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Abstract

We investigate algebraic stability of the new class of two-step almost collocation methods for ordinary differential
equations. These continuous methods are obtained by relaxing some of the interpolation and collocation conditions
to achieve strong stability properties together with uniform order of convergence on the whole interval of integration.
We describe the search for algebraically stable methods using the criterion based on the Nyquist stability function
proposed recently by Hill. This criterion leads to a minimization problem in one variable which is solved using the
subroutine fminsearch from MATLAB. Examples of algebraically stable methods in this class are also presented.
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1. Introduction

Consider the initial value problem for systems of ordinary differential equations (ODEs){
y′(t) = f (y(t)), t ∈ [t0,T ],

y(t0) = y0,
(1.1)

where the function f : Rd → Rd is sufficiently smooth. Concerning the numerical solution of the problem (1.1),
some recent work in the literature have been devoted to the derivation of continuous A- and L-stable collocation-based
methods belonging to the family of two-step Runge-Kutta (TSRK) formulas introduced in [33, 34]. This is the case
of two-step almost collocation (TSAC) methods, first derived in [21] and further analyzed in [20, 24, 25, 26, 33].
Similar methods for Volterra integral equations were investigated in [16, 17, 18] and for Volterra integro-differential
equations in [13, 14]. Different approaches to the construction of continuous TSRK methods outside collocation have
been presented in literature in the papers [3, 4, 35].

The nonlinear stability analysis of general linear methods (GLMs) for ODEs [12, 33] is subject of several recent
papers, see for instance [11, 29, 30, 31, 32], where some classical results on algebraically stable Runge-Kutta methods
[6, 7, 8, 9, 10, 11, 12, 19] have been extended to GLMs. Some preliminary results on the nonlinear stability properties
of TSRK methods have been obtained in [22, 23], and examples of algebraically stable methods have been provided.
It is the purpose of this work to analyze the nonlinear stability of two-step collocation methods of the form P(tn + sh) = φ0(s)yn−1 +φ1(s)yn +h

m

∑
j=1

(
χ j(s) f (P(tn−1 + c jh))+ψ j(s) f (P(tn + c jh))

)
,

yn+1 = P(tn+1),

(1.2)

where tn = t0 + nh, n = 0,1, . . . ,N, Nh = T − t0, is a uniform grid. The formulation of (1.2) is modelled by TSRK
methods: in fact, advancing from the grid point tn to the point tn+1, the approximation yn+1 depends on the approxi-
mations yn−1 and yn to the solution y(t) of (1.1) at two consecutive step points tn−1 and tn, and in addition on the stage
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derivatives related to the last two subintervals of integration. The continuous approximant P(tn + sh) is an algebraic
polynomial which is obtained using a collocation approach described in [21]. This polynomial can be expressed as
linear combination of the basis functions

{φ0(s), φ1(s), χ j(s), ψ j(s), j = 1,2, . . . ,m},

which are unknown algebraic polynomials to be suitably determined. It is generally required that the polynomial
P(tn + sh) satisfies the interpolation conditions

P(tn−1) = yn−1, P(tn) = yn, (1.3)

and the collocation conditions

P′(tn−1 + c jh) = f (P(tn−1 + c jh)), P′(tn + c jh) = f (P(tn + c jh)), (1.4)

j = 1,2, . . . ,m. However, in order to obtain methods with strong stability properties such as, for example, A- or L-
stability, we relax some of the interpolation and collocation conditions. This leads to additional free parameters which
are then used to obtain methods with desirable stability properties. Following the terminology introduced in [21] the
resulting methods are called TSAC methods. It is the main purpose of this paper to search for algebraically stable
methods within this class of TSAC formulas.

The paper is organized as follows. In Section 2 we describe the family of TSAC methods introduced in [21] and
recall their main properties. In Section 3 we provide the tools needed for the investigation of the algebraic stability
properties of TSAC methods. Such tools are then employed in Section 4 in the search for algebraically stable TSAC
methods, and examples of such formulas up to order p = 4 are given. Finally, in Section 5 some concluding remarks
are shown and future research plans are briefly outlined.

2. Two-step almost collocation methods

In the remainder of this paper we aim to analyze the nonlinear stability properties of TSAC methods (1.2). Such
methods are obtained by fixing ρ basis functions among the set

{φ0(s), χ j(s), j = 1,2, . . . ,m}, (2.5)

as polynomials of degree p = 2m+1−ρ , and deriving the remaining ones as solutions of the system of order condi-
tions 

φ0(s)+φ1(s) = 1,

(−1)k

k!
φ0(s)+

m

∑
j=1

(
χ j(s)

(c j −1)k−1

(k−1)!
+ψ j(s)

ck−1
j

(k−1)!

)
=

sk

k!
,

(2.6)

k = 1,2, . . . , p. Then, it was proved in [20, 21], that p = 2m+1−ρ is the uniform order of the resulting method.
The choice of ρ basis functions among the set (2.5) is made clear in Section 4, where the construction of alge-

braically stable TSAC methods (1.2) is described. Usually the ρ functions from the set (2.5) are also required to
satisfy the conditions

φ0(0) = 0, χ j(0) = 0, (2.7)

in order to guarantee that at least the interpolation condition P(tn) = yn is satisfied. This follows as consequence of
Theorem 2.4 in [21] which, in the hypothesis (2.7), ensures that

φ1(0) = 1, ψ j(0) = 0.

