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1 Introduction

This paper is devoted to the numerical solution of Hadamard well-posed initial
value problems based on special second order Ordinary Differential Equations
(ODEs) 




y′′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ R
d,

y′(t0) = y′0 ∈ R
d.

(1)

It is well known that problem (1) admits an equivalent representation as a first
order system of ODEs but with doubled dimension, thus the direct numerical
integration of the second order version results to be more efficient.

We focus our attention on the family of General Linear Methods for second
order ODEs (1)

Y
[n]
i = h2

s∑

j=1

aijf(Y
[n]
j ) + h

r′∑

j=1

pijy
′[n−1]
j +

r∑

j=1

uijy
[n−1]
j , i = 1, ..., s,

hy′
[n]
i = h2

s∑

j=1

cijf(Y
[n]
j ) + h

r′∑

j=1

rijy
′[n−1]
j +

r∑

j=1

wijy
[n−1]
j , i = 1, ..., r′, (2)

y
[n]
i = h2

s∑

j=1

bijf(Y
[n]
j ) + h

r′∑

j=1

qijy
′[n−1]
j +

r∑

j=1

vijy
[n−1]
j , i = 1, ..., r,

introduced in [20], here denoted as General Linear Nyström (GLN) methods.
The supervectors

y[n−1] =




y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r



∈ R

rd, y′[n−1] =




y′
[n−1]
1

y′
[n−1]
2

...

y′
[n−1]
r′



∈ R

r′d, Y [n] =




Y
[n]
1

Y
[n]
2

...

Y
[n]
s



∈ R

sd

are respectively denoted as input vector of the external approximations, input
vector of the first derivative approximations and internal stage vector. The
vector y[n−1] is denoted as input vector of the external stages, and contains all
the informations transferred advancing from the point tn−1 to the point tn of
the grid. It is important to observe that such a vector could also contain not
only approximations to the solution of the problem in the grid points inherited
from the previous steps, but also other informations computed in the past that
we want to use in the integration process. The vector y′[n−1] instead contains
previous approximations to the first derivative of the solution computed in

previous step points, while the values Y
[n−1]
j , denoted as internal stage values,

provide an approximation to the solution in the internal points tn−1 + cjh,
j = 1, 2, . . . , s, where c = [c1, c2, . . . , cs] is the vector of the abscissae of the
method.
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Formulation (2) of GLMs for second order ODEs involves nine coefficient
matrices A ∈ R

s×s, P ∈ R
s×r′ , U ∈ R

s×r, C ∈ R
r′×s, R ∈ R

r′×r′ , W ∈
R

r′×r, B ∈ R
r×s, Q ∈ R

r×r′ , V ∈ R
r×r, which are put together in the

following partitioned (s+ r′ + r)× (s+ r′ + r) matrix



A P U
C R W
B Q V


 , (3)

denoted as the Butcher tableau of the GLM. Using these notations, a GLM
for second order ODEs can then be expressed as follows:

Y [n] = h2(A⊗ I)F [n] + h(P⊗ I)y′[n−1] + (U⊗ I)y[n−1],

hy′[n] = h2(C⊗ I)F [n] + h(R⊗ I)y′[n−1] + (W ⊗ I)y[n−1], (4)

y[n] = h2(B⊗ I)F [n] + h(Q⊗ I)y′[n−1] + (V ⊗ I)y[n−1],

where ⊗ denotes the usual Kronecker tensor product, I is the identity matrix in

R
d×d and F [n] = [f(Y

[n]
1 ), f(Y

[n]
2 ), . . . , f(Y

[n]
s )]T. This representation is in line

with the one usually proposed in the literature regarding multistage numerical
methods for second order ODEs: this is typical, for instance, of Runge-Kutta-
Nyström methods (see [25]).

