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Abstract

In this paper the authors consider the family of General Linear Methods
(GLMs) for special second order Ordinary Differential Equations (ODEs) of
the type y′′ = f(y(t)), recently introduced with the aim to provide an uni-
fying formulation for numerical methods solving such problems and achieve
a general strategy for the analysis of the minimal demandings in terms of
accuracy and stability to be asked for, such as consistency, zero-stability and
convergence. They emphasize the generality of this approach, by showing
that the family of GLMs for second order ODEs recovers classical numerical
formulae known in the literature and allows to easily obtain new methods by
proving their convergence in a simple, straightforward way.

Keywords: Second order Ordinary Differential Equations, General Linear
Methods, Nyström methods, MEBDF methods

1. Introduction

We focus our attention on the numerical solution of special second order
Ordinary Differential Equations (ODEs)















y′′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ R
d,

y′(t0) = y′0 ∈ R
d,

(1.1)

where the function f : Rd → R
d is smooth enough for the Hadamard well-

posedness of the differential problem. Problem (1.1) could certainly be trans-
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formed into an equivalent system of first order ODEs, but the consequent
augmentation of the dimensionality deters such an approach, in favour of the
direct integration of the second order system.

In the recent paper [9], a general framework for the numerical solution
of special second order ODE-based problems (1.1) has been introduced. The
principal initial aim was that of assessing an unifying formulation for numer-
ical methods solving such problems and provide a general strategy for the
analysis of the minimal demandings of accuracy and stability to be asked for,
such as consistency, zero-stability and convergence. Following contributions
on the topic have been devoted to introducing a general theory to study the
order of convergence of such methods [8] and the linear stability properties
[10], leading to new examples of P-stable methods improving classical ones.

The main aim of this paper is to effectively use the derived theory, showing
that it is a useful tool not only for the analysis of the properties of methods,
but also for deriving new methods. First we emphasize the generality of
this approach, by showing that the family of GLMs for second order ODEs
properly contains many classical numerical formulae known in the literature,
and the analysis of their properties can be correctly done through the usage
of the developed theory. Moreover we show that it is possible to easily obtain
new methods and prove their convergence in a simple way.

The treatise is organized as follows: for the sake of completeness, Section
2 recalls the formulation of GLMs for (1.1) and the notions of consistency,
zero-stability and convergence defined in the general setting of GLMs; the
representation of classical methods regarded as GLMs is reported in Section
3, and we prove for the first time their convergence properties by employing
the GLM machinary. Section 5 is devoted to the introduction and conver-
gence analysis of a new family of methods for the numerical solution of (1.1),
which provides the extension of the modified extended BDF formulae intro-
duced by Cash [3, 4, 14] for first order ODEs. Some conclusions are given in
Section 5.

2. Basic tools

2.1. Representation of General Linear Methods

In this section, we recall the formulation of GLMs for second order ODEs
(1.1) introduced in [9]. To this purpose, we define the following supervectors

y[n−1] =













y
[n−1]
1

y
[n−1]
2

...

y
[n−1]
r













∈ R
rd, y′[n−1] =













y′
[n−1]
1

y′
[n−1]
2

...

y′
[n−1]
r′













∈ R
r′d, Y [n] =













Y
[n]
1

Y
[n]
2

...

Y
[n]
s













∈ R
sd.
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The vector y[n−1] is denoted as input vector of the external stages, and
contains all the informations we aim to transfer advancing from point tn−1

to tn of the grid. The vector y′[n−1] involves previous approximations to the
first derivative of the solution computed in previous step points, while the
values Y

[n−1]
j , denoted as internal stage values, provide an approximation to

the solution in the internal points tn−1 + cjh, j = 1, 2, . . . , s.
Our formulation of GLMs for second order ODEs then involves nine co-

efficient matrices A ∈ R
s×s, P ∈ R

s×r′ , U ∈ R
s×r, C ∈ R

r′×s, R ∈ R
r′×r′ ,

W ∈ R
r′×r, B ∈ R

r×s, Q ∈ R
r×r′ , V ∈ R

r×r, which are put together in the
following partitioned (s+ r′ + r)× (s+ r′ + r) matrix





A P U

C R W

B Q V



 , (2.2)

which is denoted as the Butcher tableau of the GLM. Using these notations,
a GLM for second order ODEs can then be expressed as follows

Y [n] = h2(A⊗ I)F [n] + h(P⊗ I)y′[n−1] + (U⊗ I)y[n−1],

hy′[n] = h2(C⊗ I)F [n] + h(R⊗ I)y′[n−1] + (W ⊗ I)y[n−1], (2.3)

y[n] = h2(B⊗ I)F [n] + h(Q⊗ I)y′[n−1] + (V ⊗ I)y[n−1],

where ⊗ denotes the usual Kronecker tensor product, I is the identity matrix
in R

d×d and F [n] = [f(Y
[n]
1 ), f(Y

[n]
2 ), . . . , f(Y

[n]
s )]T .