The resulting collocation polynomial (1.2) is obtained as linear combination of the derived basis functions. In par-
ticular, we observe that by evaluating the collocation polynomial at s = 1 and s = ci, i = 1,2, . . . ,m, and by setting
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Y [n]
i = P(tn + cih), i = 1,2, . . . ,m, TSAC methods (1.2) can be formulated as TSRK methods

yn+1 = θyn−1 + θ̃yn +h
m

∑
i=1

(
vi f (Y [n]

i )+wi f (Y [n−1]
i )

)
,

Y [n]
i = uiyn−1 + ũiyn +h

m

∑
j=1

(
ai j f (Y [n]

j )+bi j f (Y [n−1]
j )

)
,

(2.8)

where
θ = φ0(1), θ̃ = φ1(1), vi = ψi(1), wi = χi(1),

ui = φ0(ci), ũi = φ1(ci), ai j = ψ j(ci), bi j = χ j(ci),

i, j = 1,2, . . . ,m. Observe that θ̃ = 1 − θ and ũi = 1 − ui, i = 1,2, . . . ,m. Moreover, we will next also use the
formulation of TSAC methods as GLMs{

Y [n] = h(A⊗ I)F [n]+(U⊗ I)y[n],

y[n+1] = h(B⊗ I)F [n]+(V⊗ I)y[n],
(2.9)

where,

Y [n] =


Y [n]

1

Y [n]
2
...

Y [n]
m

 , F [n] =


f (Y [n]

1 )

f (Y [n]
2 )
...

f (Y [n]
m )

 , y[n] =

 yn
yn−1

hF [n−1]

 ,
and the matrices A ∈ Rm×m, U ∈ Rm×r, B ∈ Rr×m, V ∈ Rr×r, with r = m+2, assume the form

[
A U
B V

]
=


A e−u u B
vT 1−θ θ wT

0 1 0 0
I 0 0 0

 .
An interesting family of TSRK methods can be obtained choosing the parameter values θ = u j = 0, j = 1,2, . . . ,m.
With this choice, the corresponding TSRK methods can be represented as GLMs with input vector

y[n] =
[

yn

h f (Y [n])

]
,

and coefficient matrices A, U, B and V defined by[
A U
B V

]
=

 A e B
vT 1 wT

I 0 0

 ,
with A ∈ Rm×m, U ∈ Rm×r, B ∈ Rr×m, V ∈ Rr×r and r = m+ 1. Observe that for the choice θ = 0 and ui = 0,
i = 1,2, . . . ,m, the dimensions of the matrices U, B, V are one less as compared with the general case θ , 0 and
u j , 0, j = 1,2, . . . ,m.

Remark 2.1. Since θ = φ0(1) and ui = φ0(ci), i = 1,2, . . . ,m, TSAC methods equivalent to TSRK methods with
θ = u j = 0, j = 1,2, ...,m, are obtained choosing

φ0(s) = (s−1)
m

∏
i=1

(s− ci)φ̃0(s),

where φ̃0(s) is an algebraic polynomial of degree p−m− 1, if p is the order of the method. As a consequence, if
the TSAC method has order p = m or p = m+ 1 and satisfies the interpolation condition φ0(0) = 0 in (2.7), then it
necessarily follows that φ0(s) = 0.
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It was proved in [21] that the local discretization error of TSAC methods takes the form

ξ (tn+1) =Cp(1)hp+1y(p+1)(tn)+O(hp+2), (2.10)

where the continuous error constant Cp(s), s ∈ [0,1], is defined by

Cp(s) =
sp+1

(p+1)!
− (−1)p+1

(p+1)!
φ0(s)−

m

∑
j=1

(
χ j(s)

(c j −1)p

p!
+ψ j(s)

cp
j

p!

)
. (2.11)

The quantity hp+1y(p+1)(tn) can be estimated by the expression having a similar form as the method itself. To be more
precise it was proved in [21] that

hp+1y(p+1)(tn) = α0yn−1 +α1yn +h
m

∑
j=1

(
β j f (P(tn−1 + c jh))+ γ j f (P(tn + c jh))

)
+O(hp+2), (2.12)

where the constants α0, α1, β j, and γ j, j = 1,2, . . . ,m, satisfy the system of linear equations

α0 +α1 = 0,

(−1)k

k!
α0 +

m

∑
j=1

(
β j

(c j −1)k−1

(k−1)!
+ γ j

ck−1
j

(k−1)!

)
= 0, k = 1,2, . . . , p,(

(−1)p+1

(p+1)!
−Cp(−1)

)
α0 +

m

∑
j=1

(
β j

(c j −1)p

p!
+ γ j

cp
j

p!

)
= 1.

(2.13)

Additional implementation issues for TSAC methods are investigated in a recent paper [25].

3. Search for algebraically stable TSAC methods

The representation of TSAC methods (1.2) as GLMs (2.9) allows us to exploit the recent results on the nonlinear
stability properties of GLMs, which are formulated with respect to the nonlinear test problem{

y′(t) = g
(
t,y(t)

)
, t ≥ 0,

y(0) = y0,
(3.14)

g : R×Rd → Rd . Here, the function g satisfies the one-sided Lipschitz condition of the form(
g(t,y1)−g(t,y2)

)T
(y1 − y2)≤ 0, (3.15)

for all t ≥ 0 and y1,y2 ∈ Rd . Denote by y(t) and ỹ(t) two solutions to (3.14) with initial conditions y0 and ỹ0,
respectively. Then the condition (3.15) implies that (3.14) is dissipative, i.e.,∥∥y(t2)− ỹ(t2)