The specific purpose of this paper is the formulation of order conditions
for GLN methods (2), by means of a suitable generalization of the algebraic
theory of order (compare [5,25]) described in the remainder of the paper.
The treatise is organized as follows: Section 2 reviews the needed framework
to develop order conditions for second order ODEs, i.e. Nyström trees and
related operators; these tools are then employed in Section 3 to derive order
conditions for GLN methods (2) which, due to their generalities, also recover
the order conditions of already known numerical methods for (1). Section 4 is
devoted to provide an example of application of the results on order conditions
to derive a new method of order 4.

2 Framework

It is well known from the literature that the algebraic theory of order of mul-
tistage/multivalue numerical methods for ODEs (compare [3–9,25] and ref-
erences therein) is based on the representation of the exact and numerical
solutions in terms of functions on the set of rooted trees

T = { , , , , . . .} .

Rooted trees provide an essential tool to analyze the properties of numerical
methods for evolutionary problems, thanks to a smart intuition of John C.
Butcher, who introduced an algebraic theory of order for Runge-Kutta and
general linear methods (compare [5] and references therein) for first order
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ODEs which is nowadays used in many different context, not only related to
the numerical solution of functional equations. In fact, Connes and Kreimer
[12] observed that the Hopf algebra of rooted trees that, also known as Butcher
group (compare [5,7]), independently arose in their own work on renormaliza-
tion in quantum field theory. This Connes-Kreimer algebra, is equivalent to
the Butcher group, because its dual is the universal enveloping algebra of the
Lie algebra of the Butcher group (compare [1]).

For second order equations, due to the presence of the derivative of the
exact solution, we need a more general set of rooted trees, namely bi-coloured
trees, defined as follows (compare [25])

NT = { , , , , , , , , , , . . .} .

The vertices τ1 = and τ2 = are combined according to following the rules

1. the root of t ∈ NT is always fat;
2. a meagre vertex has at most one son which has to be fat.

Following [10,25], we adapt the theory of N-trees and of N-series introduced
by Hairer and Wanner in [23] to the special problem

y′′(x) = f(y(x)). (5)

By calculating the derivatives of the exact solution of problem (5)

y′′′ =
∂f

∂y
y′, y(iv) =

∂2f

∂y2
y′2+

∂f

∂y
y′′, y(v) =

∂3f

∂y3
y′3+3

∂2f

∂y2
y′f+

∂f

∂y
y′′′, . . .

we observe that the terms including the derivative of f with respect to y′

disappear, producing a smaller set of trees called Special N-trees (SNT) set
[25]

SNT = { , , , , , . . .} .

2.1 Composition and decomposition rules, elementary differentials and
functions on SNT

By combining the formalisms introduced in [10,23], a composition rule of spe-
cial Nyström trees is given according to the following scheme. We consider
t1, . . . , tk ∈ SNT and a new root τ2. Then,

1. if ti 6= τ1, then its root is connected to a new meagre node, linked to the
new root;

2. if ti = τ1, then it is connected to the new root via a new branch.

The resulting SN-tree is denoted as t = [t1, . . . , tk]. Inversely, cutting the
branches leaving from the root of a given t ∈ SNT , let u1, u2, . . ., uk be the
resulting subtrees. For any ui 6= τ1, we cut off the branch leaving from its root
τ1 and denote the remaining part as ti. For the remaining ui, we set ti = τ1.
Then, the tree is decomposed as t = [t1, . . . , tk].
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ρ(t) t F (t) α(t)

1 y′ 1

2 f 1

3 f ′y′ 1

4 f ′′(y′, y′) 1

f ′f 1

5 f ′′′(y′, y′, y′) 1

f ′′(y′, f) 3

f ′f ′y′ 1

Table 1 Special Nyström trees up to order 5 and associated elementary differentials

Given these rules, we can extend the definition of elementary differential
given in [5,25] to the special problem (5). For a given t = [t1, . . . , tk] ∈ SNT ,
we recursively define the elementary differentials as follows

F ( )(y, y′) = y′,

F ( )(y, y′) = y′′ = f,

F (t)(y, y′) = f (k) (F (t1)(y, y
′), . . . , F (tk)(y, y

′)) .
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Moreover, for a given tree t = [tµ1

1 , tµ2

2 , . . . , tµk

k ], we recursively define the
following useful functions ρ and α (compare [10,23])

ρ( ) = 1, ρ( ) = 2, ρ(t) = 2 +

k∑

i=1

µiρ(ti),

α( ) = α( ) = 1, α(t) = (ρ(t)− 2)!
k∏

i=1

1

µi!

