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Abstract

In the context of the numerical integration of initial value problems based on
ordinary differential equations, it is the purpose of this paper to introduce a
modification of two step collocation methods, in order to obtain coefficient
matrices with a structured shape, to get an efficient implementation. Our aim
is the development of new collocation-based methods having high order of
convergence and strong stability properties (e.g. A-stability and L-stability).
We present the constructive technique, discuss the order of convergence and
the stability properties of the resulting methods and provide some numerical
results confirming the theoretical expectations.

Key words: Two-step Runge-Kutta methods, almost collocation methods,
A-stability, L-stability, Singly Implicit Runge–Kutta methods, Diagonally
Implicit Runge–Kutta methods.

1. Introduction

It is the purpose of this paper to approach the numerical solution of
Hadamard well-posed systems of ordinary differential equations (ODEs)

{
y′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rd
(1.1)

with f : [t0, T ]× Rd → Rd, by means of highly stable multistage integration
methods. Because of the implicitness of such methods, the numerical solu-
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tion of nonlinear systems of equations is strongly involved in the integration
process and the computational cost of an implicit numerical method then
strictly depends on the computational cost required to solve such nonlinear
systems: for this reason, we focus our attention on the development and the
analysis of new continuous formulae with structured coefficient matrices. In
fact, the solution of linear and nonlinear systems of equations can be effi-
ciently computed if their coefficient matrix shows a structured shape. In
this case, some function evaluations can be avoided or the Jacobian of the
system can be stored and re-used for a certain number of iterations or a fast
computation (e.g. in a parallel environment) can be provided.

In order to derive numerical methods having the mentioned features, we
consider a modification of the two-step algebraic collocation technique. Our
purpose is to combine the advantages of implicit Runge–Kutta methods de-
pending on a structured coefficient matrix, e.g. efficient solution of the non-
linear system in the stages, with the advantages of multistep collocation
methods, i.e. high stage order, uniform order of convergence and strong
stability properties.

Two-step collocation methods (1.2) were introduced in [16] and further
investigated in [15, 17, 18, 20], also in the context of Volterra integral equa-
tions [13, 14]. In this work the solution y(tn + sh), where s is the time scaled
variable, is approximated by means of the algebraic polynomial





P (tn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn

+ h
m∑

j=1

(
χj(s)f(P (tn−1 + cjh)) + ψj(s)f(P (tn + cjh))

)
,

yn+1 = P (tn+1),

(1.2)

named collocation polynomial, which is formulated as linear combination of
the basis polynomials ϕ0(s), ϕ1(s), χj(s), and ψj(s), j = 1, 2, . . . ,m. It is
usually considered that s ∈ [0, 1], but this restriction is not necessary, at
least when we have to evaluate the polynomial P (tn + sh) in future points:
such evaluations occur, for instance, when some of the collocation points ci,
i = 1, 2, . . . ,m, are greater than 1.

It is generally assumed that the collocation polynomial (1.2) satisfies the
interpolation conditions P (tn−1) = yn−1, P (tn) = yn and the collocation
conditions P ′(tn−1 + cjh) = f(P (tn−1 + cjh)), P

′(tn + cjh) = f(P (tn + cjh)),
j = 1, 2, . . . ,m. However, in order to reach strong stability properties (e.g.
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A-stability, L-stability and algebraic stability), we impose only some of these
conditions and get rid of all the others, obtaining some degrees of freedom
to be spent for the stability purpose. Such methods are denoted as two-step
almost collocation methods [16].

Setting Y
[n−1]
j = P (tn−1 + cjh) and Y

[n]
j = P (tn + cjh), j = 1, 2, . . . ,m,

the method (1.2) can be regarded as two-step Runge-Kutta (TSRK) method
{
yn+1 = θyn−1 + θ̃yn + h

(
(vT ⊗ Id)F

[n−1] + (wT ⊗ Id)F
[n]
)
,

Y [n] = (u⊗ Id)yn−1 +
(
(e− u)⊗ Id

)
yn + h

(
(A⊗ Id)F

[n−1] + (B ⊗ Id)F
[n]
)
,

(1.3)
with

θ = ϕ0(1), θ̃ = ϕ1(1), vj = χj(1), wj = ψj(1),

ui = ϕ0(ci), ũi = ϕ1(ci), aij = χj(ci), bij = ψj(ci),

and where F [n] = [f1(Y
[n]
1 ), . . . , f1(Y

[n]
m ), . . . , fd(Y

[n]
1 ), . . . , fd(Y

[n]
m )]T , Id is the

identity matrix of dimension d, e = [1, . . . , 1]T ∈ Rm and ⊗ denotes the usual
Kronecker tensor product. In analogous manner, for s 6= 1, equation (1.2)
can lead to a continuous TSRK method.

