

Theorem 5.2 A convergent GLM (2.4) is zero-stable and consistent.

Proof Following the lines drawn in [3,11], we first prove that convergence im-
plies zero-stability. We suppose, by contradiction, that the method is not zero-
stable: then, for any C,D ∈ R, the sequence {‖Mn

0‖, n > 0} is never upper
bounded by the linear term nC +D. Thus, since ‖Mn

0‖ = max‖w‖=1 ‖Mn
0w‖,

there exists a sequence of vectors wn, n > 0, having unitary norm, such that
‖Mn

0wn‖ > nC +D. We next consider the problem

y′′(t) = 0, y′(0) = 0, y(0) = 0,

with t ≥ 0, whose exact solution is y(t) = 0, and perform n steps of stepsize
h = 1/n up to the final point t̄ = 1, assuming as initial input vector

d[0] =

[
hy′[0]

y[0]

]
=

wn

max
1≤i≤n

‖Mi
0wi‖

.

We observe that such a starting procedure fulfills requirements (5.1) and (5.2).
The approximations provided after n steps is then given by

d[n] =

[
hy′[n]

y[n]

]
= Mn

0d
[0] =

Mn
0wn

max
1≤i≤n

‖Mi
0wi‖

,

whose norm is equal to

‖d[n]‖ =
‖Mn

0wn‖
max
1≤i≤n

‖Mi
0wi‖

.

Due to the unboundedness of the sequence ‖Mn
0wn‖, there exists a mono-

tonically increasing sequence ‖Mnj

0 wnj‖ tending to infinity, when j tends to
infinity, and such that max1≤i≤nj

‖Mi
0wi‖ = M

nj

0 wnj
. Thus,

‖d[n]‖ =
‖Mnj

0 wnj
‖

‖Mnj

0 wnj
‖

= 1,

which contradicts the convergence of the method.
We now prove that convergence implies consistency. To achieve this pur-

pose, we consider the initial value problem

y′′(t) = 1, y′(0) = 0, y(0) = 0,

t ≥ 0, whose exact solution is y(t) = t2/2, and perform n step of steplength
h = 1/n up to t̄ = 1. Thus, after n steps, the vector d[n] of the numerical
approximations is given by

d[n] = h2D + M0d
[n−1],
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where D = [Ce Be]T . By recursion, we get to the following representation of
the vector d[n]:

d[n] = h2(I + M0 + . . .Mn−1
0 )D,

where I stands for the identity matrix of dimension r′+ r. Due to the precon-
sistency of the method, which leads to

h2(I + M0 + . . .Mn−1
0 )

[
q′1

q0

2 + q1

]
=

[
q′1

q0

2 + q1

]
,

we get

d[n] −
[

q′1
q0

2 + q1

]
= h2(I + M0 + . . .Mn−1

0 )

(
D −

[
q′1

q0

2 + q1

])
.

We have already proved that convergence implies zero-stability: according to
point (iii) of Theorem 4.1, there exists a nonsingular matrix P such that

M0 = P−1
[

J1 0
0 J2

]
P,

where the blocks J1 and J2 are those defined in the proof of Theorem 4.1.
Then,

d[n] −
[

q′1
q0

2 + q1

]
= P−1JP

(
D −

[
q′1

q0

2 + q1

])
,

with

J =

[
h2(I − J1)−1(I − Jn

1 ) 0
0 h2(I − J2)−1(I − Jn

2 )

]
.

It is worth observing that the above identity still holds true when n goes to
infinity. Thus, following the idea of [3,11], we can conclude that

P

(
d[n] −

[
q′1

q0

2 + q1

])
=

[
(I − J1)q̃′2
(I − J2)q̃2

]
,

for some q̃′2 ∈ Rr′ and q̃2 ∈ Rr. We next define the vector[
q′2
q2

]
= P−1

[
I − J1 0

0 I − J2

]−1 [
(I − J1)q̃′2
(I − J2)q̃2

]
.

Then,

P

(
D −

[
q′1

q0

2 + q1

])
=

[
I − J1 0

0 I − J2

]
P

[
q′2
q2

]
= P (I −M0)

[
q′2
q2

]
,

which leads to

D −
[

q′1
q0

2 + q1

]
= (I −M0)

[
q′2
q2

]
.

The last equation provides the conditions of consistency introduced in Defini-
tion 3.2. ut
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6 Order conditions

The derivation of order conditions for GLMs solving first order ODEs has
been successfully and elegantly treated by Butcher [3], via rooted trees and B-
series arguments. However, in the case of high stage order methods, a different
approach to derive order conditions can be used. This approach has been
discussed by Butcher himself in the context of diagonally implicit multistage
integration methods (see [11]), in the cases q = p and q = p − 1, where p
is the order of the method and q is its stage order. We use this approach to
derive order conditions of GLMs for second order ODEs (1.1). As initial case
of study, we assume that the order p of the GLM is equal to its stage order q:
this choice allows the methods to have a uniform order of convergence and, as
a consequence, they would not suffer from order reduction (see [2] as regards
first order ODEs) in the integration of stiff differential systems.