(
α(ti)

ρ(ti)

)µi

.

(6)

2.2 N-Series

Following [23], we define a SN-series as

SN(a, y, y′) =
∑

t∈SNT

hρ(t)

ρ(t)!
α(t)a(t)F (t)(y, y′). (7)

We observe that both the exact solution of (5) and its first derivative can be
formally written as SN-series, whose coefficients are calculated in next sections.

The following theorem, useful in the remainder of the paper, provides a
representation form for the composition of a SN-series with the function f in
(5) (compare [23]).

Theorem 1 For a given map a : SNT 7→ R satisfying a(∅) = 1, we have

f(SN(a, y, y′)) =
∑

t∈SNT

hρ(t)−2

(ρ(t)− 2)!
α(t)a′′(t)F (t)(y, y′) (8)

with

a′′(t) =





0, if t = ∅, τ1,

1, if t = τ2,

a(t1) · · · a(tk), if t = [t1, . . . , tk].

(9)

3 Order Conditions for GLNs

We now employ the theory of SN-series above recalled, to derive a general
set of order conditions for the family of GLN methods (2). First of all, let us
assume that the input vector is a SN-series of the form

y
[0]
i =

∑

t∈SNT

hρ(t)

ρ(t)!
α(t)ξi(t)F (t)(y, y′), (10)

and, analogously, that

Y
[0]
i =

∑

t∈SNT

hρ(t)

ρ(t)!
α(t)ηi(t)F (t)(y, y′). (11)



Order conditions for General Linear Nyström methods 7

We need to establish how terms like h2f(Yi) and hy′
[0]
i can be expressed as

SN-series. Theorem 1 allows us to write h2f(Yi) as SN-series (7) of coefficients

ηi(t) = η′′i(t) · ρ(t) · (ρ(t)− 1) , (12)

while, if y′
[0]
i is a formal series of the form

y′
[0]
i =

∑

t∈SNT

hρ(t)−1

(ρ(t)− 1)!
α(t)ξ′i(t)F (t)(y, y′), (13)

hy′
[0]
i is a SN-series (7) of coefficients

δi(t) = ξ′i(t) · ρ(t)

With abuse of notation, we have denoted the coefficients of the SN-series (13)
by ξ′i(t), even if they are not actually the first derivatives of ξi(t) in (10).

We can now suitably extend the strategy proposed in [5], in order to develop
an algebraic theory of order for GLNs. To this purpose, we insert the derived
SN-series in the method formulation (4), obtaining

SN(ηi, y, y
′) =

s∑

j=1

aijSN(ηj , y, y
′)+

r′∑

j=1

pijSN(δj , y, y
′)+

r∑

j=1

uijSN(ξj , y, y
′),

i = 1, 2, . . . s, which leads to

SN(ηi, y, y
′) = SN




s∑

j=1

aijηj +

r′∑

j=1

pijδj +

r∑

j=1

uijξj , y, y
′


 , i = 1, . . . s.