It is evident from (2.3) that, when the method does not explicitly depend
on the first derivative approximations, the matrices P,Q,C,R,W do not
provide any contribution in the computation of the numerical solution to the
problem. In this case, we will always use the reduced tableau

[

A U

B V

]

, (2.4)

to figure out the hybrid formulation

Y [n] = h2(A⊗ I)F [n] + (U⊗ I)y[n−1], (2.5)

y[n] = h2(B⊗ I)F [n] + (V ⊗ I)y[n−1].

2.2. Consistency, stability, convergence

We now recall the basic definitions of consistency, zero-stability and con-
vergence introduced in [9] which, define, as well known in the literature (refer,
for instance, to the monographs [2, 13, 17]), the minimal requirements of ac-
curacy and stability for the numerical solution of ODEs.
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Definition 2.1. A GLM (2.3) is preconsistent if there exist vectors q0, q1

and q′

1 such that

Uq0 = e, Wq0 = 0, Vq0 = q0,

Pq1
′ +Uq1 = c, Rq1

′ +Wq1 = q1
′, Qq1

′ +Vq1 = q0 + q1,

where c is the vector of nodes associated to (2.3).

Definition 2.2. A preconsistent GLM (2.3) is consistent if there exist vec-
tors q2 and q2

′ such that

Ce+Rq2
′ +Wq2 = q1

′ + q2
′, Be+Qq2

′ +Vq2 =
q0

2
+ q1 + q2.

Definition 2.3. A GLM (2.3) is zero-stable if there exist two real constants
C and D such that

‖Mm
0 ‖ ≤ mC +D, ∀m = 1, 2, . . . , (2.6)

being M0 the block matrix

M0 =

[

R W

Q V

]

A criterion equivalent to condition (2.6) is given in the following theorem,
contained in [9].

Theorem 2.4.

The following statements are equivalent:

(i) M0 satisfies the bound (2.6);

(ii) the roots of the minimal polynomial of the matrix M0 lie on or within
the unit circle and the multiplicity of the zeros on the unit circle is at
most two;

(iii) there exist a matrix B similar to M0 such that

sup
m

{‖Bm‖
∞
, m ≥ 1} ≤ m+ 1.

As usual in the numerical integration of ODEs, consistency and zero-
stability are necessary and sufficient conditions for the convergence of the
method (for the notion of convergence specialized to GLMs (2.3), again see
[9]). This is proved in the following theorem given in [9].

Theorem 2.5. A GLN method (2.3) is convergent if and only if it is con-
sistent and zero-stable.
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3. Classical methods regarded as GLMs

The family of GLMs for second order ODEs properly contains as special
cases all the numerical methods for second order ODEs already introduced in
the literature. This is made clear in the following examples, where we recast
classical families of methods as GLMs.

3.1. Linear multistep methods

Linear multistep methods for second order ODEs [13, 15], defined by

yn =
k

∑

j=1

αjyn−j + h2

k
∑

j=0

βjf(yn−j), (3.7)

can be regarded as GLMs with r = 2k, s = 1, Y [n] = [yn],

y[n−1] = [yn−1 yn−2 . . . yn−k h2f(yn−1) h2f(yn−2) . . . h2f(yn−k)]
T ,

and in correspondence to the reduced tableau (2.4)

[

A U

B V

]

=































β0 α1 . . . αk−1 αk β1 . . . βk−1 βk

β0 α1 . . . αk−1 αk β1 . . . βk−1 βk

0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 1 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 1 . . . 1 0































,

with c = [1]. A famous example of linear multistep method is the Numerov
method (see, for instance, [13, 16])

yn = 2yn−1 − yn−2 + h2

(

1

12
f(tn, yn) +

5

6
f(tn−1, yn−1) +

1

12
f(tn−2, yn−2)

)

,

(3.8)
which is an order four method corresponding to the GLM with r = 4, s = 1,
Y [n] = [yn],

y[n−1] =
[

yn−1 yn−2 h2f(yn−1) h2f(yn−2)
]T

,
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and reduced tableau (2.4)

[

A U

B V

]

=













1
12

2 −1 5
6

1
12

1
12

2 −1 5
6

1
12

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0













.