∥∥≤ ∥∥y(t1)− ỹ(t1)
∥∥, (3.16)

for 0 ≤ t1 ≤ t2, compare [11, 27, 33].
Let {z[n]}N

n=0 be the solution to (2.9) with initial value z[0], and by {z̃[n]}N
n=0 be the solution obtained by using a

different initial value z̃[0] or by perturbing the right hand side of (3.14). A GLM (2.9) is said to be G-stable if there
exists a real, symmetric and positive definite matrix G ∈ Rr×r such that∥∥z[n+1]− z̃[n+1]∥∥

G ≤
∥∥z[n]− z̃[n]

∥∥
G, (3.17)

for all step sizes h > 0 and for all differential systems (3.14) with the function g satisfying (3.15), where

∥z∥2
G =

r

∑
i=1

r

∑
j=1

gi jzT
i z j, zi ∈ Rd , i = 1,2, . . . ,r. (3.18)
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The GLM (2.9) is said to be algebraically stable, if there exist a real, symmetric and positive definite matrix G ∈Rr×r

and a real, diagonal and positive definite matrix D ∈ Rm×m such that the matrix M ∈ R(m+r)×(m+r) defined by

M =

[
DA+AT D−BT GB DU−BT GV

UT D−VT GB G−VT GV

]
(3.19)

is nonnegative definite. The significance of this definition follows from the result proved by Butcher [9, 10] (see also
[28]), that for preconsistent and non-confluent GLMs (2.9), i.e. methods with distinct abscissas ci, i = 1,2, . . . ,m,
algebraic stability is equivalent to G-stability.

It was observed by Hewitt and Hill [29, 30] that the verification if the matrix M is nonnegative definite can be
simplified by the use of the following result proved by Albert [1].

Theorem 3.1. The matrix M given by

M =

[
M11 M12
MT

12 M22

]
satisfies M ≥ 0 if and only if

M11 ≥ 0, M22 −MT
12M+

11M12 ≥ 0, M11M+
11M12 = M12, (3.20)

or, equivalently,
M22 ≥ 0, M11 −M12M+

22MT
12 ≥ 0, M22M+

22MT
12 = MT

12. (3.21)

Here, A+ stands for the Moore-Penrose pseudo-inverse of the matrix A.

Although the criteria based on Albert theorem can be used to verify if specific examples of GLMs are algebraically
stable, these criteria are not very practical to search for algebraically stable GLMs which depend on large number of
unknown parameters. In such searches it is necessary to examine many inequalities which depend on the unknown
coefficients of the matrix G and the remaining free parameters of GLMs and this task often exceeds the capabilities of
symbolic manipulation packages such as Mathematica or Maple. However, there is a more practical approach where
this search can be done numerically, using the criterion for algebraic stability based on the Nyquist stability function,
defined by

N(ξ ) = A+U(ξ I−V)−1B, ξ ∈ C−σ(V), (3.22)

where σ(V) stands for the spectrum of the matrix V. Denote by w̃ a principal left eigenvector of V, i.e. the vector
such that

w̃T V = w̃T , w̃T q0 = 1, (3.23)

where q0 is the preconsistency vector of GLMs (2.9). Following [31], we define the diagonal matrix D̃ by

D̃ = diag(BT w̃), (3.24)

and by He(Q) the Hermitian part of a complex square matrix Q, i.e.,

He(Q) =
1
2
(
Q+Q∗),

where Q∗ stands for the conjugate transpose of Q. We have the following result.

Theorem 3.2. (compare [10, 31]). A consistent GLM (2.9) is algebraically stable if the following conditions are
satisfied:

1. the coefficient matrix V is power-bounded;
2. Ux , 0 for all right eigenvectors of V and BT x , 0 for all left eigenvectors of V;
3. D̃ > 0 and D̃A ≥ 0;
4. He

(
D̃N(ξ )

)
≥ 0 for all ξ such that |ξ |= 1 and ξ ∈ C−σ(V).
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The numerical search for algebraically stable TSAC methods which is based on the criterion consisting of the condi-
tions 1–4 in Theorem 3.2 is described in the Section 4.

We observe that, in the case of TSAC methods, the preconsistency vector q0 takes the form

q0 =

 1
1
0

 ∈ Rs+2,

the vector w̃ satisfying (3.23) is

w̃ =
1

1+θ

 1
θ
w

 ∈ Rs+2,

and the matrix D̃ defined by (3.24) is

D̃ =
1

1+θ
diag(v+w).

We next compute the Nyquist stability function N(ξ ) corresponding to TSAC methods in the TSRK formulation (2.8)
and the Hermitian part of D̃N(ξ ). By using the inversion formula for block matrices (see [2]), we obtain

(ξ I−V)−1 =



ξ
∆

θ
∆

wT

∆

1
∆

ξ −1+θ
∆

wT

ξ ∆

0 0
1
ξ

I


,

where
∆ = ξ (ξ −1+θ)−θ = (ξ −1)(ξ +θ).

This leads to

N(ξ ) = A+U(ξ I−V)−1B

= A+
ξ

(ξ −1)(ξ +θ)
evT +

1
(ξ −1)(ξ +θ)

ewT − 1
ξ +θ

uvT − 1
ξ (ξ +θ)

uwT +
1
ξ

B.

We have also

He
(
D̃N(ξ )

)
=

1
2

(
D̃
(

A+
1
ξ

B
)
+
(

AT +
1

ξ
BT
)

D̃+
ξ

(ξ −1)(ξ +θ)
D̃evT +

ξ
(ξ −1)(ξ +θ)

veT D̃− 1
ξ +θ

D̃uvT

− 1

ξ +θ
vuT D̃+

1
(ξ −1)(ξ +θ)

D̃ewT +
1

(ξ −1)(ξ +θ)
weT D̃− 1

ξ (ξ +θ)
D̃uwT − 1

ξ (ξ +θ)
wuT D̃

)
.