Thus,

ηi(t) =

s∑

j=1

aijηj(t) +

r′∑

j=1

pijδj(t) +

r∑

j=1

uijξj(t), i = 1, . . . s. (14)

In analogous way, we obtain the following equations for the external approxi-
mations

ξ̂i(t) =

s∑

j=1

bijηj(t) +

r′∑

j=1

qijδj(t) +

r∑

j=1

vijξj(t), i = 1, . . . r, (15)

δ̂i(t) =

s∑

j=1

cijηj(t) +

r′∑

j=1

rijδj(t) +

r∑

j=1

wijξj(t), i = 1, . . . r′. (16)

Collecting the left-hand sides of (14), (15) and (16) in the vectors η ∈ R
s,

ξ ∈ R
r and δ ∈ R

r′ , respectively, leads to the following matrix representation




η = Aη +Pδ +Uξ,

ξ̂ = Bη +Qδ +Vξ,

δ̂ = Cη +Rδ +Wξ.

(17)

As a consequence, the following result holds.
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Proposition 1 If the operators ξ̂ and δ̂ in (17) of a given GLN (2) are such

that ξ̂i(t) and δ̂i(t) coincide with the correspoding coefficients Eξi(t) and Eδi(t)

in the Taylor series expansions of the exact values approximated by y
[n]
i and

y′
[n]
i for any t ∈ SNT of order ρ(t) ≤ p and ρ(t) ≤ p+1 respectively, then the

method has order p, i.e.

{
Eξ = Bη +Qδ +Vξ, ρ(t) ≤ p,

Eδ = Cη +Rδ +Wξ, ρ(t) ≤ p+ 1.
(18)

Moreover, the method has stage order q if the operators ηi(t), i = 1, . . . , s,
in (17) coincide with the coefficients Eηi of the Taylor series expansion of

y(x0 + cih), for any t ∈ SNT of order ρ(t) ≤ q + 1, i.e.

Eη = Aη +Pδ +Uξ. (19)

By applying the result derived in Proposition 1, we derive the expressions
of the operators (18) and (19) in correspondence of the trees up to order 4 for
a GLN method (2). We observe that the algebraic conditions (18) and (19)
in Proposition 1 have to be solved recursively by means of the decomposition
rule given in Section 2.1, according to Theorem 1. We first consider (18) and
(19) corresponding to the trees ∅, τ1 and τ2, which provide the base case of
the recursion, obtaining

∅

ηi(∅) =
r∑

j=1

uijξj(∅), i = 1, . . . , s,

Eδi(∅) =
r∑

j=1

wijξj(∅), i = 1, . . . , r′,

Eξi(∅) =
r∑

j=1

vijξj(∅), i = 1, . . . , r,

(20)

ηi( ) =
r′∑

j=1

pijξ
′

j( ) +
r∑

j=1

uijξj( ), i = 1, . . . , s,

Eδi( ) =

r′∑

j=1

rijξ
′

j( ) +

r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) =
r′∑

j=1

qijξ
′

j( ) +
r∑

j=1

vijξj( ), i = 1, . . . , r,

(21)
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ηi( ) = 2

s∑

j=1

aijηj(∅) + 2

r′∑

j=1

pijξ
′

j( ) +

r∑

j=1

uijξj( ), i = 1, . . . , s,

Eδi( ) = 2
s∑

j=1

cijηj(∅) + 2
r′∑

j=1

rijξ
′

j( ) +
r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 2

s∑

j=1

bijηj(∅) + 2

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r.

(22)

Once the base case is provided, the operators evaluated in the trees of order
2, 3 and 4 are recursively derived according to Theorem 1, leading to

Eδi( ) = 6
s∑

j=1

cijηj( ) + 3
r′∑

j=1

rijξ
′

j( ) +
r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 6

s∑

j=1

bijηj( ) + 3

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r,

(23)

Eδi( ) = 12
s∑

j=1

cijηj( )2 + 4
r′∑

j=1

rijξ
′

j( ) +
r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 12

s∑

j=1

bijηj( )2 + 4

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r,

(24)

Eδi( ) = 12
s∑

j=1

cijηj( ) + 4
r′∑

j=1

rijξ
′

j( ) +
r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 12

s∑

j=1

bijηj( ) + 4

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r,

(25)