3.2. Runge-Kutta-Nyström methods

Runge-Kutta-Nyström methods (see [13])

Yi = yn−1 + cihy
′

n−1 + h2

s
∑

j=1

aijf (Yj) , i = 1, ..., s,

hy
′

n = hy
′

n−1 + h2

s
∑

j=1

b
′

jf (Yj) , (3.9)

yn = yn−1 + hy
′

n−1 + h2

s
∑

j=1

bjf (Yj) ,

provide an extension to second order ODEs (1.1) of Runge–Kutta methods
(see, for instance, [1, 18]) and involve the dependence on the approximation
to the first derivative in the current grid point. Such methods can be recast
as GLMs (2.3) with r = 1, in correspondence to the tableau (2.2)





A P U

C R W

B Q V



 =





A c e

b′T 1 0
bT 1 1



 ,

where e is the unit vector in R
s, and to the input vectors y[n−1] = [yn−1],

y′[n−1] = [y′n−1].

3.3. Coleman hybrid methods

We now consider the following class of methods

Yi = (1 + ci)yn−1 − ciyn−2 + h2

s
∑

j=1

aijf (Yj) , i = 1, ..., s, (3.10)

yn = 2yn−1 − yn−2 + h2

s
∑

j=1

bjf (Yj) ,
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introduced by Coleman in [5], which are denoted as two-step hybrid methods.
Such methods (3.10) can be regarded as GLMs corresponding to the reduced
tableau (2.4)

[

A U

B V

]

=





A e+ c −c

bT 2 −1
0 1 0





and characterized by the input vector y[n−1] = [yn−1 yn−2]
T .

3.4. Two-step Runge-Kutta-Nyström methods

Another interesting class of numerical methods for second order ODEs is
given by the family of two-step Runge-Kutta-Nyström methods [6]

Y
[n−1]
i = yn−2 + hciy

′

n−2 + h2

s
∑

j=1

aijf(Y
[n−1]
j ), i = 1, . . . , s,

Y
[n]
i = yn−1 + hciy

′

n−1 + h2

s
∑

j=1

aijf(Y
[n]
j ), i = 1, . . . , s,

hy′n = (1− θ)hy′n−1 + θhy′n−2 + h2v′jf(Y
[n−1]
j ) + h2w′

jf(Y
[n]
j ), (3.11)

yn = (1− θ)yn−1 + θyn−2 + h
s

∑

j=1

v′jy
′

n−2 + h
s

∑

j=1

w′

jy
′

n−1

+ h2

s
∑

j=1

vjf(Y
[n−1]
j ) + h2

s
∑

j=1

wjf(Y
[n]
j ).

Such methods depend on two consecutive approximations to the solution and
its first derivative in the grid points, but also on two consecutive approxi-
mations to the stage values (i.e. the ones related to the points tn−2 + cih
and the ones corresponding to the points tn−1 + cih, i = 1, 2, . . . , s). Two-
step Runge-Kutta-Nyström methods can be represented as GLMs (2.3) with
r = s+ 2 and r′ = 2 through the tableau (2.2)





A P U

C R W

B Q V



 =

















A c 0 e 0 0

w′T (1− θ) θ 0 0 v′T

0 1 0 0 0 0

wT w′Te v′Te (1− θ) θ vT

0 0 0 1 0 0

I 0 0 0 0 0

















,

7



in correspondence of the input vectors y[n−1] = [yn−1 yn−2 h2f(Y [n−1])]T ,
y′[n−1] = [y′n−1 y′n−2]

