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1 Introduction

Consider the initial-value problem for ordinary differential equations (ODEs){
y′(t) = f

(
y(t)

)
, t ∈ [t0, T ],

y(t0) = y0,
(1.1)

where the function f : Rm → Rm is assumed to be sufficiently smooth and
y0 ∈ Rm is a given initial value.

The nonlinear stability analysis of general linear methods (GLMs) for the
numerical solution of the problem (1.1) is subject of several recent papers (com-
pare, for instance, [7, 16, 17, 18, 19]). In this paper we focus our attention on
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the subclass of two-step Runge-Kutta (TSRK) methods [21, 22], whose non-
linear stability properties are object of some preliminary results obtained in
[9, 10, 11]. In fact, in these papers an optimization-based numerical approach
has been used to derive the coefficients of algebraically stable TSRK methods.
Because of the purely numerical nature of this approach, the coefficients of the
corresponding methods are not expressed in rational form, but they are pro-
vided with a certain number of correct digits. As a consequence, the derived
methods satisfy a slightly weaker condition than that of algebraic stability, i.e.
they are ε-algebraically stable methods. This concept has been recently intro-
duced in [20], to which we refer for more details. In order to find algebraically
stable TSRK methods whose coefficients are expressed in rational form, in this
paper we use the approach proposed by Hewitt and Hill in [17].

The paper is organized as follows. In Sections 2 and 3 WE recall the main
concepts regarding TSRK methods and algebraic stability for GLMs. In Sec-
tion 4 we describe the derivation of an algorithm for the construction of alge-
braically stable TSRK methods based on the approach of Hewitt and Hill [17].
Then in Sections 5 and 6 TSRK methods with one and two stages are analized
in details. Finally, some conclusions are reported in Section 7.

2 Two-step Runge-Kutta methods

For the numerical solution of (1.1) we consider the general class of TSRK
methods which on the uniform grid

Ih =
{
tn = t0 + nh, n = 0, 1, . . . , N, Nh = T − t0

}
,

are defined by the formulas
Y

[n]
i = (1− ui)yn−1 + uiyn−2 + h

s∑
j=1

(
aijf(Y

[n]
j ) + bijf(Y

[n−1]
j )

)
,

yn = (1− ϑ)yn−1 + ϑyn−2 + h
s∑

j=1

(
vjf(Y

[n]
j ) + wjf(Y

[n−1]
j )

)
,

(2.1)

i = 1, 2, . . . , s. Here, yn is an approximation of order p to y(tn) and Y
[n]
i are

approximations of stage order q to y(tn−1 + cih), where y(t) is the solution to
(1.1) and c = [c1, . . . , cs]

T is the abscissa vector. TSRK methods (2.1) can be
represented by the abscissa vector c and the following table of its coefficients

u A B
ϑ vT wT =

u1 a11 · · · a1s b11 · · · b1s
...

...
. . .

...
...

. . .
...

us as1 · · · ass bs1 · · · bss
ϑ v1 · · · vs w1 · · · ws

.

In this paper we focus on methods (2.1) with order p and stage order q = p.
It was proved in [8] that this condition is satisfied if and only if

Ĉk = 0, Ck = 0, k = 1, 2, . . . , p, (2.2)
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where

Ĉk =
1

k!
− (−1)k

k!
ϑ− vT ck−1

(k − 1)!
− wT (c− e)k−1

(k − 1)!
,

Ck =
ck

k!
− (−1)k

k!
u− Ack−1

(k − 1)!
− B(c− e)k−1

(k − 1)!
.

Here e = [1, . . . , 1]T ∈ Rs and ck denotes componentwise exponentiation.
It is well known that TSRK methods (2.1) are a subclass of GLMs which

assume the form[
Y [n]

z[n]

]
=

[
A⊗ I U⊗ I
B⊗ I V ⊗ I

] [
hf(Y [n])

z[n−1]

]
, (2.3)

with z[n] ∈ Rr, A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r and

Y [n] =


Y

[n]
1
...