Eδi( ) = 20
s∑

j=1

cijηj( )3 + 5
r′∑

j=1

rijξ
′

j( ) +
r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 20

s∑

j=1

bijηj( )3 + 5

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r,

(26)
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Eδi( ) = 20

s∑

j=1

cijηj( )ηj( ) + 5

r′∑

j=1

rijξ
′

j( ) +

r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 20

s∑

j=1

bijηj( )ηj( ) + 5

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r,

(27)

Eδi( ) = 20

s∑

j=1

cijηj( ) + 5

r′∑

j=1

rijξ
′

j( ) +

r∑

j=1

wijξj( ), i = 1, . . . , r′,

Eξi( ) = 20

s∑

j=1

bijηj( ) + 5

r′∑

j=1

qijξ
′

j( ) +

r∑

j=1

vijξj( ), i = 1, . . . , r,

(28)

where ηi( ) = 6

s∑

j=1

aijηj( ) + 3

r′∑

j=1

pijξ
′

j( ) +

r∑

j=1

uijξj( ), i = 1, . . . , s.

3.1 Recovering the order conditions of classical methods

The family of GLN methods (2) properly contains many known classes of
numerical methods for (1). Analogously, the order conditions above derived
are general, hence it is possible to recover through them the order conditions of
numerical methods already considered in the literature. To make this possible,
we need to regard these methods as GLN methods and specialize the operators
Eδ and Eξ on the case by case basis. This is clarified in the following examples.

RKN methods

Runge-Kutta-Nyström methods (see [25,27])

Yi = yn−1 + cihy
′

n−1 + h2
s∑

j=1

aijf (Yj) , i = 1, ..., s,

hy
′

n = hy
′

n−1 + h2
s∑

j=1

b
′

jf (Yj) , (29)

yn = yn−1 + hy
′

n−1 + h2
s∑

j=1

bjf (Yj) ,

can be recasted as GLN methods (2) with r = r′ = 1, in correspondence to
the tableau (3) 


A P U

C R W

B Q V


 =




A c e

b′
T

1 0

bT 1 1


 ,
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where e is the unit vector in R
s, and the input vectors y[n−1] = [yn−1],

y′[n−1] = [y′n−1]. Correspondingly, the set of order and stage order conditions
(18)-(19) assumes the form





Eη = Aη + cδ + eξ,

Eδ = b′
T

η + δ,

Eξ = bTη + δ + ξ.

(30)

The values of Eη, Eδ and Eξ are reported in Table 2. We observe that these
conditions match the classical ones (compare [23,25]).

tree Eξ(t) Eδ(t) Eηi(t)

∅ 1 0 1
1 1 ci
1 2 c2i
1 3 c3i

.

..
.
..

.

..
.
..

t 1 ρ(t) c
ρ(t)
i

Table 2 Values of Eηi, Eδ and Eξ for RKN methods regarded as GLN methods

Coleman hybrid methods

We now consider the following class of methods

Yi = (1 + ci)yn−1 − ciyn−2 + h2
s∑

j=1

aijf (Yj) , i = 1, ..., s, (31)

yn = 2yn−1 − yn−2 + h2
s∑

j=1

bjf (Yj) ,

introduced by Coleman in [10] (also compare [21,18,19,14]), which are denoted
as two-step hybrid methods. Such methods (31) can be regarded as GLN
methods corresponding to the reduced tableau

[
A U

B V

]
=




A e+ c −c
bT 2 −1
0 1 0




obtained by assuming the remaining coefficient matrices in (3) equal to the
zero matrix. Such methods are characterized by the the input vector y[n−1] =
[yn−1 yn−2]

T. The corresponding set of order and stage order conditions (18)-
(19) takes the form





Eη = Aη + e+ cξ1 − cξ2,

Eξ1 = bTη + 2ξ1 − ξ2,

Eξ2 = ξ1.