The computational cost of a TSRK method (1.3) is strongly related to
the solution of the nonlinear system for the computation of Y [n], whose coef-
ficient matrix depends on the matrix B. An efficient solution of such system
could be provided if B takes a special structure (e.g. triangular or diago-
nal). Jackiewicz and Tracogna identified in [21] four different types of TSRK
methods according to the structure of B:

• methods of type 1 and 2, with B lower triangular and having only one
nonzero eigenvalue λ, with λ = 0 and λ 6= 0 respectively, suitable to
integrate nonstiff and stiff systems respectively in a serial computing
environment;

• methods of type 3 and 4, depending on B = diag(λ, . . . , λ), with λ = 0
and λ 6= 0 respectively, suitable to integrate nonstiff and stiff systems
respectively in a parallel computing environment.

In particular, if B is a full matrix, (1.3) requires the solution of a nonlinear
system of dimensionmd×md; ifB is lower triangular, m successive nonlinear
systems of dimension d must be solved while, in case of B diagonal, the so-
lution of m independent nonlinear systems of dimension d must be provided.
Moreover,
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• in the case of type 2 methods, i.e. B lower triangular and one-point
spectrum, if the nonlinear system in (1.3) is solved by means of Newton-
type iterations, the stored LU-factorization of the coefficient matrix
Id − hλJ

[n]
i can be repeatedly used for a certain number of iterations,

where J
[n]
i is the i-th block column of the Jacobian of F [n];

• if B is diagonal, a fast resolution of the nonlinear system in a parallel
environment can be provided.

The purpose of this paper is the derivation of highly-stable two-step al-
most collocation methods (1.2) equivalent to TSRK methods (1.3) of type 2
and 4 (see [21]), therefore developing families of diagonally implicit continu-
ous methods, following the lines drawn in the discrete case [1, 3, 4, 5, 6, 8,
9, 10, 11, 19, 20, 22] which led to the classes of DIRK, SDIRK, SIRK and
DIMSIMs methods. The paper is structured as follows: Sections 2 and 3 are
devoted to analysis of methods with B triangular and diagonal respectively,
together with the requirements to fulfill in order to gain the desired struc-
ture; Section 4 is focused on the procedure to follow in order to derive highly
stable structured formulae (i.e. A-stable and L-stable) within the class (1.2)
and examples of such methods are provided in Section 5; some numerical
experiments are performed in Section 6 while in Section 7 some conclusions
are given.

2. Two-step almost collocation methods with triangular coefficient
matrix

We analyze in this section the class of two-step almost collocation meth-
ods (1.2) such that the matrix B is lower triangular. Since B =

(
ψj(ci)

)m
i,j=1

,

the conditions to impose in order to enforce a special structure on B strongly
involve the basis polynomials ψj(s), j = 1, 2, . . . ,m. The following result
holds.

Proposition 2.1. Assume that the basis functions ϕ0(s), ϕ1(s) and χj(s),
j = 1, 2, . . . ,m, in (1.2) have degree at most p and that the corresponding
method is nonconfluent. Then, the matrix B is lower triangular if and only
if

ψj(s) = ωj(s)

j−1∏

k=1

(s− ck), (2.1)
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where ωj(s) is a polynomial of degree less or equal than p−j+1, j = 2, . . . ,m
and p is the order of the method.

Proof: We suppose B lower triangular: as a consequence, bij = 0 for i < j
(j = 2, . . . ,m) and, therefore, ψj(ci) = 0 for i < j (j = 2, . . . ,m). This
implies that c1, c2, . . . , cj−1 are roots of ψj(s), j = 2, . . . ,m. Hence, ψj(s)
can be factorized in the form (2.1), where ωj(s) is a polynomial of degree
deg(ψj(s))− j+1, j = 2, . . . ,m. However, we infer from the system of order
conditions [15, 16]





ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m∑

j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+ ψj(s)

ck−1
j

(k − 1)!

)
=
sk

k!
,

(2.2)

with s ∈ [0, 1] and k = 1, 2, . . . , p, that deg(ψj(s)) ≤ p, where p is the order
of the method. This completes the sufficient part. The necessary part is
trivial.