Y
[n]
s

 , hf(Y [n]) =


hf(Y

[n]
1 )
...

hf(Y
[n]
s )

 , z[n] =


z
[n]
1
...

z
[n]
r

 ,

where I denotes the identity matrix of dimension m and ‘⊗’ stands for Kno-
necker product of matrices. It can be verified that TSRK methods (2.1) can be
represented as GLMs (2.3) with coefficient matrices A, U, B, and V, defined
by [

A U
B V

]
=


A e− u u B
vT 1− ϑ ϑ wT

0 1 0 0
I 0 0 0

 , (2.4)

and vector z[n] = [yn−1, yn−2, hf(Y
[n−1])]T ∈ Rs+2. Since a GLM (2.3) is zero-

stable if the coefficient matrix V is power bounded, the zero-stability condition
for TSRK methods (2.1) is

−1 < ϑ ≤ 1. (2.5)

We will also focus on the family of TSRK methods with ϑ = 0, u = 0, whose
GLM representation reduces to[

A U
B V

]
=

 A e B
vT 1 wT

I 0 0

 . (2.6)

We observe that such methods are automatically zero-stable.

3 Algebraic stability of general linear methods

The GLM (2.3) is said to be algebraically stable, if there exist a real, symmetric
and positive definite matrix G ∈ Rr×r and a real, diagonal and positive definite
matrix D ∈ Rs×s such that the matrix M ∈ R(s+r)×(s+r) defined by

M =

[
DA+ATD−BTGB DU−BTGV

UTD−VTGB G−VTGV

]
(3.1)

Math. Model. Anal., X(x):1–14, 20xx.
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is nonnegative definite. The significance of this definition follows from the
result proved by Butcher [5, 6, 15], that for preconsistent and non-confluent
GLMs (2.3), i.e. methods with distinct abscissas ci, i = 1, 2, . . . , s, algebraic
stability is equivalent to G-stability. We refer to [5, 6, 15] for the definition of
G-stability. We recall that a GLM is preconsistent if there exists a vector q0

(called preconsistency vector) such that

Uq0 = e, Vq0 = q0,

compare [21].
In general, it is quite difficult to check if a given GLM is algebraically stable,

and even more difficult to construct new classes of GLMs which are algebraically
stable. In our search for such methods we will use the fact, proved in [4], that
for a preconsistent and algebraically stable GLM (2.3) the matrices G and D
are not independent but related by the equation

De = BTGq0, (3.2)

where q0 is the preconsistency vector.
We will write M ≥ 0 if the matrix M is nonnegative definite. It was

observed by Hewitt and Hill [16, 17] that the analysis of the nonnegative defi-
niteness of the matrix M can be simplified by the use of the result proved by
Albert [1]. This result states that the matrix M given by

M =

[
M11 M12

MT
12 M22

]
satisfies M ≥ 0 if and only if

M11 ≥ 0, M22 −MT
12M

+
11M12 ≥ 0, M11M

+
11M12 = M12, (3.3)

or, equivalently,

M22 ≥ 0, M11 −M12M
+
22M

T
12 ≥ 0, M22M

+
22M

T
12 = MT

12. (3.4)

Here, A+ stands for the Moore-Penrose pseudoinverse of the matrix A. We
refer to [13, 14] for the definition of this notion.

Although the criteria based on Albert theorem can be used to verify if
specific examples of GLMs are algebraically stable, these criteria are not very
practical to search for algebraically stable GLMs which depend on some un-
known parameters, unless some suitable simplifications are introduced. This
will be object of the following section.

4 Construction of algebraically stable TSRK methods

In order to find algebraically stable TSRK methods, we use the approach pro-
posed recently by Hewitt and Hill in [17]. This approach consists in enforcing
algebraic stability through the following steps:

(a) fix the matrix G = I;
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(b) ensure that D = BTq0 > 0;

(c) ensure that M22 = I−VTV ≥ 0;

(d) impose the condition

R := DA+ATD−BTB−(DU−BTV)(I−VTV)+(DU−BTV)T = 0.

