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Abstract. This paper is concerned with the numerical solution of Hamilton-

ian problems, by means of nearly conservative multivalue numerical methods.
In particular, the method we propose is symmetric, G-symplectic, diagonally
implicit and generates bounded parasitic components over suitable time inter-
vals. Numerical experiments on a selection of separable Hamiltonian problems

are reported, also based on real data provided by Nasa Horizons System.

1. Introduction. The purpose of this paper is the analysis of the behaviour of
nearly conservative multivalue numerical methods applied to a selection of Hamil-
tonian problems

ṗ(t) = − ∂

∂q
H(p(t), q(t)),

q̇(t) =
∂

∂p
H(p(t), q(t)),

(1)

of interest in Celestial Mechanics. The function H : R2d → R is the Hamiltonian of
the system, while p(t), q(t) ∈ R

d respectively denote generalized momenta and coor-
dinates associated to the mechanical system. The classical theory of numerical inte-
grators for such problems is focused on the employ of symplectic Runge-Kutta (RK)
methods [2, 15, 19, 21], which are meant to preserve, along the numerical solution,
quadratic invariants possessed by the continuous problem (1). Modern numerical
solvers for Hamiltonian problems are based on methods meant to guarantee a near
conservation of invariants over suitably long time intervals [2, 3, 4, 6, 7, 8, 9, 14, 15].
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Following this recent path, the spirit of this paper is that of deriving diagonally im-
plicit methods belonging to the family of General Linear Methods (GLMs, compare
[1, 2, 10, 17] and references therein)
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designed for the solution of the first order initial value problems
{

y′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0,
(3)

where f : Rd → X, being (X,< ·, · >) an inner product space. The formulation (2)
is provided in correspondence of the uniform grid {t0 + ih, i = 0, 1, . . . , N}, with
h = (T − t0)/N . The vector y[n] = [y

[n]
1 , . . . , y

[n]
r ]T denotes the vector of external

approximations containing all the informations we decide to transfer from step n to

step n+1, Y
[n]
i provides an approximation to the solution of (3) in the internal point

tn + cih ∈ [tn, tn+1], i = 1, 2, . . . , s, and Fj = f(Y
[n]
j ). The methods we consider

here are aimed to satisfy some specific properties needed to accurately approach
Hamiltonian problems:

• G-symplecticity [2, 3, 4, 6, 7, 8, 9, 15], which ensures the conjugate-symplecticity
of the underlying one-step method associated to the multivalue method (2).
This means that a G-symplectic method has the same behavior of a symplec-
tic one-step method after a global change of coordinates that is O(hp) close
to the identity [12];

• symmetry of the numerical scheme [15], which is a suitable property provid-
ing the discrete counterpart of the reversibility of the exact flow, in case of
reversible dynamical systems;

• boundedness of parasitic components over suitably long times [11, 15], which
ensures that the parasitic components generated by the numerical method
remain bounded over certain time intervals.

The above mentioned features are described in details in Section 2, where a method
having such desired properties is also constructed. A selection of numerical exper-
iments is reported in Section 3: some of them are based on real initial data taken
from NASA Horizons System (http://ssd.jpl.nasa.gov/?horizons).

2. Symmetry and G-symplecticity of General Linear Methods. Poincare’s
theorem (see [15]) guarantees the symplecticity of the flow generated by Hamiltonian
systems. The discrete counterpart, only in the case of quadratic Hamiltonians, is the
property of symplecticity, which is prerogative of one-step methods: this property
assures that quadratic invariants of the mechanical systems are also preserved along
the numerical solution. Runge-Kutta methods















Yi = yn + h
s
∑

j=1

aijf(Yj), i = 1, 2, . . . , s,

yn+1 = yn + h
s
∑

i=1

bif(Yi),

are symplectic, by definition, if the matrix A = (aij)
s
i,j=1 and the vector b = (bi)

s
i=1

satisfy the algebraic constraint [2, 15, 19, 21]