2

We next analyze the order of convergence of the resulting methods. In
accordance with proposition 2.1, the system of order conditions (2.2) can be
specialized to the case of methods with B lower triangular, as reported in
the following result.

Theorem 2.1. A two-step collocation method (1.2) equivalent to a TSRK
method (1.3) with B lower triangular has order p if and only if





ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m∑

j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+

ck−1
j

(k − 1)!

(
p−j+1∑

`=0

α
(j)
` s`

)
j−1∏

r=1

(s− cr)

)
=
sk

k!
,

(2.3)

with s ∈ [0, 1], k = 1, 2, . . . , p and α
(j)
` ∈ R, ` = 0, . . . , p−j+1, j = 1, . . . ,m.

Proof: Replace the expression (2.1) for ψj(s) in (2.2).

2
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The real parameters α
(j)
` ∈ R, ` = 0, . . . , p − j + 1, j = 1, . . . ,m, can

be regarded as free parameters which add degrees of freedom and can be
used in order to enforce the corresponding methods to be highly stable (i.e.
A-stable or L-stable), as it will be discussed in Section 4, where the practical
construction of highly stable formulae within the discussed classes of methods
is pointed out.

As a consequence of the above results, we can state the following corollary
regarding the uniform order of convergence of the derived formulae: to be
clear, uniform order of convergence p means that the order p is achieved not
only in the grid points, but also in any point tn + sh, s ∈ [0, 1], which is
a direct consequence of order conditions (2.3). This property is particularly
useful in the variable stepsize implementation of stiff differential systems (see
[15, 18]).

Corollary 2.1. A two-step collocation method (1.2) equivalent to a TSRK
method (1.3) with B lower triangular has uniform order of convergence at
most equal to m+ 2.

Proof: The order conditions (2.3) form a system of p + 1 equations in the
m + 3 unknowns ϕ0(s), ϕ1(s), χj(s), j = 1, 2, . . . ,m and ψ1(s), which is
compatible if p = m+ 2.

2

The result contained in Corollary 2.1 provides an improvement with re-
spect to diagonally-implicit Runge–Kutta methods, whose effective order is
m, where m is the number of stages: this is due to the fact that Runge–Kutta
methods usually do not have high stage order and, therefore, they suffer from
the order reduction phenomenon (see [8], page 288) in the integration of stiff
systems. Two-step almost collocation methods (such as the ones derived in
[15, 16, 17]), instead, have high stage order q = p overall the integration
interval and, for this reason, they do not suffer from order reduction in the
integration of stiff systems, which is also confirmed by numerical evidences
in [15, 17] and, regarding the methods derived in this paper, in Section 6.

Moreover, it is worthy to observe that two-step collocation methods,
rather than one-step collocation methods, depend on much more free pa-
rameters which can be used in order to create a better balance between high
effective order and strong stability properties (e.g. A-stability, L-stability
and also algebraic stability). This is also clear by the examples of methods
provided in Section 5.
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3. Two-step almost collocation methods with diagonal coefficient
matrix

We now consider the properties of two-step almost collocation methods
(1.2) equivalent to TSRK methods (1.3) with B diagonal, presenting the
main results following the lines drawn in Section 2. We first provide the
analytical expression of the polynomials ψj(s), j = 1, 2, . . . ,m, which enforces
the diagonal structure of B.

Proposition 3.1. Assume that the basis functions ϕ0(s), ϕ1(s) and χj(s),
j = 1, 2, . . . ,m, in (1.2) have degree at most p and that the corresponding
method is nonconfluent. Then, the matrix B is diagonal if and only if

ψj(s) = ωj(s)

m∏

k=1
k 6=j

(s− ck), (3.1)

where ωj(s) is a polynomial of degree less or equal than p − m + 1, j =
1, 2, . . . ,m and p is the order of the method.

When the matrix B is diagonal, i.e. when the functions ψj(s) assume the
expression (3.1), the set of order conditions (2.2) takes the following form.

Theorem 3.1. A two-step collocation method (1.2) equivalent to a TSRK
method (1.3) with B diagonal has order p if and only if




ϕ0(s) + ϕ1(s) = 1,

(−1)k

k!
ϕ0(s) +

m∑

j=1

(
χj(s)

(cj − 1)k−1

(k − 1)!
+

ck−1
j

(k − 1)!