We observe that conditions (c) and (d) are obtained from (3.4) considering the
second inequality as an equality, and neglecting the third equality, which is
automatically satisfied when M22 is invertible.

The following results will lead to the reformulation of the above conditions
in the case of TSRK methods (2.1).

Theorem 1. Algebraically stable TSRK methods (2.1) with G = I satisfy

vi > 0, i = 1, 2, . . . , s.

Proof. We recall that for a TSRK method the preconsistency vector is q0 =
[1, 1, 0, 0, . . . , 0]T ∈ Rs+2 (compare [21]). Then, taking into account that from
(2.4) BT = [v, 0, I], condition (3.2) implies that

De = v. (4.1)

The thesis now follows from the condition (b). ⊓⊔

Theorem 2. An algebraically stable TSRK method (2.1) with G = I and not
reducing to (2.6) is non-consistent.

Proof. We prove that condition (c) is equivalent to ϑ = 1, w = 0. In fact, from
(2.4), we have

M22 = I−VTV =

 −(1− ϑ)2 −ϑ(1− ϑ) −(1− ϑ)wT

−ϑ(1− ϑ) 1− ϑ2 −ϑwT

−(1− ϑ)w −ϑw I − wwT

 .

We define

N =


0 α(1 + ϑ) 0

α

1 + ϑ
2αϑ− wTw 0

βw −βw I

 ,

with

α = 1− ϑ, β = − α(ϑ+ 1)

(ϑ+ 1)wTw − αθ2
,

and

X =


−wTw

α
ϑ wT

− ϑ2

1 + ϑ
ϑ wT

−w −w I

 ,

Math. Model. Anal., X(x):1–14, 20xx.
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whose inverse is

X−1 =


β −β 0

β
(
ϑ2 − (1 + ϑ)wTw

)
(1 + ϑ)(wTw + ϑ)

− βϑwTw

α(wTw + ϑ)
− wT

wTw + ϑ

βϑ(1 + 2ϑ)

(1 + ϑ)(wTw + ϑ)
w −β(wTw + αϑ)

α(wTw + ϑ)
w I − wwT

wTw + ϑ

 .

Then, the matrix M22 can be obtained by the similarity transformation

M22 = X−1NX,

and its spectrum is

σ(M22) = σ(N) = {λ1, λ2, λ3},

where λ1 and λ2 are the roots of the quadratic polynomial

p(λ) = λ2 − (2αϑ− wTw)λ− α2, (4.2)

and λ3 = 1 with multiplicity s. Then, condition M22 ≥ 0 is equivalent to

λ1 ≥ 0, and λ2 ≥ 0. (4.3)

This condition is of course satisfied if ϑ = 1 and w = 0, because it leads to
p(λ) = λ2. Vice versa, let us suppose that (4.3) is satisfied and, by contra-
diction, we suppose ϑ ̸= 1. Then, −α2 < 0 and, by Descartes’ rule of signs,
the polynomial (4.2) has a positive root and a negative one. This contradicts
(4.3), so it is ϑ = 1 and, in correspondence of this value, the polynomial (4.2)
assumes the form

p(λ) = λ(λ+ wTw),

whose roots are λ1 = 0 and λ2 = −wTw. Therefore, in force of condition (4.3),
it is w = 0. Then, the third condition in (3.4) provides that 1

2v
T (u− e)

vT (e− u
2 )

0

 = 0,

which implies v = 0. Thus, the consistency condition Ĉ1 = 0 in (2.2) is not
satisfied. ⊓⊔

As a consequence of Theorem 2, in our search for algebraically stable meth-
ods we have to abandon TSRK methods of the form (2.4), and consider only
the reduced form (2.6) corresponding to ϑ = 0 and u = 0.