Using the relations

D̃e =
1

1+θ
(v+w), eT D̃ =

1
1+θ

(v+w)T ,

D̃uvT =
1

1+θ
(
(v+w) ·u

)
vT , vuT D̃ =

1
1+θ

v
(
(v+w) ·u

)T
,

D̃uwT =
1

1+θ
(
(v+w) ·u

)
wT , wuT D̃ =

1
1+θ

w
(
(v+w) ·u

)T
,

6



where, u · v denotes componentwise multiplication of vectors, He(D̃N(ξ )) can be written as

He
(
D̃N(ξ )

)
=

1
2(1+θ)

(
diag(v+w)

(
A+

1
ξ

B
)
+

(
AT +

1

ξ
BT
)

diag(v+w)

+

(
ξ

(ξ −1)(ξ +θ)
+

ξ
(ξ −1)(ξ +θ)

)
vvT +

(
1

(ξ −1)(ξ +θ)
+

ξ
(ξ −1)(ξ +θ)

)
vwT

+

(
ξ

(ξ −1)(ξ +θ)
+

1

(ξ −1)(ξ +θ)

)
wvT +

(
1

(ξ −1)(ξ +θ)
+

1

(ξ −1)(ξ +θ)

)
wwT

− 1
ξ +θ

(
(v+w) ·u

)
vT − 1

ξ +θ
v
(
(v+w) ·u)T − 1

ξ (ξ +θ)
(
(v+w) ·u

)
wT − 1

ξ (ξ +θ)
w
(
(v+w) ·u)T

)
.

With the aim of computing the limit
lim
t→0

He
(
D̃N(ξ )

)∣∣∣
ξ=eit

,

we observe that

lim
t→0

(
ξ

(ξ −1)(ξ +θ)
+

ξ
(ξ −1)(ξ +θ)

)∣∣∣∣
ξ=eit

=− 1−θ
(1+θ)2 ,

lim
t→0

(
1

(ξ −1)(ξ +θ)
+

ξ
(ξ −1)(ξ +θ)

)∣∣∣∣
ξ=eit

=− 2
(1+θ)2 ,

lim
t→0

(
ξ

(ξ −1)(ξ +θ)
+

1

(ξ −1)(ξ +θ)

)∣∣∣∣
ξ=eit

=− 2
(1+θ)2 ,

lim
t→0

(
1

(ξ −1)(ξ +θ)
+

1

(ξ −1)(ξ +θ)

)∣∣∣∣
ξ=eit

=− 3+θ
(1+θ)2 .

The above discussion leads to the following result.

Theorem 3.3. (compare [20, 23]) For a consistent TSAC method (1.2), the Hermitian part of the matrix D̃N(ξ ) has
the following limit

lim
t→0

He
(
D̃N(ξ )

)∣∣∣
ξ=eit

=
1

2(1+θ)

(
diag(v+w)

(
A+B

)
+(A+B)T diag(v+w)− 2

(1+θ)2 (vwT +wvT )

− 1−θ
(1+θ)2 vvT − 3+θ

(1+θ)2 wwT − 1
1+θ

((
v+w) ·u

)
(v+w)T +(v+w)

(
(v+w) ·u

)T
))

.

(3.25)

Using this theorem we can make the search for algebraically stable GLMs more efficient by eliminating formulas for
which the limit defined by (3.25) is less than zero.

An analogous result can be obtained in correspondence of the choice θ = 0 and ui = 0, i = 1,2, . . . ,m. In this case,
the preconsistency vector q0 takes the form

q0 =

[
1
0

]
∈ Rs+1

and the vector w̃ satisfying (3.23) is

w̃ =

[
1
w

]
∈ Rs+1.

Hence, the matrix D̃ defined by (3.24) takes the form

D̃ = diag(v+w).
7



By means of arguments similar to that leading to Theorem 3.3, the hermitian part of the matrix D̃N(ξ ) behaves as
follows

lim
t→0

He
(
D̃N(ξ )

)∣∣∣
ξ=eit

=
1
2

(
diag(v+w)(A+B)+ (A+B)T diag(v+w)− vvT −2(vwT +wvT )−3wwT

)
.

4. Derivation of algebraically stable TSAC methods

In this section we describe the derivation of algebraically stable TSAC methods with m = 1, 2, 3, carried out by
employing the tools provided in the previous section. In particular, in the case m = 1, by applying Albert Theorem
3.1, we are able to determine classes of algebraically stable methods, together with their corresponding G and D
matrices. In the case m = 2,3, we have implemented an algorithm for the numerical search for algebraically stable
TSAC methods written as GLMs (2.9). This algorithm is based on minimizing the objective function which computes
the negative value of the minimum of the eigenvalues of the matrix

He(D̃N(ξ )), for ξ such that |ξ |= 1 and ξ ∈ C\σ(V). (4.26)

This objective function is a numerical realization of the necessary condition 4 for algebraic stability, which is listed in
Theorem 3.2. Once the methods for which He(D̃N(ξ ))≥ 0 for ξ such that |ξ |= 1 and ξ ∈ C−σ(V) are found, the
remaining necessary conditions 1-3 in Theorem 3.2 for algebraic stability are verified on the case by case basis.