(
p−m+1∑

`=0

µ
(j)
` s`

)
m∏

r=1
r 6=j

(s− cr)

)
=
sk

k!
,

(3.2)

with s ∈ [0, 1], k = 1, 2, . . . , p and µ
(j)
` ∈ R, ` = 0, . . . , p−m+1, j = 1, . . . ,m.

Also in this case, the real parameters µ
(j)
` ∈ R, ` = 0, . . . , p − m + 1,

j = 1, . . . ,m, can be regarded as degrees of freedom to use in order to obtain
highly stable methods: this is the object of investigation in Section 4. We
conclude with the following result concerning the order of convergence of the
considered methods, which is a direct consequence of Theorem 3.1.

Corollary 3.1. A two-step collocation method (1.2) equivalent to a TSRK
method (1.3) with B diagonal has uniform order of convergence at most equal
to m+ 1.
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4. Construction of highly stable formulae

We now focus our attention on the procedures to follow in order to con-
struct highly stable two-step almost collocation methods (1.2) of order p
corresponding to TSRK methods (1.3) with B lower triangular or diagonal,
according to the considerations reported in Section 2 and 3. The derivation
of highly stable methods is a nontrivial task, especially if we ask to create
a reasonable balance between high effective order and strong stability prop-
erties. For this reason, in order to obtain highly-stable methods, we neglect
some order conditions, obtaining some free parameters to be used to gain A-
stability and L-stability. The number r of refused order conditions is what
we call relaxation index. In the remainder of this section, we address the as-
pects regarding the construction of A-stable and L-stable methods of order
p = m + 2 − r, with r = 0, 1, 2 (i.e. methods of order m + 2, m+ 1 or m),
within the class (1.2) corresponding to TSRK methods (1.3) with B lower
triangular, and of order p = m+ 1 − r, with r = 0, 1 (i.e. methods of order
m+ 1 or m) and B diagonal.

4.1. Construction of methods with B lower triangular

First of all, we distinguish the following cases:

• if r = 0, we assume ψj(s), j = 2, . . . ,m, of the form (2.1) with

ωj(s) = α
(j)
0 + α

(j)
1 s + . . .+ α

(j)
p−j+1s

p−j+1; (4.1)

• if r = 1, we consider ωj(s), j = 2, . . . ,m, of the form (4.1) and set

ϕ0(s) = β0 + β1s+ . . .+ βps
p; (4.2)

• if r = 2, we consider ωj(s) and ϕ0(s) of the form (4.1) and (4.2) and
set

ψ1(s) = γ0 + γ1s+ . . .+ γps
p. (4.3)

As we have observed in Section 1, it is generally assumed that the collo-
cation polynomial satisfies some interpolation and/or collocation conditions,
selected from the following (compare [15, 16]):

P (tn−1) = yn−1, P ′(tn−1 + cjh) = f(P (tn−1 + cjh)),

P (tn) = yn, P ′(tn + cjh) = f(P (tn + cjh)),
(4.4)
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for j = 1, 2, . . . ,m. Therefore, we choose from (4.4) some interpolation
and/or collocation conditions to impose. These conditions can be expressed
in terms of the basis functions ϕ0(s), ϕ1(s), χj(s), ψj(s), j = 1, 2, . . . ,m as
follows:

ϕ0(−1) = 1, ϕ′
0(ci − 1) = 0, ϕ0(0) = 0, ϕ′

0(ci) = 0, (4.5)

ϕ1(−1) = 0, ϕ′
1(ci − 1) = 0, ϕ1(0) = 1, ϕ′

1(ci) = 0, (4.6)

χj(−1) = 0, χ′
j(ci − 1) = δij, χj(0) = 0, χ′

j(ci) = 0, (4.7)

ψj(−1) = 0, ψ′
j(ci − 1) = 0, ψj(0) = 0, ψ′

j(ci) = δij, (4.8)

where δij is the usual Kronecker delta, i, j = 1, 2, . . . ,m.

We next derive the values of some α
(j)
` , βi, γi, for ` = 0, 1, . . . , p − j + 1

and i = 0, 1, . . . , p, in such a way that the chosen conditions are satisfied on
the fixed functions ωj(s), ϕ0(s) and/or ϕ1(s), according to the value of the
relaxation index r. We next solve the system of order conditions (2.2) up to
p, with respect to the remaining basis functions: they automatically inherit
the same interpolation/collocation conditions imposed, as proved in [16, 20]
for any two-step collocation method within the class (1.2).