T .
The usage of previous stage values has also been used in the context of

Parallel-Iterated Pseudo Two-Step Runge-Kutta-Nyström methods

Vn = yn−1ev + hy′n−1cv + h2Avvf(Vn−1) + h2Avwf(Wn−1),

Wn = yn−1ew + hy′n−1cw + h2Awvf(Vn) + h2Awwf(Wn),

hy′n = hy′n−1 + h2dT
v f(Vn) + h2dT

wf(Wn),

yn = yn−1 + hy′n−1 + h2bT
v f(Vn) + h2bT

wf(Wn),

introduced by Cong [7]. Also these methods can be reformulated as GLMs
with r = 2s+ 1 and r′ = 1, in correspondence to the tableau (2.2)





A P U

C R W

B Q V



 =

















0 0 cv ev Avv Avw

Awv Aww cw ew 0 0

dT
v dT

w 1 0 0 0
bT
v bT

w 1 1 0 0

I 0 0 0 0 0

0 I 0 0 0 0

















,

and the vectors Y [n] = [Vn Wn]
T , y[n−1] = [yn−1 h2f(Vn−1) h2f(Wn−1)]

T

and y′[n−1] = [y′n−1].

3.5. Recovering the convergence of classical methods

Using the GLM formalism, according to the definitions recalled in Section
2, we can easily prove consistency, zero-stability and thus convergence of the
classical numerical methods considered in Sections 3.1, 3.2, 3.3 and 3.4.

• The Numerov method (3.8) is consistent with preconsistency and con-
sistency vectors

q0 = [1 1 0 0]T , q1 = [0 −1 0 0]T , q2 = [0 1/2 1 1]T .

The minimal polynomial associated to the zero-stability matrix of the
Numerov method (3.8) is

p(λ) = λ2(λ− 1)2,

which satisfies the requirement (ii) in Theorem 2.4, i.e. the Numerov
method is zero-stable;
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• in the case of Runge–Kutta–Nyström methods (3.9), preconsistency
and consistency vectors assume the forms

q0 = [1], q1 = q2 = [0], q′

1 = [1], q′

2 = [0],

and the minimal polynomial of the zero-stability matrix is

p(λ) = (λ− 1)2,

which satisfies the requirement (ii) in Theorem 2.4;

• Coleman hybrid methods (3.10) are consistent with preconsistency and
consistency vectors

q0 = [1 1]T , q1 = [0 − 1]T , q2 = [0 1/2]T .

Moreover, the minimal polynomial associated to their zero-stability is

p(λ) = (λ− 1)2,

then they provide a family of zero-stable methods;

• two-step Runge–Kutta–Nyström methods (3.11) are consistent with
preconsistency and consistency vectors

q0 = [1 1 0 . . . 0 0]T ∈ R
s+2,

q1 = [0 − 1 0 . . . 0 0]T ∈ R
s+2,

q2 = [0 1/2 1 . . . 1 1]T ∈ R
s+2,

q1
′ = [1 1]T , q2

′ = [0 − 1]T .

The minimal polynomial of their zero-stability matrix is

p(λ) = λ2(λ2 − (1− θ)λ− θ)

and, therefore, such methods are zero-stable if and only if −1 < θ ≤ 1:
this restriction on θ recovers the classical result on the zero-stability of
two-step Runge–Kutta–Nyström methods (refer to [19]).
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4. Modified extended BDF formulae for second order ODEs

Having a general theory for the analysis of the convergence of numerical
methods for second order ODEs (1.1) makes life easier when new methods
are aimed to be introduced, reducing the proof of convergence to the verifi-
cation of simple algebraic properties on the coefficients of the methods. Let
us analyse this aspect in concrete, by introducing a new family of numerical
methods for (1.1) through the GLM machinary. The class of methods we in-
troduce is the family of modified extended backward differentiation formulae
(MEBDF) introduced by Cash for the numerical solution of first order ODEs
[3, 4, 14]. Such formulae provides improvement to the stability regions of
the classical BDF methods and are characterized by the involvement of the
knowledge of the solution in a future point. The first introduced modification
regards the so-called extended BDF (EBDF) methods of order p = k + 1

k
∑

j=0

αjyn+j = hβkfn+k + hβk+1fn+k+1, (4.12)

where fn+k = f(tn+k, yn+k), fn+k+1 = f(tn+k+1, yn+k+1). This numerical
method is employed as corrector in a predictor corrector scheme which can
be summarized as follows:
(i) Compute ȳn+k as the solution of the conventional BDF method

ȳn+k +
k−1
∑

j=0

α̂jyn+j = hβ̂kf̄n+k, (4.13)

f̄n+k = f(tn+k, ȳn+k).
(ii) Compute ȳn+k+1 as the solution of the same BDF advanced one step,
that is,