Since A-stable TSAC methods with m = 1,2,3 and p > m+ 1 have not been found in previous works (compare
[20, 21]), we will describe next the search for algebraically stable methods with p = m or p = m+1.

4.1. Methods with m = 1 and p = 2
We first consider the case of methods such that θ = u = 0. By relaxing the conditions on the basis function φ0(s),

i.e., assuming that ρ = 1, and imposing the interpolation condition φ0(0) = 0 we obtain, according to Remark 2.1,
that φ0(s) = 0. By solving the system of order conditions (2.6) for p = 2 we obtain

φ1(s) = 1, χ(s) =
1
2

s(2c− s), ψ(s) =
1
2

s(2−2c+ s).

In this way, a one-parameter family of TSAC methods depending on the collocation abscissa c arises. Such methods,
according to the Schur criterion [36], are A-stable if and only if c = 1. In this case, the stability polynomial is the
same of the trapezoidal rule, which is A-stable, but not algebraically stable [28].

We next consider the case θ , 0, u , 0, and relax the conditions on the basis function φ0(s) according to (2.7), by
assuming

φ0(s) = s(p1 + p2s).

The order conditions (2.6) for p = 2 lead to

φ1(s) = 1− p1s− p2s2,

χ1(s) = 1
2 s(p1 +(p2 −1)s+2c(p1 + p2s+1)) ,

ψ1(s) = 1
2 s(p1 + p2s+ s−2c(p1 + p2s+1)+2) .

In order to deal with a quadratic stability function (compare [15]), we assume that p1 =−2cp2. In this way, a two-
parameter family of TSAC methods arises, depending on p2 and c. By applying the Schur criterion we obtain that
such methods are A-stable if and only if

c >
1
2

and
(c−1)2

c2(2c−1)
< p2 <

1
2c−1

.
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Assuming c = 1, p2 = 1/2, and applying Albert conditions, we obtain an algebraically stable TSAC method for which
the matrices G and D are defined by

G =


9

10 − 19
30 − 11

30

− 19
30

1
2

3
10

− 11
30

3
10

1
5

 , D =

[
2
15

]
.

We obtain from (2.11) that the error constant associated to this method is Cp(1) = 0. Moreover, by solving the system
(2.13), we can derive a one-parameter family of local error estimators of the type (2.12), with

α1 =−α0, β1 =
3α0 −2

2
, γ1 =

2−α0

2
,

depending on the parameter α0.
Another example of algebraically stable method corresponds to c = 3/4 and p2 = 3/2. It can be verified using

Theorem 3.1 that for this method the matrices G and D are defined by

G =


1987
3750 − 641

1250 − 1769
3750

− 641
1250

1
2

23
50

− 1769
3750

23
50

127
300

 , D =

[
8

1875

]
.

In this case, we have Cp(1) = 0 and, by solving the system (2.13), a one-parameter family of local error estimators
(2.12) arises, with

α1 =−α0, β1 =
5α0 −4

4
, γ1 =

4−α0

4
,

depending on the parameter α0.

4.2. Methods with m = p = 1
We first consider the case of methods such that θ = u = 0. We relax the conditions on ρ = 2 basis functions and

impose the conditions (2.7) which take now the form

φ0(0) = 0, χ(0) = 0.

As a consequence of these choices, and taking into account Remark 2.1, we obtain

φ0(s) = 0, χ(s) = r1s. (4.27)

We determine the other basis functions by solving the system of order conditions (2.6) for p = 1, which leads to

φ1(s) = 1, ψ(s) = (1− r1)s.

We analyze the A-stability properties of the resulting methods by using the Schur criterion: each method belonging to
the derived two-parameter family of methods is A-stable if and only if(

r1 ≤ 0 and c >
1
2

)
or

(
0 < r1 <

1
2

and c >
1
2
(1+ r1)

)
.

Moreover, the following result holds.

Theorem 4.1. A-stable TSAC methods with m = p = 1 and basis functions (4.27) are also algebraically stable, with

G =

[
1 r1

r1 r2
1 − cr1 + c− 1

2

]
, D = [1] (4.28)

9



Proof: For the matrices G and D defined in (4.28), the matrix M in (3.19) takes the form

M =


−r1c+ c− 1

2 0 (c−1)r1

0 0 0

(c−1)r1 0 −r1c+ c− 1
2

 .
Theorem 3.1 ensures that this matrix is nonnegative definite, which concludes the proof. 2

We next consider the case θ , 0, u , 0. Following [24] we assume that

φ0(s) = p1s, χ(s) = q1s, (4.29)

and derive the remaining basis functions by imposing the order conditions. In this way, a three-parameter family of
methods arises, depending on the values of the parameters p1, q1 and c. The A-stability properties of such methods
have been analyzed in [24], by means of the Schur criterion (see Fig. 1).

A-stability A-stability

Algebraic 

 stability

-1.0 -0.5 0.0 0.5 1.0
-4

-3

-2

-1

0

1

2

p1

q 1

Figure 1: Region of A- and algebraic stability in the (p1,q1)-plane of TSAC methods (1.2) with m = p = 1, basis functions (4.29), c = 3/4 and α
given by (4.33)

Sufficient conditions for algebraically stable TSAC methods are given by the following result.