If in addition to the triangular structure for B we also require it to be
one point spectrum, i.e. we ask for two-step almost collocation formulae (1.2)
equivalent to type 2 TSRK methods (1.3), we spend some of the remaining

free parameters within the set of α
(j)
` and γi, for ` = 0, 1, . . . , p − j + 1 and

i = 0, . . . , p, in order to equal all the values on the diagonal of B, i.e. all the
ψj(cj), j = 1, . . . ,m, equal to a correspond to a real common value λ.

We next compute the stability matrix M(z) (compare [15, 16, 20]) and
derive the corresponding stability polynomial, i.e. the characteristic polyno-
mial of M(z)

p(η, z) = det
(
Im+2 − ηM(z)

)
=

m+2∑

k=0

pk(z)η
k, (4.9)

of degree m + 2 with respect to η, where pk(z) is a rational function in z,
k = 0, 1, . . . ,m+2. If possible, we spend some of the free parameters in order
to reduce the degree of p(η, z) with respect to η (e.g. to obtain a quadratic
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stability polynomial, compare [12]). Let us suppose that the resulting degree
of p(η, z) with respect to η is ν.

Using the Schur criterion (compare [23]), we determine the values of the
remaining parameters corresponding to A-stable methods. If the correspond-
ing set of A-stable methods is nonempty, we search for the related subset of
L-stable methods, solving the nonlinear system





lim
z→−∞

p0(z)

pν(z)
= 0,

...

lim
z→−∞

pν−1(z)

pν(z)
= 0.

(4.10)

4.2. Construction of methods with B diagonal

In order to obtain a diagonal shape for the matrix B, together with strong
stability properties, we proceed as follows. We distinguish the following cases:

• if r = 0, we assume ψj(s), j = 1, . . . ,m, of the form (3.1) with

ωj(s) = µ
(j)
0 + µ

(j)
1 s+ . . .+ µ

(j)
p−m+1s

p−m+1; (4.11)

• if r = 1, we consider ωj(s), j = 1, . . . ,m, of the form (4.11) and set

ϕ0(s) = σ0 + σ1s+ . . .+ σps
p. (4.12)

We next impose some interpolation and/or collocation conditions on the
functions fixed above, chosen from the sets (4.5) and (4.8), i.e. we derive

the values of some µ
(j)
` , σi, for ` = 0, 1, . . . , p −m+ 1 and i = 0, 1, . . . , p, in

such a way that these conditions are satisfied. Then, we solve the system of
order conditions (2.2) up to p, with respect to the remaining basis functions:
they automatically inherit the interpolation/collocation conditions imposed,
as proved in [16, 20] for any two-step collocation method within the class
(1.2).

If in addition to the diagonal structure for B we also require it to be one
point spectrum, i.e. we ask for two-step almost collocation formulae (1.2)
equivalent to type 4 TSRK methods (1.3), we spend some of the remaining

free parameters within the set of µ
(j)
` , for ` = 0, 1, . . . , p−m+ 1, in order to
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equal all the values on the diagonal of B, i.e. all the ψj(cj), j = 1, . . . ,m,
equal to a correspond to a real common value λ.

We next compute the stability polynomial (4.9) of degree m + 2 with
respect to η, where pk(z) is a rational function in z, k = 0, 1, . . . ,m + 2. If
possible, we spend some of the free parameters in order to reduce the degree
of p(η, z) with respect to η (e.g. to obtain a quadratic stability polynomial,
compare [12]). Let us suppose that the resulting degree of p(η, z) with respect
to η is ρ. Using the Schur criterion, we determine the values of the remaining
parameters corresponding to A-stable methods. If the corresponding set of
A-stable methods is nonempty, we search for the related subset of L-stable
methods, solving the nonlinear system





lim
z→−∞

p0(z)

pρ(z)
= 0,

...

lim
z→−∞

pρ−1(z)

pρ(z)
= 0.

(4.13)

5. Examples of methods

We now provide some examples of two-step almost collocation methods
(1.2) with m = 2, equivalent to TSRK methods (1.3) with structured B,
according to the issues provided in Section 4 and, in particular, taking into
account what follows. In principle, we could impose all the conditions (4.5-
4.8) but, as also observed in previous papers (see [15,16]), poor stability
properties are reached. Therefore, we decide to impose just some of the con-
ditions among (4.5-4.8), assuming to interpolate in 0, more than in −1, and
collocate in some ci, more than in ci−1 because, in the practice, these choices
generally lead to A-stability, more than the conditions involving points lo-
cated in the past (e.g. −1 and ci − 1). These lines will now be drawn in the
effective construction of the methods, as follows.