A SYMMETRIC NEARLY PRESERVING GLM FOR HAMILTONIAN PROBLEMS 3

M = diag(b)A+ATdiag(b)− bbT = 0, (4)

where diag(x) denotes the diagonal matrix having the vector x on the diagonal.
One-step methods are the only candidates for symplecticity (compare [15, 23] for

linear multistep methods and [5, 14, 18] for irreducible multivalue methods). This is
due to the fact the multistep and multivalue methods generate parasitic components
in the numerical solution which destroy the overall long-time accuracy (see [11, 15]).
Hence, if one aims to derive non-symplectic methods which are capable of nearly
preserving invariants over the numerical solution, the parasitic behaviour of such
methods has to be taken under control over long time intervals [11].

As announced in the introduction of the paper, let us recall the desired property
we impose to derive a multivalue method able to accurately preserve the symplectic
structure of the flow also along the numerical solution.

• G-symplecticity. As mentioned, the multivalue nature of GLMs does not allow
them to be symplectic, unless they reduce to RK methods. However, a near-
conservation property achievable by multivalue methods has been provided
and analyzed by the recent literature, defined as follows. If yTEy is a quadratic
first integral of the differential problem y′ = f(y), where E is a symmetric
matrix, G-symplecticity assures that

y[n+1]T(G⊗ E)y[n+1] = y[n]
T

(G⊗ E)y[n], (5)

(compare [12]), being G ∈ R
r×r a symmetric matrix. This conservation prop-

erty is equivalent to the following algebraic conditions on the coefficients [2, 15]

G = V TGV, DU = BTGV, DA+ATD = BTGB. (6)

Hence, a G-symplectic multivalue method does not preserve quadratic first
integrals, but a related quadratic form (5). The relation can be clarified by
power series arguments: indeed, the first terms of the expansion in powers of h

of the quadratic form y[n]
T

(G⊗E)y[n] is yTEy (compare [12]). Thus, the more
h is small, the more the two forms are close each other. For larger stepsizes, it
is important to control the parasitic components as long as possible in order
to achieve an accurate near conservation of the quadratic first integrals of the
problem.

• Symmetry. The numerical counterpart of reversibility of mechanical systems
is the property of symmetry of a numerical method, which assures the coinci-
dence between a numerical method and its adjoint. In the case of GLMs, the
notion of symmetry can be given as follows [15].

Definition 2.1. Let L ∈ R
r×r be an involution matrix and P ∈ R

s×s a
permutation matrix. A GLM (2) is symmetric if

P−1AP = UV −1B −A, UL = PUV −1, BP = LB, V L = LV −1. (7)

Symmetric methods provide a reversible numerical flow, which is a desired
property when we integrate reversible mechanical systems, but also provide
an important constructive advantage in the derivation of methods. This is
due to the fact that symmetric methods have even order of convergence [15],
hence we only need to impose order conditions related to trees of odd order.

• Control of parasitism. Due to their multivalue nature, GLMs introduce pa-
rasitic components in the numerical solution, which have to be controlled in
order to achieve a long-term near conservation of the invariants. Rigorous



4 R. D’AMBROSIO, G. DE MARTINO AND B. PATERNOSTER

bounds on parasitic solution components have recently been obtained in [11],
where the authors have proved that, for carefully constructed methods, the
error in the parasitic components typically grows like hp+4exp(h2Lt), where
p is the order of the method, and L depends on the problem and on the
coefficients of the method.

A basic property of boundedness for the parasitic components of multivalue
methods is achieved by annihilating the so-called growth parameters [11, 15]

µj = ξ−1
j v∗jBUvj , (8)

where ξj are the eigenvalues of the matrix V such that ξj 6= 1, vj and v∗j
are the right and left eigenvectors, respectively (V vj = ξjvj and v∗jV = ξjv

∗
j )

satisfying v∗j vj = 1. Examples of methods with zero-growth parameters, in
the context of multivalue methods, have been provided in [3, 8, 9].