Theorem 3. An algebraically stable TSRK method (2.1) with G = I, ϑ = 0
and u = 0, satisfies w = 0.
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Proof. We prove that condition (c) is equivalent to w = 0. From the formula-
tion of V in (2.6) we obtain

M22 = I−VTV =

[
0 −wT

−w I − wwT

]
.

We define

N =

[
−wTw (1− wTw)wT

0 I

]
,

and

X =

[
wTw wT

−w I

]
,

whose inverse is

X−1 =
1

2wTw

[
1 −wT

w 2wTwI − wwT

]
.

The matrix M22 can be obtained by the similarity transformation

M22 = X−1NX.

Thus,
σ(M22) = σ(N) = {1,−wTw},

where the eigenvalue 1 has multiplicity s. It follows that M22 is nonnegative
definite if and only if w = 0. ⊓⊔

Theorem 3 leads to searching for algebraically stable TSRK methods (2.1)
within the family

Y
[n]
i = yn−1 + h

s∑
j=1

(
aijf(Y

[n]
j ) + bijf(Y

[n−1]
j )

)
,

yn = yn−1 + h

s∑
j=1

vjf(Y
[n]
j ).

(4.4)

The following result provides representation formulas for the coefficients of
a non-confluent algebraically stable TSRK method with G = I, of order and
stage order s. We recall that a GLM is non-confluent if ci ̸= cj , i ̸= j.

Theorem 4. The coefficients of a non-confluent TSRK method (4.4) with p =
q = s satisfy the following representation formulas:

vi =

∫ 1

0

Li(x)dx, (4.5)

where Li(x) are the fundamental Lagrange polynomials, i = 1, 2, . . . , s, with
respect to {c1, c2, . . . , cs}, and

A = (C −BE)C̃−1, (4.6)

Math. Model. Anal., X(x):1–14, 20xx.
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where

C =

[
c

c2

2
· · · cs

s

]
, C̃ =

[
e c · · · cs−1

]
,

E =
[
e c− e · · · (c− e)s−1

]
.

Proof. For the family of methods (4.4), order conditions Ĉk = 0, k = 1, 2, . . . , s,
in (2.2) assume the form

vT ck−1 =
1

k
, k = 1, 2, . . . , s,

which are the order conditions for the interpolatory quadrature rule with weights
vi and nodes ci. Therefore, the weights vi can be expressed as integrals (4.5).

We next compute the coefficient matrix A from stage order conditions Ck =
0, k = 1, 2, . . . , s, in (2.2), which are equivalent to

AC̃ = C −BE.

Hence, as the method is non-confluent, the matrix C̃ is nonsingular and the
representation formula (4.6) holds. ⊓⊔

The advancing formula in (4.4) is completely determined in the case p = q =
s, since the expression of the weights vi is given in (4.5). Thus, the unknown
coefficients of algebraically stable methods (4.4) are only the entries of the
matrices A and B. These unknown matrices have to be derived by imposing
condition (d), i.e. R = 0, and the representation formula (4.6).

Theorem 5. For methods of type (4.4), the condition R = 0 is equivalent to

aij =


lij − vjaji

vi
, j > i,

lij
2vi

, j = i,
(4.7)

with L = I+D(eeT +BBT )D.

Proof. Taking into account representation (2.6) with w = 0 and (4.1), we have

(I −VTV)+ =

[
0 0
0 I

]
,

BTB = I + vvT = I +DeeTD,

DU−BTV =
[
0 DB

]
.

Then, the matrix R assumes the form

R = DA+ATD− I−D(eeT +BBT )D. (4.8)

Since R is a symmetric matrix, the matrix equation R = 0 is equivalent to a
linear system of s(s+ 1)/2 scalar equations. The thesis is obtained by solving
this system with respect to the upper triangular part of the matrix A. ⊓⊔
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The results proved in this section lead to the following algorithm for the
construction of algebraically stable TSRK methods (2.1) of order p = q = s:

(i) fix the matrix G = I;

(ii) put ϑ = 0 and u = w = 0, i.e. consider the class of TSRK methods (4.4);

(iii) compute vi from (4.5), and ensure vi > 0, i = 1, 2, . . . , s, finding the
region of Rs to which the vector c of the nodes has to belong;

(iv) compute aij , j ≥ i, as a function of B through (4.7);

(v) derive aij , j < i, as a function of B through the lower triangular part of
(4.6) and partly compute the remaining s2 parameters, i.e. the entries
of the matrix B, by solving the nonlinear system of s(s+ 1)/2 equations
arising from the upper triangular part of (4.6).