5.1. Analysis of methods with m = 2 and B lower triangular

Applying the Schur criterion, it is possible to prove that no A-stable
methods with m = 2 and maximum attainable uniform order p = 4 exist
and, therefore, we relax one order condition, in order to find highly stable
methods within the class (1.2) with m = 2 and p = m+1 = 3, corresponding
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to TSRK methods (1.3) with B lower triangular. Since r = 1, we assume
ω2(s) of the form

ω2(s) = α0 + α1s+ α2s
2, (5.1)

and ϕ0(s) of the type

ϕ0(s) = β0 + β1s + β2s
2 + β3s

3. (5.2)

We next impose some the interpolation and collocation conditions among
(4.5-4.8). In particular, we choose

ϕ0(0) = 0, ϕ′
0(c2) = 0, ψ2(0) = 0, ψ′

2(c2) = 1,

obtaining

α0 = 0, α2 =
1 + c1α1 − 2c2α1

c2(−2c1 + 3c2)
, β0 = 0, β3 = −β1 + 2c2β2

3c22
.

As a consequence, a five-parameter family of methods (1.2) arises: the degrees
of freedom are c1, c2, α1, β1, β2. We next compute the stability polynomial
(4.9), which assumes the form

p(η, z) = η(p0(z) + p1(z)η + p2(z)η
2 + p3(z)η

3),

and compute the values of β2 and c2 annihilating p0(z), in such a way that the
stability properties of the related methods depend on the quadratic stability
function

p̃(η, z) = p1(z) + p2(z)η + p3(z)η
2. (5.3)

These values are

β2 =
−β1(c1 + 6α1 − 6c1α1 − 2c21α1 + 2c31α1)

2c1α1(3 − 5c1 + 2c21)
, c2 = 1.

We next apply the Schur criterion on the polynomial (5.3) in correspondence
of

β1 =
6c1α1(−1 + c1)

2 + 3c1

achieving L-stability, i.e. solving the system (5.4) which, for the polynomial
(5.3), takes the form 




lim
z→−∞

p1(z)

p3(z)
= 0,

lim
z→−∞

p1(z)

p3(z)
= 0.

(5.4)
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Applying the Schur criterion we are able to find the values of the remaining
free parameters c1 and α1 corresponding to A-stable and, in particular, L-
stable methods. The results are given in Figure 1. The region provided in

0 1 2 3 4 5 6
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

c1

Α
1

Figure 1: Region of L-stability in the (c1, α1)-plane for diagonally implicit two-step almost
collocation methods (1.2), with m = 2 and p = 3

Figure 1 arises from the union of the following sets:

Σ1 =

{
(c1, α1) ∈ R2 :

1 +
√

17

4
< c1 <

3

2
,

1

5 − 9c1 + 4c21
< α1 <

1 + c1 − c21
(−1 + c1)3

}
,

Σ2 =

{
(c1, α1) ∈ R2 :

3

2
< c1 ≤

1 +
√

5

2
,

1 + c1 − c21
(c1 − 1)3

< α1 <
1

4c21 − 9c1 + 5

}
,

Σ3 =

{
(c1, α1) ∈ R2 : c1 >

1 +
√

5

2
,
−c21 + c1 + 1

(c1 − 1)3
< α1 < 0

}
,

Σ4 =

{
(c1, α1) ∈ R2 : c1 >

1 +
√

5

2
, 0 < α1 <

1

4c21 − 9c1 + 5

}
.

We observe from Figure 1 that, at least in the methods we have derived,
A-stability is reached only in correspondence of collocation points greater
than 1 and, therefore, extrapolation is involved. Anyway, as it can also be

13



experimentally observed in Section 6, this does not deteriorate the accuracy
of the resulting methods.

If we aim for two-step almost collocation methods (1.2) equivalent to
type 2 TSRK methods (1.3), we apply the same procedure above described
but, instead of spending some parameters to reduce the degree of the stability
polynomial, we use them to obtain equal values on the diagonal of the matrix
B. For this reason, after computing α0, α2, β0, β3 as above, we determine
the value of β2 such that b11 = b22, obtaining

β2 =
−3(2c31 − 6(1 + α1) − 3c21(3 + 2α1) + 3c1(5 + 4α1))

c1(−1 + 3c1)(3 − 2c1)2
,

in correspondence of the values c2 = 3
2

and β1 = 0. This values are chosen
in order to simplify the structure of the stability polynomial, whose stability
properties are analyzed using the Schur criterion. The results of this analysis
are reported in Figure 2.