2.1. A method with minimal error constant. We now aim to derive an exam-
ple of G-symplectic and symmetric GLM (2) of order 4, with zero growth parameters
(8). Some coefficients of the method will be chosen in order to minimize the error
constant, which can be easily provided by means of B-series arguments [2, 16]. We
recall that, in correspondence to the set of rooted trees

T = { , , , , . . .} ,

a B-series B(a, y) for (3) is defined as a formal series

B(a, y(x1)) = a(∅)y(x0) +
∑

ρ(t)≥1

hρ(t)

σ(t)
a(t)F (t)(y(x0)), (9)

where the functions ρ, σ, F and a are defined as in [16]:

• ρ(t) is the order of t ∈ T , i.e. the number of vertices of t;
• σ(t) is the symmetry of t ∈ T , i.e. the cardinality of the symmetry group of t;
• F (t) is the elementary differential of f corresponding to t ∈ T ;
• a(t) is the coefficient of the series corresponding to the tree t ∈ T .

The approximation of the solution given by a GLM is a B-series [2] which can be
expressed, after one step, in the form

{

η(t) = AηD(t) + Uξ(t),

ξ̂(t) = BηD(t) + V ξ(t),
(10)

and the method (2) has order p if ξ̂(t) = Eξ(t) for any t ∈ T , with ρ(t) ≤ p (compare
[2], also for the definition of Eξ(t) which is here omitted for brevity). For a method
of order p, it is easy to extract the leading term of the error

∑

ρ(t)=p+1

hρ(t)

σ(t)
ξ̂(t)F (t)(y(x0)) = hp+1

∑

ρ(t)=p+1

1

σ(t)
(BηD(t) + V ξ(t))F (t)(y(x0)),

(11)
which we will next aim to minimize.

First of all, we aim to derive a GLM (2) depending on three internal stages
(i.e. s = 3) and two input values (i.e. r = 2). By imposing zero-stability [2, 17],
consistency [2, 17], G-symplecticity (6), symmetry (7) and zero growth parameters
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(8), we obtain the GLM

[

A U

B V

]

=





















1
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α 1
2β 0 1 u32

α β 1
2α 1 u32

b13 b12 b13 1 2u32

b23 −2b23 b23 0 −1





















(12)

where α = b13 + b23u32 and β = b12 − 2b23u32. In order to achieve order 4, due to
symmetry (compare [15]), we only need to impose conditions of order 3, obtaining

[

A U

B V

]
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where γ = 2 +
3
√
4

2 + 3
√
2, δ =

(

1 + 3
√
2
)2
, ϕ = 15

4 + 2 3
√
2 + 3

√
4. Finally, we consider

the quantities ξ̂(t) appearing in (11) for t ∈ T, ρ(t) = 5 and we minimize the sum of
their absolute values by employing the Mathematica intrinsic routine Minimize. We
perform a constrained minimization process depending on the following constraints

0 < u32 <
1

4
0 < b23 ≤ 1,

and achieve u32 = 1
8 and b23 = 1

2 . These values lead to the following coefficient
matrices
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√
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√
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√
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,
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√
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√
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,

U =









1 1
8

1 1
8

1 1
8









, V =

[

1 1
4

0 −1

]

.

We also observe that, for such method, ξ̂(t) is zero for all trees of order 5 except
[[[[τ ]]]] (compare [2]), whose value is approximately equal to 0.17.