We first assume that the components of the input and output vectors re-
spectively satisfy

y
[n−1]
i =

p∑
k=0

qikh
ky(k)(tn−1) +O(hp+1), (6.1)

y
[n]
i =

p∑
k=0

qikh
ky(k)(tn) +O(hp+1), (6.2)

for some real parameters qik, i = 1, 2, . . . , r, k = 0, 1, . . . , p. We will next
denote p as the order of the method. We then assume that the components of

the internal stages Y
[n]
i are approximations of order q to the solution of (1.1)

at the internal points tn−1 + cih, i.e.

Y
[n]
i = y(tn−1 + cih) +O(hq+1), i = 1, 2, . . . , s. (6.3)

We will next denote q as the stage order of the method. We also request that
the components of the input and output vectors of the derivatives respectively
satisfy

hy′
[n−1]
i =

p∑
k=1

q′ikh
ky(k)(tn−1) +O(hp+1), (6.4)

hy′
[n]
i =

p∑
k=1

q′ikh
ky(k)(tn) +O(hp+1), (6.5)

for some real parameters q′ik, i = 1, 2, . . . , r′, k = 1, 2, . . . , p. We introduce the
following notation

ecz = [ec1z, ec2z, . . . , ecsz],

and define the vectors

w = w(z) =

p∑
k=0

qkz
k, and w′ = w′(z) =

p∑
k=1

q′kz
k.
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We aim to obtain algebraic conditions ensuring that a GLM (2.4) has order
p = q. The following theorem holds.

Theorem 6.1 Assume that y[n−1] and y′[n−1] satisfy respectively (6.1) and
(6.4). Then the GLM (2.4) of order p and stage order q = p satisfies (6.2),
(6.3) and (6.5) if and only if

ecz = z2Aecz + Pw′(z) + Uw(z) +O(zp+1), (6.6)

ezw′(z) = z2Cecz + Rw′(z) + Ww(z) +O(zp+1), (6.7)

ezw(z) = z2Becz + Qw′(z) + Vw(z) +O(zp+1). (6.8)

Proof Since Y
[n]
i = y(tn−1 + cih) +O(hq+1), i = 1, 2, . . . , s, it follows that

h2f(Y
[n]
i ) = h2y′′(tn−1 + cih) +O(hp+3)

=

p∑
k=2

ck−2i

(k − 2)!
hky(k)(tn−1) +O(hp+1).

Expanding in Taylor series around tn−1, Equation (6.2) can be written in the
form

y
[n]
i =

p∑
k=0

(
k∑

l=0

1

l!
qi,k−l

)
hky(k)(tn−1) +O(hp+1). (6.9)

We substitute the relations (6.1), (6.2), (6.3), (6.4) and (6.5) in the GLM
formulation (2.4). Then, by equating to zero the coefficients of hky(k)(tn−1)/k!,
k = 0, 1, . . . , p, multiplying them by zk/k!, and summing them over k from 0
to p, we obtain

eciz − z2
s∑

j=1

aije
cjz −

r′∑
j=1

pijw
′
j −

r∑
j=1

uijwj = O(zp+1), i = 1, 2, . . . , s,

ezw′i − z2
s∑

j=1

cije
cjz −

r′∑
j=1

rijw
′
j −

r∑
j=1

wijwj = O(zp+1), i = 1, 2, . . . , r′,

ezwi − z2
s∑

j=1

bije
cjz −

r′∑
j=1

qijw
′
j −

r∑
j=1

vijwj = O(zp+1), i = 1, 2, . . . , r.

These relations are equivalent to (6.6), (6.7) and (6.8).
ut

It follows from the proof of Theorem 6.1 that the conditions (6.6), (6.7)
and (6.8) are respectively equivalent to

ck − k(k − 1)Ack−2 − k!Pq′k − k!Uqk = 0, (6.10)
k∑

l=0

k!

l!
q′k−l − k(k − 1)Cck−2 − k!Rq′k − k!Wqk = 0, (6.11)

k∑
l=0

k!

l!
qk−l − k(k − 1)Bck−2 − k!Qq′k − k!Vqk = 0, (6.12)
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for k = 2 . . . , p + 1. These equalities constitute the system of order condition
that a GLM has to satisfy in order to achieve order p equal to the stage order
q.

7 Conclusions and future works

In this paper we have addressed our attention on the development of a unify-
ing framework for the numerical solution of special second order ODEs (1.1),
by considering the family of General Linear Methods (2.4) for this problem.
Although the techniques used in the paper are suitable generalizations of the
ones developed for first order ODEs in [2,3,11], we think this is the work that
had to be done in order to introduce a unifying theory of numerical methods
for (1.1). We have presented the formulation of GLMs and the main results re-
garding consistency, zero-stability and convergence. These general results are
being exploited and, together with the derivation of order conditions, are al-
lowing to derive and analyze new numerical methods for (1.1), easily achieving
their convergence properties.
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