2.4 2.6 2.8 3.0 3.2
-0.4

-0.2

0.0

0.2

0.4

0.6

c1

Α
1

Figure 2: Region of A-stability in the (c1, α1)-plane for type 2 two-step almost collocation
methods (1.2), with m = 2 and p = 3, for c2 = 3

2 and β1 = 0

5.2. Analysis of methods with m = 2 and B diagonal
We conclude this section deriving highly stable two-step almost colloca-

tion methods (1.2) with m = 2, equivalent to type 4 TSRK methods (1.3).
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It possible to prove, applying the Schur criterion, that no A-stable type 4
almost collocation methods (1.2) of order m = 2 and p = 3 exist and, there-
fore, we relax one order condition, searching for methods of order p = m = 2.
We assume that

ω1(s) = µ
(1)
0 + µ

(1)
1 s, ω2(s) = µ

(2)
0 + µ

(2)
1 s, ϕ0(s) = σ0 + σ1s+ σ2s

2,

and, among (4.5-4.8), we have chosen the interpolation conditions

ϕ0(0) = 0, ψ1(0) = 0, ψ2(0) = 0,

obtaining µ
(1)
0 = µ

(2)
0 = σ0. Six free parameters are left, i.e. µ

(1)
1 , µ

(1)
2 , σ1, σ2, c1

and c2. We set µ
(1)
1 = µ

(1)
2 = 1 and derive the values of σ1, σ2 and c2 solving

the system (4.13) for L-stability, obtaining

σ1 = −2(7c31 − 8c21 − 9c1 + 2)

4c21 − 3c1 + 3
, σ2 =

4c31 + 4c21 − 23c1 + 3

4c21 − 3c1 + 3
, c2 = 1.

Applying the Schur criterion we obtain that the resulting methods are L-
stable if and only if c1 ∈ (−2

5
, 270

619
).

6. Numerical results

In this section we present some numerical evidences arising from the appli-
cation of the methods derived in Section 5, in order to confirm the theoretical
expectations. In particular, we aim to provide an experimental confirmation
that, since the derived methods have high stage order (equal to the order of
convergence), they do not suffer from order reduction in the integration of
stiff differential systems, which is the case for classical Runge-Kutta formu-
lae. In fact, the stage order of Runge–Kutta methods is only equal to m,
where m is the number of stages. To illustrate these features we compare the
following numerical methods:

• TS3: A-stable two-step almost collocation method (1.2), with m = 2
and

ϕ0(s) = s2
(

10s
93

− 15
62

)
, ϕ1(s) = −10s3

93
+ 15s2

62
+ 1,

χ1(s) = −s
(

29s2

837
+ 131s

620
− 2

5

)
, χ2(s) = s

(
1804s2

4185
− 1196s

775
+ 43

25

)
,

ψ1(s) = s
(

7s2

45
− 133s

300
+ 7

25

)
, ψ2(s) = −s

(
4s2

9
+ 23s

15
− 3

5

)
,
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of order 3 and stage order 3, equivalent to the type 2 TSRK method

45
62

− 29
124

451
155

21
20

0

− 45
248

− 599
2480

436
775

− 21
400

21
20

− 25
186

− 3739
16740

12719
20925

− 7
900

22
45

, c = [3, 3
2
]T ;

the method has been obtained in correspondence of the point (c1, α1) =
(3, 2

10
) of the shaded region reported in Figure 2.

• SDIRK3: two-stage singly diagonally implicit Runge–Kutta method [7]

(3 +
√

3)/6 (3 +
√

3)/6 0

(3 −
√

3)/6 −
√

3/3 (3 +
√

3)/6

1/2 1/2

of order 3 and stage order 2.

We apply these methods to the the van der Pol oscillator (see VDPOL prob-
lem in [19])





y′1 = y2, y1(0) = 2,

y′2 =
(
(1 − y2

1)y2 − y1

)
/ε, y2(0) = −2/3,

(6.1)

t ∈ [0, 3/4], with stiffness parameter ε. This problem is observed in the
interval [0, 3/4], i.e. for the slowly varying parts of the solution, where the
problem is stiff for small values of the parameter ε (the problem is not stiff
on the interval where the solution is changing rapidly).