ȳn+k+1 + α̂k−1ȳn+k +
k−2
∑

j=0

α̂jyn+j+1 = hβ̂kf̄n+k+1, (4.14)

f̄n+k+1 = f(tn+k+1, ȳn+k+1).
(iii) Discard ȳn+k, insert f̄n+k+1 into EBDF method (4.12), and solve for yn+k:

yn+k +
k−1
∑

j=0

αjyn+j = hβkfn+k + hβk+1f̄n+k+1. (4.15)

If the EBDF method (4.12) is of order k + 1 and BDF methods (4.13) and
(4.14) are of order k, then the overall algorithm (i)-(iii) based on (4.13),
(4.14), and (4.15) is of order k + 1, as proved in [3].
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It was observed by Cash [4] that the disadvantage of the algorithm given
above is that stages (i) and (ii) represent nonlinear systems with the same
Jacobian I − hβ̂kJ , J = ∂f/∂y, but stage (iii) has a different Jacobian,
I −hβkJ , which requires extra LU decomposition. To remedy this situation,
he proposed in [4] an algorithm where the last stage (iii) was replaced by a
modified EBDF (MEBDF) method of the form

k
∑

j=0

αjyn+j = hβ̂kfn+k + h(βk − β̂k)f̄n+k + hβk+1f̄n+k+1. (4.16)

These methods have order k + 1.
Substituting (4.13) into (4.14), we obtain

ȳn+k+1 = α̂k−1α̂0yn +
k−1
∑

j=1

(

α̂k−1α̂j − α̂j−1

)

yn+j − hα̂k−1β̂kf̄n+k + hβ̂kf̄n+k+1.

(4.17)
Our aim, which is a novelty provided by this paper, is now that of per-

forming a similar numerical scheme for second order ODEs (1.1), which can
be summarized as follows

(i) Compute ȳn+k by the following predictor method

ȳn+k +
k−1
∑

j=0

α̂jyn+j = h2β̂kf̄n+k, f̄n+k = f(tn+k, ȳn+k). (4.18)

(ii) Compute ȳn+k+1 as the solution of the same predictor, advanced one
step

ȳn+k+1 + α̂k−1ȳn+k +
k−2
∑

j=0

α̂jyn+j+1 = h2β̂kf̄n+k+1. (4.19)

(iii) Employ the following corrector:

k
∑

j=0

αjyn+j = h2β̂kfn+k + h2(βk − β̂k)f̄n+k + h2βk+1f̄n+k+1. (4.20)

Following Jackiewicz [17], we regard the numerical scheme based on the
formulae (4.18), (4.19), and (4.20) as a GLM in hybrid form (2.5) with s = 3,
r = k, and with the vectors of internal approximations Y [n], f(Y [n]), and the
vector of external approximations y[n] defined by

Y [n] =





ȳn+k

ȳn+k+1

yn+k



 , f(Y [n]) =





f̄n+k

f̄n+k+1

fn+k



 , y[n] =











yn+k

yn+k−1
...

yn+1











, (4.21)
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and with the coefficient matrices A, U, B, and V given by

A =







β̂k 0 0

−α̂k−1β̂k β̂k 0

βk − β̂k βk+1 β̂k






,

U =







−α̂k−1 −α̂k−2 · · · −α̂1 −α̂0

α̂k−1α̂k−1−α̂k−2 α̂k−1α̂k−2−α̂k−3 · · · α̂k−1α̂1−α̂0 α̂k−1α̂0

−αk−1 −αk−2 · · · −α1 −α0






,

B =















βk − β̂k βk+1 β̂k

0 0 0
...

...
...

0 0 0
0 0 0















, V =















−αk−1 −αk−2 · · · −α1 −α0

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 1 0















.

We first analyze the consistency of the numerical scheme, provided by the
following theorem.