Theorem 4.2. TSAC methods (1.2) with m = p = 1 and basis functions (4.29) are algebraically stable if the parame-
ters p1, q1 and c satisfy the conditions

0 < p1 < 1,

−α2(p1 −1)2 p2
1 − (cp1 + c−1)2(p1 −q1)

2

+ α(p1 −1)p1
(
c2 p1(p1 +1)2 +2c

(
p1
(

p2
1 − p1q1 −2

)
+q1 −1

)
+ p1

(
−2p1q1 +(p1 −1)p1 +q2

1 +1
)
+1
)
≥ 0,

(4.30)

where α > 0 is a fixed parameter.
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Proof: Define the matrices G and D by

G =



1
p1

0 − p1 −q1

p1

0 1 1

− p1 −q1

p1
1

2p1q1 − p1 −q2
1

p2
1 − p1

+α

 , (4.31)

and

D =

[
1+ p1

p1

]
. (4.32)

The first hypothesis in (4.30) and the condition α > 0 ensure that G and D are positive definite. The corresponding
matrix M defined by (3.19) assumes the form

M =



m11 −p1c− c+1 p1c+ c−1
(p1c+ c−1)q1

p1

−p1c− c+1 1− p1 p1 −1 q1 −1

p1c+ c−1 p1 −1 1− p1 1−q1

(p1c+ c−1)q1

p1
q1 −1 1−q1

α(p1 −1)− (q1 −1)2

p1 −1


,

where

m11 =
p1
(
(p1 −q1)

2 +α −α p1 − p1
)
+2c

(
p2

1 −1
)
(p1 −q1 +1)+1

(p1 −1)p1
.

By applying the Albert Theorem 3.1 and employing the second hypothesis in (4.30), it follows that the matrix M is
nonnegative definite. This completes the proof. 2

In Fig. 1 the region of A- and algebraic stability in the (p1,q1)-plane is reported for c = 3/4 and

α =
49p3

1 −56p2
1q1 +2p2

1 +16p1q2
1 −23p1 +24q1 −8

32(p1 −1)p1
, (4.33)

inside the A-stability region. In particular, by making the choice p1 = q1, Theorem 4.2 allows to find algebraically
stable formulae for any value of the abscissa c greater than 1/2. This situation is described in the following result.

Corollary 4.1. TSAC methods (1.2) with m = p = 1 and basis functions (4.29) with p1 = q1 are algebraically stable
for any choice of the parameters p1 and c within the region A ∪B, where A and B are the regions given by

A =
{
(c, p1) :

1
2
< c ≤ β and

(
0 < p1 < γ1(c) or γ2(c)< p1 < γ3(c)

)}
,

B =
{
(c, p1) : c > β and 0 < p1 < γ1(c)

}
.

Here, β is the positive root of the polynomial

4x3 +32x2 −8x−5,

and γ1(c), γ2(c) and γ3(c) are the roots of the polynomial

c2x3 +(2c2 −1)x2 +(c2 −2c+1)x+1−2c.

11



Proof: The second condition in (4.30) of Theorem 4.2 for p1 = q1 reduces to

−(α +1)(p1 −1)p1 + c2 p1(p1 +1)2 −2c(p1 +1)+1 ≤ 0,

whose left hand side identically vanishes by choosing

α =
1+ p1 − p2

1 −2c(1+ p1)+ c2 p1(1+ p1)
2

p1(p1 −1)
.

Then, the algebraic stability conditions of Theorem 4.2 reduce to 0 < p1 < 1 and α > 0, which are satisfied for any
(c, p1) ∈ A ∪B. It can be verified that the matrices G and D associated with these algebraically stable methods are
given by

G =


1
p1

0 0

0 1 1

0 1 1+α

 , D =

[
1+ p1

p1

]
.

2

Observe that the condition c > 1/2, together with the condition for zero-stability 0 < p1 < 1, is a necessary condition
to achieve A-stability. In fact, by applying the Schur criterion to the methods of Corollary 4.1, the region of A-stability
in the parameter space (c, p1) is (1/2,∞)× (0,1). Fig. 2 shows the algebraic stability region A ∪B inside the
A-stability one, in the rectangle (1/2,1)× (−1,1).

Algebraic stability

A-stability

0.5 0.6 0.7 0.8 0.9 1.0

-1.0

-0.5

0.0

0.5

1.0

c

p 1

Figure 2: Region of A− and algebraic stability in the (c, p1)-plane for TSAC methods (1.2) of Corollary 4.1

Finally, we have searched for L−stable methods which are also algebraically stable. It has been proved in [24]
that TSAC methods with m = p = 1 and basis functions (4.29) are L-stable if c = 1, q1 = 0 and p1 ∈ (−1,1]. By using
Theorem 4.2 with the parameter α given by

α =
−1−2p1 + p2

1 +4p3
1

2(p1 −1)p1
,

we obtain L- and algebraically stable methods for the parameter values c = 1, q1 = 0, and p1 ∈ (0,(1+
√

17)/8).
12



4.3. Methods with m = 2 and p = 3
Our search for algebraically stable methods with m = 2 and p = 3 will be carried out inside the class of A-stable

methods derived in [21]. Therefore, following [21], we impose the interpolation conditions (2.7) which take the form

φ0(0) = 0, χ1(0) = 0,

and we fix the ρ = 2 basis functions

φ0(s) = s
(
q2s2 +q1s+q0

)
, χ1(s) = s

(
r2s2 + r1s+ r0

)
,

where q2, q1, q0, r2, r1, and r0 are real parameters. We next derive the values of these parameters realizing the
collocation conditions

φ ′
0(c1) = φ ′

0(c2) = 0 and χ ′
1(c1) = χ ′

1(c2) = 0.

This leads to

q1 =− (c1 + c2)q0

2c1c2
, q2 =

q0

3c1c2
, r1 =− (c1 + c2)r0

2c1c2
, r2 =

r0

3c1c2
.