The remaining free parameters can be exploited, for instance, in order to
reduce the error constant of the method, or the contributions of high order
terms as in [12].

We observe as the above algorithm combines steps (a)-(d) of Hewitt and
Hill approach [17] with order conditions (2.2): step (ii) corresponds to (c); (iii)

stands for (b), together with Ĉk = 0, k = 1, 2, . . . , s; (iv) matches with (d),
and (v) corresponds to Ck = 0, k = 1, 2, . . . , s.

5 Analysis of methods with s = 1

By applying the algorithm derived in the previous section, we obtain a one
parameter family of algebraically stable TSRK methods (4.4) with p = q =
s = 1 and real-valued coefficients depending on the free parameters c1 ≥ 1/2,
having

u A B
ϑ v w

=
0 1 + c1 +

√
2c1 − 1 −1−

√
2c1 − 1

0 1 0
.

The spectrum of the matrix M contains λ0 = 0 with multiplicity 2 and

λ1 = 1 + 2c1 + 2
√
2c1 − 1,

whose plot as a function of c1 is reported in Figure 1.

We observe that in correspondence of the value c1 = 1/2, a further order

condition is satisfied, i.e. Ĉ2 = 0. Therefore, we obtain the following alge-
braically stable TSRK method of order p = 2 and stage order q = 1.

u A B
ϑ v w

=
0 3

2 −1
0 1 0

Math. Model. Anal., X(x):1–14, 20xx.
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0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

c1

Λ
1

Figure 1. Plot of the eigenvalue λ1 of the matrix M for algebraically stable TSRK methods
(4.4) with p = q = s = 1

6 Analysis of methods with s = 2

We apply the algorithm derived in Section 4, in order to derive algebraically
stable methods within the class (4.4) of order 2 and stage order 2. Step (iii)
provides that

v1 =
1− 2c2

2(c1 − c2)
, v2 =

2c1 − 1

2(c1 − c2)
,

with the condition(
c1 >

1

2
and c2 <

1

2

)
or

(
c1 <

1

2
and c2 >

1

2

)
. (6.1)

We derive the matrix A from steps (iv) and (v), obtaining

a11 = −
d21 − 2d2d1 +

(
b211 + b212 + 2

)
d22

2(d1 − d2)d2
,

a12 =
d1

(
−(d2 − 1)2 + 4b21(−d1 + b11d2 + d2 + 2) + 4b22(b12d2 + 2)

)
4(d1 − d2)d2

,

a21 =
−(d2 + 1)2 + 8b22 + 4b21(−d1 + d2 + 2)

4(d1 − d2)
,

a22 =

(
b221 + b222 + 2

)
d21 − 2d2d1 + d22

2d1(d1 − d2)
,
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where d1 = 2c1 − 1 and d2 = 2c2 − 1. As a result of step (v), we obtain

b21 = −4d1 +
√
−2d21(α0 + α1b22 + 2d21b

2
22)

2d21
,

b12 =

√
2(d1 − d2)

2
d2

2(17 + 3d1d2)
2
(α0 + α1b22 + 2d21b

2
22) + β0 + β1b22

4d2
2
(
8 (−2 + d2) + d1

(
−9− 2d1d2 + d2

2
)) ,

b11 =
γ0 − 8d1b22 + γ1b21 + (γ2 − 4d1d2b22)b12

4d2(2 + b21d1)
,

with

α0 = −8 + d1(−1 + 2d1)− 2d1(2 + d1)d2 + (2 + d1)d
2
2,

α1 = 4d1(2 + d1 − d2),

β0 = −2d2(d1 − d2)(−2 + d2 + d1(1 + d2(−6 + d1 + d2))),

β1 = −2d1d2(32 + d2 + d1(1 + d2(d1 + d2))),

γ0 = d1(d2(d1 + d2) + 1) + d2,

γ1 = 4d1(d1 − d2 − 2),

γ2 = −4d2(d1 − d2 + 2).