Theorem 4.1. A k-step MEBDF method for second order ODEs (1.1), based
on the predictor-corrector scheme corresponding to the formulae (4.18), (4.19),
and (4.20), is consistent if and only if the following algebraic constraints are

12



fulfilled

k−1
∑

j=0

α̂j = −1, (4.22)

k−2
∑

j=0

α̂j − α̂j+1α̂k−1 = 1− α̂k−1α0, (4.23)

k−1
∑

j=0

αj = −1, (4.24)

k−2
∑

j=0

(j − k + 1)α̂j = −c1, (4.25)

k−2
∑

j=0

(j − k + 1)(α̂j − α̂j+1α̂k−1) = −c2, (4.26)

k−1
∑

j=0

(j − k + 1)αj = −c3, (4.27)

2βk + 2βk+1 +
k−1
∑

j=0

(j − k + 1)αj = 1. (4.28)

Proof. Due to the form (4.21) of the external approximation vector, we easily
recognize the following preconsistency and consistency vectors associated to
the method

q0 = e, q1 =















0

−1

...

−(k − 1)















, q2 =



















0

1

2
...

k − 1

2



















.

Thus, taking into account the above provided GLM formulation of MEBDF
methods and Definitions 2.1 and 2.2 of preconsistency and consistency, we
get Equations (4.22) to (4.24) from Uq0 = e and Vq0 = q0, (4.25) to (4.27)
from Uq1 = c and Vq1 = q0 + q1, (4.28) from Be+Vq2 = q0

2
+ q1 + q2.

Theorem 4.2. A consistent k-step MEBDF method for second order ODEs
(1.1), based on the predictor-corrector scheme corresponding to the formulae

13



(4.18), (4.19), and (4.20), is zero-stable if

k−1
∑

i=2

i(i− 1)αi + k(k − 1) 6= 0,

and the roots of the polynomial

pk(t) =
k−1
∑

i=0

αit
i + tk,

do not lie outside the unit circle.

Proof. According to Theorem 2.4, the zero-stability of a k-step MEBDF
method for second order ODEs (1.1), based on the predictor-corrector scheme
corresponding to the formulae (4.18), (4.19), and (4.20), is ensured if the
matrix V satisfies the root condition (ii) given in Theorem 2.4. We observe
that V is a Frobenius companion matrix, thus its eigenvalues are the roots
of the polynomial

pk(t) =
k−1
∑

i=0

αit
i + tk.

Since the method is consistent, it satisfies condition (4.24) and, as a con-
sequence, t = 1 is always a root of the polynomial. This implies that root
condition (ii) is fulfilled if the root t = 1 is at most a double root, i.e. if

p′′k(1) =
k−1
∑

i=2

i(i− 1)αi + k(k − 1) 6= 0,

which gives the thesis.
Due to the general result on convergence given by Theorem 2.5, the results

proved in this section provide, together, the convergence analysis of MEBDF
methods for second order ODEs (1.1). An example of convergent MEBDF
method is given by the following new method

[

A U

B V

]

=













1 0 0 2 −1
2 1 0 3 −2

−β3 β3 1 2 −1
−β3 β3 1 2 −1
0 0 0 1 0













, (4.29)

which is consistent (preconsistency and consistency vectors are given by q0 =
[1, 1]T , q1 = [0,−1]T , q2 = [0, 1/2]T ) and zero-stable, thus convergent, for
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any β3. This is also confirmed by the numerical test reported in Table 4,
carried out on the classical test equation

y′′(x) = −ω2y, x ∈ [0, π], (4.30)

with initial values y′(0) = 1, y(0) = 0. The exact solution is, therefore,
y(x) = sin(ωx).

h ‖err‖∞ p
π/25 9.41e-2
π/26 4-27e-2 1.14
π/27 2.03e-2 1.07
π/28 9.89e-3 1.04

Table 1: Numerical results originated from the application of the MEBDF method (4.29)
with β3 = 1/2 to problem (4.30), with ω = 1. h is the employed fixed stepsize, ‖err‖∞ is
the infinity norm of the global error, p is the estimated order of convergence.

5. Conclusions

We have focused our attention on the convergence theory of general lin-
ear methods (GLMs) for special second order Ordinary Differential Equations
(ODEs) of the type y′′ = f(y(t)), discussing the generality of this approach.
Indeed, we have first employed such a theory in order to recover the for-
mulation and convergence properties of several methods for (1.1) introduced
in the existing literature. Then, we have specialized the results provided in
[9] to the family of modified extended BDF methods, introduced by Cash
for first order ODEs and now adapted to second order problems (1.1). The
developed theory will profitably be introduced and adapted for the numeri-
cal treatment of ODEs with discontinuous right-hand side (see, for instance,
[11, 12] and references therein).
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