(32)



12 Raffaele D’Ambrosio et al.

The coefficients for ξ1, ξ2 can be found in Table 3. We observe that the third
equation in (32) is trivial by the definition of ξ1.

tree Eξ1(t) ξ1(t) ξ2(t)

∅ 1 1 1
1 0 -1
1 0 1
1 0 -1

..

.
..
.

..

.
..
.

t 1 0 (−1)ρ(t)

Table 3 Values of Eξ1, ξ1 and ξ2 for Coleman hybrid methods regarded as GLNs

Two-step Runge-Kutta-Nyström methods

Two-step Runge-Kutta-Nyström methods (TSRKN)

Y
[n−1]
i = yn−2 + hciy

′

n−2 + h2
s∑

j=1

aijf(Y
[n−1]
j ), i = 1, . . . , s,

Y
[n]
i = yn−1 + hciy

′

n−1 + h2
s∑

j=1

aijf(Y
[n]
j ), i = 1, . . . , s,

hy′n = (1− θ)hy′n−1 + θhy′n−2 + h2v′jf(Y
[n−1]
j ) + h2w′

jf(Y
[n]
j ), (33)

yn = (1− θ)yn−1 + θyn−2 + h

s∑

j=1

v′jy
′

n−2 + h

s∑

j=1

w′

jy
′

n−1

+ h2
s∑

j=1

vjf(Y
[n−1]
j ) + h2

s∑

j=1

wjf(Y
[n]
j ),

have been introduced and analyzed by Paternoster in [28–31]. Such methods
depend on two consecutive approximations to the solution and its first deriva-
tive in the grid points, but also on two consecutive approximations to the stage
values, in line with the idea employed by Jackiewicz et al. (compare [2,11,13,
22,17,15,16,24,26]) in the context of two-step Runge–Kutta methods for first
order ODEs. TSRKN methods can be represented as GLNs (2) with r = s+2
and r′ = 2 through the tableau (3)



A P U

C R W

B Q V


 =




A c 0 e 0 0

w′T 1− θ θ 0 0 v′
T

0 1 0 0 0 0

wT w′Te v′
T

e 1− θ θ vT

0 0 0 1 0 0
I 0 0 0 0 0




,
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in correspondence of the input vectors y[n−1] = [yn−1 yn−2 h2f(Y [n−1])]T,
y′[n−1] = [y′n−1 y′n−2]

T. The set of order conditions for these methods has
the form




Eηi =

s∑

j=1

aijηj + ciδ1 + ξ1, i = 1, . . . , s,

Eδ1 =
s∑

j=1

w′

jηj + (1− θ)δ1 + θδ2 +
s∑

j=1

v′jξ3j ,

Eδ2 = δ1,

Eξ1 =

s∑

j=1

wjηj +

s∑

j=1

w′

jδ1 +

s∑

j=1

v′jδ2 + (1− θ)ξ1 + θξ2 +

s∑

j=1

vjξ3j ,

Eξ2 = ξ1,

Eξ3i = ηi i = 1, . . . , s,

(34)

whose coefficients Eξ1, Eδ1, ξ1, ξ2, δ1 and δ2 can be found in Table 4. We also
observe that in the system (34) there are automatically satisfied conditions,
i.e. the third, the fifth and the sixth.

tree Eξ1(t) Eδ1(t) ξ1(t) ξ2(t) δ1(t) δ2(t)

∅ 1 0 1 1 0 0
1 1 0 -1 1 1
1 2 0 1 0 -1
1 3 0 -1 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

t 1 ρ(t) 0 (−1)ρ(t) 0 (−1)ρ(t)−1

Table 4 Values of Eξ1, Eδ1, ξ1, ξ2, δ1 and δ2 for TSRKN methods regarded as GLNs

4 Construction of a family of methods of order 4

We now employ the order results provided in Section 3, to derive a new method
of order 4. We focus our attention on GLN methods (2) whose vectors of
external approximations satisfy

y[n] ≈




y(xn)
h2y′′(xn)
h3y′′′(xn)
h4y(4)(xn)