3. Numerical experiments. We now present the numerical evidence originated
by comparing the GLM derived in Section 2.1 with the partitioned RK method
of order 4 and depending on 12 internal stages derived in [22], which gives rise
to an overall explicit scheme in case of separable Hamiltonians. The tests have
been performed on a node with CPU Intel Xeon 6 core X5690 3,46GHz, of the E4
multi-GPU cluster of Department of Mathematics (University of Salerno).
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First of all, let us consider the following second order system describing the
evolution of N particles under the effects of the reciprocal gravitational attraction

miq̈i =
N
∑

i=1,i6=j

Gmimj(qj − qi)

‖(qj − qi)‖3
,

where mi and qi are respectively the mass and the position vector of the i-th body
and G is the gravitational constant. Such system, provided a set of starting values,
is known as the N -body problem and it has applications in many fields [15, 20].
The N -body problem can be rewritten as a first-order system and it results to be
Hamiltonian with Hamiltonian function

H(p, q) =
1

2

n
∑

i=1

1

mi
pT

i pi −G

n
∑

i=1

i−1
∑

j=1

mimj

‖qi − qj‖
. (14)

We consider the N -body problem applied to the motion of two subsets of planets
of the solar system. Our computations are based on the employ of real initial data,
taken from NASA Horizons System

http://ssd.jpl.nasa.gov/?horizons

The results, reported in Figs. 1, 2, 3 and 4 show the orbits generated by both the
GLM and the partioned RK methods: we can observe that also our GLM preserves
the symplecticity of the phase space.

Mercury’s orbit
Venus’ orbit
Earth’s orbit
Sun

Figure 1. Mercury, Venus and Earth orbits generated by the
GLM constructed in Section 2.1, with h = 100

Mercury’s orbit
Venus’ orbit
Earth’s orbit
Sun

Figure 2. Mercury, Venus and Earth orbits generated by the sym-
plectic partitioned RK method [22], with h = 100
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Jupiter’s orbit
Saturn’s orbit
Uranus’ orbit
Sun

Figure 3. Jupiter, Saturn and Uranus orbits generated by GLM
constructed in Section 2.1, with h = 100

Jupiter’s orbit
Saturn’s orbit
Uranus’ orbit
Sun

Figure 4. Jupiter, Saturn and Uranus orbits generated by the
symplectic partitioned RK method [22], with h = 100

We next consider the following classical Hamiltonian problems of interest in Ce-
lestial Mechanics:

• the Kepler problem [15]


























ṗ1(t) = − q1(t)

(q21(t) + q22(t))
3

2

, ṗ2(t) = − q2(t)

(q21(t) + q22(t))
3

2

,

q̇i(t) = pi(t), i = 1, 2,

p1(0) = 0, p2(0) =
√

1+e
1−e , q1(0) = 1− e, q2(0) = 0,

(15)

where the value of the eccentricity e ∈ [0, 1[ is fixed to 1
2 . The Hamiltonian of

this problem is

H(p(t), q(t)) =
1

2
(p21 + p22)−

1
√

q21 + q22
;

• the Hènon-Heiles Problem [15]


























ṗ1(t) = −q1(t)(1 + 2q2(t)), t ∈ [0, 50]

ṗ2(t) = −(q2(t) + q21(t)− q22(t)),

q̇i(t) = pi(t), i = 1, 2,

p1(0) =
√
0.3185, p2(0) = q1(0) = q2(0) = 0,

(16)

with Hamiltonian

H(p(t), q(t)) =
1

2
(p21 + p22 + q21 + q22) + q21q2 −

1

3
q32 .

The observed Hamiltonian deviations are reported in Figs. 5, 6, 8 and 9, while the
observed deviations in the angular momentum for the Kepler problem are presented
in Figs. 7 and 10. We observe that our GLM, with a lower computational cost, is
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able to reproduce analogous conservation properties of a symplectic integrator, as
it can be advised from Table 1.

0 200000 400000 600000 800000 1000000
10

−17

10
−16

10
−15

10
−14

10
−13

N

eH

Figure 5. Hamiltonian deviation for the partitioned RK method
of order 4 in [22] to (16) over one million step points
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Figure 6. Hamiltonian deviation for the partitioned RK method
of order 4 in [22] to (15) over one million step points
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Figure 7. Angular momentum deviation for the partitioned RK
method of order 4 in [22] to (15) over one million step points
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