We have implemented both methods with a fixed stepsize h = (T−t0)/2k,
for several integer values of k, and listed norms of errors ‖eTS3

h (T )‖ and
‖eSDIRK3

h (T )‖ at the endpoint of integration T and the observed order of
convergence p. We also report the number fe of function evaluations required
by both methods, for each value of the stepsize of integration.

We can observe that for the values of ε = 10−1 and ε = 10−3 for which
the problem (6.1) is not stiff and mildly stiff both methods are convergent
with expected order p = 3. However, for small values of ε (ε = 10−6) for
which the van der Pol oscillator is stiff the SDIRK3 method exhibits order
reduction phenomenon and its order of convergence drops to about p = 2
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ε = 10−1 ε = 10−3 ε = 10−6

k ‖eSDIRK3
h ‖ p fe ‖eSDIRK3

h ‖ p fe ‖eSDIRK3
h ‖ p fe

8 3.41 · 10−8 2044 1.06 · 10−4 2048 2.29 · 10−4 2174

9 4.49 · 10−9 2.92 4066 2.00 · 10−5 2.40 4096 5.85 · 10−5 1.97 4156

10 5.78 · 10−10 2.95 6406 3.31 · 10−6 2.59 8192 1.47 · 10−5 1.98 8192

11 7.52 · 10−11 2.94 12288 4.92 · 10−7 2.74 16382 3.69 · 10−6 1.99 16384

12 9.81 · 10−12 2.93 24576 6.80 · 10−8 2.85 27610 9.27 · 10−7 2.00 32768

Table 6.1: Numerical results for SDIRK3 method on the Van der Pol oscillator

ε = 10−1 ε = 10−3 ε = 10−6

k ‖eTS3
h ‖ p fe ‖eTS3

h ‖ p fe ‖eTS3
h ‖ p fe

8 2.38 · 10−7 2040 1.13 · 10−6 2122 1.33 · 10−6 2550

9 3.02 · 10−8 2.97 4084 1.65 · 10−7 2.78 4090 1.87 · 10−7 2.83 4486

10 3.82 · 10−9 2.98 8110 2.29 · 10−8 2.85 8184 2.47 · 10−8 2.92 8428

11 4.81 · 10−10 2.99 13724 3.05 · 10−9 2.91 16376 3.17 · 10−9 2.96 16404

12 6.01 · 10−11 3.00 24570 3.74 · 10−10 3.03 32760 3.78 · 10−10 3.07 32760

Table 6.2: Numerical results for TS3 on the Van der Pol problem
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which corresponds to the stage order q = 2. This is not the case for TS3
method which preserves order of convergence p = q = 3, which leads to
higher accuracy.

Moreover, we also observe that, in each considered case, the computa-
tional cost of both TS3 and SDIRK3 methods is essentially the same. There-
fore, on the analyzed problem, the method TS3 behaves as SDIRK3 in terms
of computational cost, but achieves an higher accuracy.

7. Concluding remarks

In this paper we have derived and analyzed a family of A-stable and L-
stable methods belonging to the class of two-step collocation methods (1.2),
equivalent to TSRK methods (1.3), with structured coefficient matrices. The
derived methods combine the advantages of implicit Runge–Kutta methods
depending on a structured coefficient matrix with the ones of multistep col-
location methods, e.g. high effective order of convergence, strong stability
(e.g. A-stability and L-stability), possibility to assess an easy strategy to
change the stepsize of integration (see [15, 18]).

Even if A-stable discrete TSRK methods (1.3) depending on a structured
coefficient matrix B already exist in the literature (see, for instance, the
paper [21]), it is worthy to observe that those methods are not based on
collocation and, therefore, they do not benefit of the advantages of continuous
methods, e.g. an uniform order of convergence (with consequent high effective
order) and the possibility of easily changing the stepsize in a variable stepsize
implementation: in fact, we can easily recognize the missing approximations
which are needed when advancing along the grid by evaluating the piecewise
approximant (1.2) in the needed points, as already done in [15, 18]).

These methods are useful for an efficient implementation, as our first
numerical experiments show and as it happened for the analogous one-step
methods. In future works, we intend to exploit the mentioned features, in
order to carry out a variable stepsize-variable order implementation, also in
parallel environment, of the derived two-step collocation methods.

Acknowledgment. We wish to express our gratitude to the anonymous
referees for their profitable comments.
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