We next determine the remaining basis functions φ1(s), χ2(s), ψ1(s), and ψ2(s) by imposing the system of order
conditions for p = 3. As in [21], we fix c1 = 5/2 and c2 = 9/2. This leads to a two-parameter family of TSAC
methods, depending on q0 and r0. Within this family, we search for algebraically stable methods, by minimizing the
negative value of the objective function computing the minimum of the eigenvalues of the matrix (4.26). For instance,
for

q0 =−0.4253608181543406, r0 = 1.6033382155047602, (4.34)

we obtain a method satisfying
He(D̃N(ξ ))

∣∣∣
ξ=eit

≥ 0, t ∈ [0,2π].

This bound has been obtained by dividing the interval [0,2π] into n = 10000 subintervals. The eigenvalues of
He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π], are plotted in Fig. 3.

4.4. Methods with m = 2 and p = 2
Our search for algebraically stable methods with m = 2 and p = 2 will be carried out inside the class of A-stable

methods derived in [25]. Therefore, following [25], we impose the interpolation conditions (2.7) which are given by

φ0(0) = χ1(0) = χ2(0) = 0,

and assume that φ0(s), χ1(s), and χ2(s) take the form

φ0(s) = s(p1 + p2s), χ1(s) = s(q1 +q2s), χ2(s) = s(r1 + r2s),

where p1, p2, q1, q2, r1, and r2 are real parameters. Then solving the system of order conditions for p = 2 we obtain
a six-parameter family of methods of order p = 2 depending on these parameters. Next, we looked for algebraically
stable methods within the class of A- and L-stable TSAC methods derived in [25] for c1 = 1/2, c2 = 1, and

p1 =−2p2(1+ r2)

2+ r2
, q1 =

2p1

p2
, r1 =−2r2(1+ r2)

2+ r2
, q2 = 2.

Fig. 4 shows the region of A− and L− stability in the parameter space (p2,r2). Corresponding to the asterisks
marked in Fig. 4, we found formulas for which

He(D̃N(ξ ))
∣∣∣
ξ=eit

≥−10−9, t ∈ [0,2π]. (4.35)

This bound was obtained by dividing the interval [0,2π] into n = 10000 subintervals. Dividing [0,2π] into n = 1000
and n = 100 subintervals, this bound is equal to 0. The circled asterisk in Fig. 4 corresponds to the values

p2 = 0.7567262495625600, r2 =−0.4460521573543530, (4.36)
13
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Figure 3: Eigenvalues λ1(t) and λ2(t) of the matrix He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π], in correspondence to the choices (4.34) of the free
parameters q0 and r0

Figure 4: Region of A- and L- stability in the parameter space (p2,r2). ∗: methods satisfying the bound (4.35). ∗⃝: method satisfying the bound
(4.37)
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Figure 5: Eigenvalues λ1(t) and λ2(t) of the matrix He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π], in correspondence to the choices (4.36) of the free
parameters p2 and r2

and the resulting method is L-stable and satisfies the bound

He(D̃N(ξ ))
∣∣∣
ξ=eit

≥ 0, t ∈ [0,2π]. (4.37)

This bound has been obtained by dividing the interval [0,2π] into n = 10000 subintervals. The eigenvalues of
He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π], are plotted in Fig. 5.

We obtain from (2.11) that the error constant associated to this method is

Cp(1) =−0.18492969764966272.

Moreover, by solving the system (2.13), we can derive a two-parameter family of local error estimators of the type
(2.12), with

α1 =−α0, β1 = 4−7.408910647463099α0 − γ2,

β2 =−8+16.817821294926198α0 +3γ2, γ1 = 4−8.408910647463099α0 −3γ2,

depending on the parameters α0 and γ2.

4.5. Methods with m = 3 and p = 4
In this case, we relax the following ρ = 3 basis functions

φ0(s) = s
( 3

∑
i=1

ℓi(s)
ri

ci
+ ℓ4(s)r4

)
, χ1(s) = s

( 3

∑
i=1

ℓi(s)
qi

ci
+ ℓ4(s)q4

)
, χ2(s) = s

( 3

∑
i=1

ℓi(s)
si

ci
+ ℓ4(s)s4

)
.

(4.38)
These functions satisfy the interpolation conditions (2.7), where ℓi(s), i = 1,2,3,4, are the Lagrange fundamental
polynomials associated to the abscissas {c1,c2,c3,1}. We next derive the remaining basis functions by imposing the
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Figure 6: Eigenvalues λ1(t), λ2(t) and λ3(t) of the matrix He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π]

system of order conditions up to order p = 4. In this way, we obtain a 15-parameter family of TSAC methods (1.2),
depending on c j, j = 1,2,3 and qi, ri, si, i = 1,2,3,4, which represent the evaluations of the basis functions (4.38) in
{c1,c2,c3,1}, i.e.

χ1(c1) = q1, χ1(c2) = q2, χ1(c3) = q3, χ1(1) = q4,

χ2(c1) = s1, χ2(c2) = s2, χ2(c3) = s3, χ2(1) = s4,

φ0(c1) = r1, φ0(c2) = r2, φ0(c3) = r3, φ0(1) = r4.