 , hy′[n] ≈ hy′(xn). (35)

For GLN methods (2) depending on input vectors of the form (35), exact
starting values can be obtained by differentiation from the initial condition:
in fact

ξ′(t) = δρ(t),1, ξi(t) = ρ(t)δρ(t),i,
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i = 1, . . . , 4, being t ∈ SNT and δi,j the usual Kronecker delta. In the re-
mainder of the section, we denote by ei the vectors of the canonical basis of
R

4. The second and third equations in (20) and (21) lead to the so-called
preconsistency conditions [20], which assume the form

Ue1 = e, Ve1 = e1, We1 = 0, Pe = c, Qe = e1, Re = e.

Similarly, the second and third equalities in (22) provide the consistency con-
ditions [20]

e1 + 2e2 = 2Be+ 2Ve2,
1 = Ce+We2.

(36)

Conditions of order 2 are

e1 + 6e2 + 6e3 = 6Bc+ 6Ve3,
1 = 2Cc+ 2We3,

(37)

and leads to (23). Order 3 is achieved by imposing

e1 + 12e2 + 24e3 + 24e4 = 12Bc2 + 24Ve4,
4 = 12Cc2 + 24We4.

(38)

and
e1 + 12e2 + 24e3 + 24e4 = 12Bη( ) + 24Ve4,

4 = 12Cη( ) + 24We4,
(39)

where η( ) = 2Ae+ 2Ue2. We finally report the conditions for order 4,

e1 + 20e2 + 60e3 + 120e4 = 20Bc3,
5 = 20Cc3,

(40)

e1 + 20e2 + 60e3 + 120e4 = 20Bcη( ),
5 = 20Ccη( ),

(41)

and
e1 + 20e2 + 60e3 + 120e4 = 20Bη( ),

5 = 20Cη( ),
(42)

where η( ) = 6Ac + 6Ue3. Solving the above order conditions lead to the
following four-parameter family of one stage order 4 GLN methods (2)



A P U

C R W

B Q V


 =




1
2

(
c2 − 2u2

)
c 1 u2 u3 u4

1
4c3 1 0 4c3−1

4c3
2c2−1
4c2

4c−3
24c

1
20c3 1 1 10c3−1

20c3
10c2−3
60c2

5c−3
120c

1
c3

0 0 c3−1
c3

c2−1
c2

c−1
2c

3
c3

0 0 − 3
c3

c2−3
c2

2c−3
2c

6
c3

0 0 − 6
c3

− 6
c2

c−3
c




,
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in correspondence of the input vectors (35). According to [20], we estimate
that these methods are obviously zero-stable and, therefore, convergent since
they are also consistent (see [20]) if c > 41/30. An example, for c = 3/2 and
u2 = 1/2, u3 = u4 = 1, is given by



A P U

C R W

B Q V


 =




5
8

3
2 1 1

2 1 1

2
27 1 0 25

27
7
18

1
12

2
135 1 1 131

270
13
90

1
40

8
27 0 0 19

27
5
9

1
6

8
9 0 0 − 8

9 − 1
3 0

16
9 0 0 − 16

9 − 8
3 −1




.

This is GLN method (2) depending one stage and of order 4, which is higher
than that attainable by one stage RKN methods [23,25], equal to 2.

5 Conclusions

We have focused our attention on the algebraic theory of order for the family of
GLN methods (2) for second order ODEs (1). By suitably adapting the theory
of SN-series to the case of GLN methods, we have derived general order con-
ditions, which also properly contain those of other numerical methods already
known in the literature, as explained in Section 3, and constructed a family of
one-stage methods of order 4. The general approach provided here can be used
to finally derive new irreducible GLN methods, which are not Runge-Kutta
nor linear multistep methods, more efficient than existing classical methods.
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