Since b21 ̸= −2/d1 (otherwise the denominator of b11 vanishes), the coeffi-
cients b12 and b21 are real if and only if

α0 + α1b22 + 2d21b
2
22 < 0, (6.2)

and 17 + 3d1d2 = 0, i.e.

c1 =
3c2 − 10

6c2 − 3
. (6.3)

We observe that, in force of (6.3), condition (6.1) reduces to c2 ̸= 1/2.
Thus algebraically stable TSRK methods (4.4) with p = q = s = 2 and real-

valued coefficients form a two-parameter family of methods with coefficients
depending on the free parameters c2 ̸= 1/2 and b22 ∈ R, satisfying (6.2), with
coefficients A, B and v derived previously. The region of acceptable values for
these parameters is reported in Figure 2.

The spectrum of the matrixM of algebraic stability corresponding to b22 = 0
is {λ0, λ1, λ2}, where λ0 = 0 has multiplicity 3, and λ1, λ2 are depicted in Fig-
ure 3 as functions of c2, which varies in the interval of admissible values obtain-
able from Figure 2. For instance, if we choose c2 = 3/2, we obtain c1 = −11/12
and

A =


3541− 82

√
34

696

−119 + 24
√
34

696

−525 + 82
√
34

986

6
(
109− 2

√
34
)

493

 ,

B =


−41 +

√
34

12
−29

12

12−
√
34

17
0

 ,

Math. Model. Anal., X(x):1–14, 20xx.
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-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-5

-4

-3

-2

-1

0

1

c2

b 2
2

Figure 2. Region of algebraic stability for TSRK methods (4.4) with p = q = s = 2 and
real-valued coefficients

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

1

2

3

4

5

c2

Λ
1
,Λ

2

Figure 3. Plot of the eigenvalues λ1 and λ2 of the matrix M for algebraically stable TSRK
methods (4.4) with p = q = s = 2

v =

[
12

29

17

29

]T
.
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The analysis carried out in this section is exhaustive for two-stage methods, as
it is made clear by the following order barrier.

Theorem 6. The maximum attainable order of convergence for two-stage al-
gebraically stable TSRK methods (4.4) with G = I is two.

Proof. We remind (compare [21, 22]) that the order conditions which guarantee
order p = 3, with possibly q ̸= p, are

Ĉ1 = Ĉ2 = Ĉ3 = 0, C1 = 0, (vT + wT )C2 = 0.

Performing the steps (i)-(iv) of the algorithm and further imposing the condi-

tions Ĉ3 = 0, C1 = 0, we obtain that (vT +wT )C2 = −2, which is a contradic-
tion. This concludes the proof. ⊓⊔

Future work will address the construction of higher order algebraically sta-
ble TSRK methods withG = I and s ≥ 3, or with possiblyG ̸= I, by extending
the results of [2, 3].

7 Conclusions

We described an algorithm for the practical construction of algebraically stable
TSRK methods. This approach is based on the recent work of Hewitt and
Hill [17]. The TSRK methods with one and two stages have been completely
analized.

The derived algebraically stable methods are fully implicit and their imple-
mentation requires the solution of nonlinear systems of dimension m · s, where
m is the dimension of the problem and s the number of stages. Although this is
less efficient than for algorithms based for instance on SIRK or Gear methods
[15, 23], the methods derived in this paper have stage order equal to the order
and as a result do not suffer from order reduction phenomenon [6]. Therefore
they are appropriate for stiff differential systems discussed for example in [15].
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