We carry out a numerical search for algebraically stable methods and for the parameters

q1 =−0.2726789592434525, q2 =−0.4181859079468002,
q3 =−0.4081521541939172, q4 =−0.3900512337727580,
r1 = 0.0254105370486458, r2 =−0.0410914281399805,
r3 =−0.0865247300437837, r4 =−0.0406851876697910,
s1 =−0.0345953002848433, s2 =−0.0027633289164017,
s3 =−0.1546470396551506, s4 =−0.0293367577248120,
c1 = 0.8052565472589601, c2 = 0.2883202630501468,
c3 =−0.2961982211404683,

we obtain a method satisfying
He(D̃N(ξ ))

∣∣∣
ξ=eit

≥ 0, t ∈ [0,2π].

This bound has been obtained by dividing the interval [0,2π] into n = 10000 subintervals. The eigenvalues of
He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π], are plotted in Fig. 6.

We obtain from (2.11) that the error constant associated to this method is

Cp(1) = 0.13146585625709778.
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Moreover, by solving the system (2.13), we derive a two-parameter family of local error estimators of the type (2.12),
with

α0 =−0.16308569769132666, α1 = 0.16308569769132666,

β1 =−0.07010794285202898−1.4385688179398948γ2 −0.803738349389213γ3,

β2 =−0.0887295271619641+0.8632491086735037γ2 −0.24380158546810216γ3,

β3 =−0.0038847814923057837−0.1845680275203434γ2 +0.034316728210577824γ3,

γ1 =−0.0003634461850278035−0.240112263213288γ2 +0.013223206646738105γ3,

depending on the parameters γ2 and γ3.

4.6. Methods with m = 3 and p = 3
In this case, we relax the ρ = 4 basis functions

φ0(s) =
4

∑
i=1

ℓi(s)ri, χ1(s) =
4

∑
i=1

ℓi(s)qi, χ2(s) =
4

∑
i=1

ℓi(s)si, χ3(s) =
4

∑
i=1

ℓi(s)pi,

where ℓi(s), i = 1,2,3,4, are the fundamental Lagrange polynomials associated to the abscissas {c1,c2,c3,1}. We
next derive the remaining basis functions by imposing the system of order conditions up to order p = 3. This leads to
a 19-parameter family of TSAC methods depending on c j, j = 1,2,3 and qi, ri, si, pi, i = 1,2,3,4, which represent
the evaluations of the basis functions (4.38) in {c1,c2,c3,1}, i.e.

χ1(c1) = q1, χ1(c2) = q2, χ1(c3) = q3, χ1(1) = q4,

χ2(c1) = s1, χ2(c2) = s2, χ2(c3) = s3, χ2(1) = s4,

χ3(c1) = p1, χ3(c2) = p2, χ3(c3) = p3, χ3(1) = p4,

φ0(c1) = r1, φ0(c2) = r2, φ0(c3) = r3, φ0(1) = r4.

We carry out a numerical search for algebraically stable methods and for

p1 = 0.2161653206100524, p2 = 0.5305046665091202,
p3 = 0.5006036194861265, p4 =−0.0442411660931498,
q1 = 0.4890828798433550, q2 =−0.0436404150461699,
q3 = 0.4863106562462140, q4 = 0.2325277079503709,
r1 = 0.0578387262996022, r2 =−0.2486414601865061,
r3 = 0.4182238288736025, r4 =−0.1101403829440502,
s1 =−0.6730527554702595, s2 = 0.9200313313645769,
s3 =−1.4427135243568587, s4 =−0.0472056454517496,
c1 = 1.6279435207726001, c2 = 0.7466367275877779,
c3 = 0.2657929207108657,

we obtain a method satisfying
He(D̃N(ξ ))

∣∣∣
ξ=eit

≥ 0, t ∈ [0,2π].

This bound has been obtained by dividing the interval [0,2π] into n = 10000 subintervals. The eigenvalues of
He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π], are plotted in Fig. 7.

In this case, we obtain from (2.11) that the error constant associated to this method is

Cp(1) = 0.0035029427463059287.
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Figure 7: Eigenvalues λ1(t), λ2(t) and λ3(t) of the matrix He(D̃N(ξ )) for ξ = eit , t ∈ [0,2π]

Moreover, by solving the system (2.13), we derive a three-parameter family of local error estimators of the type (2.12),
with

α0 =−0.027309616275544915+0.020227003707928848γ1 +0.0008000174585913733γ2 −0.0008557592376018386γ3,

α1 = 0.027309616275544915−0.020227003707928848γ1 −0.0008000174585913733γ2 +0.0008557592376018386γ3,

β1 =−0.0005816766234610915−3.701386325079529γ1 −1.2335336759648714γ2 −0.43247807915787195γ3,

β2 =−0.011654042794290243+5.5827532200160395γ1 +0.4151081846801168γ2 −0.8549556923760194γ3,

β3 =−0.015073896857793579−2.8611398912285817γ1 −0.18077449125665404γ2 +0.2865780122962896γ3,

depending on the parameters γ1, γ2 and γ3.

5. Conclusions and future work

We have presented the approaches for systematic search for algebraically stable GLMs for ODEs, based on Albert
theorem and the recent criteria formulated by Hill, which are based on Nyquist stability function. These searches were
illustrated on TSAC methods up to uniform order p = 4. Future work will address the construction of algebraically
stable TSAC methods of high order and the derivation of the G-matrices (for instance according to [32]) of the derived
methods.

Future work will also address various implementations issues related to these methods and comparison with clas-
sical methods for ODEs such as Runge-Kutta and linear multistep methods. The realization of this program requires
the derivation of efficient local error estimators for small and large stepsizes, the design of stepsize and order changing
strategies and efficient solution of nonlinear systems of equations by some variants of Newton method at each step of
integration. The techniques to accomplish these goals are different from those employed in this note and these topics
will be the subject of separate paper.
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