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Abstract. The purpose of the talk is the presentation of some recent advances in thenumerical solution of differential
equations, with special emphasis to reaction-diffusion problems, Hamiltonian problems and ordinary differential equations
with discontinuous right-hand side. As a special case, in this short paperwe focus on the solution of reaction-diffusion
problems by means of special purpose numerical methods particularlyadapted to the problem: indeed, following a problem
oriented approach, we propose a modified method of lines based on the employ of finite differences shaped on the qualitative
behavior of the solutions. Constructive issues and a brief analysis are presented, together with some numerical experiments
showing the effectiveness of the approach and a comparison with existing solvers.
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PERIODIC PLANE WAVES IN REACTION-DIFFUSION PROBLEMS

We focus on reaction-diffusion problems modeled by coupledpartial differential equations (PDEs) of the type

∂u
∂ t

= Du
∂ 2u
∂x2 + fu(u,v),

∂v
∂ t

= Dv
∂ 2v
∂x2 + fv(u,v),

(1)

with Du > 0 andDv > 0. This problem exhibits traveling waves as fundamental solutions [19], thus it has been widely
used in Life Science to model problems generating periodic waves along their dynamics: this is typical of cell cycles
[9, 16], behaving as a biochemical oscillator.

These situations are also typically encountered in intracellular calcium signaling [20]: indeed, calcium shows many
differrent types of oscillations in time and space, in response to various extracellular signals [2]. Among many
existing mathematical models, that described in [20] is based on the release of calcium from intracellular stores
through channels that are sensitive to the regulatory molecule IP3: the main idea, first presented in [1], is that external
stimuli produce increased concentrations of IP3, causing the release of calcium from these internal stores.Under the
mathematical point of view, in the model provided in [1, 20],the dynamics of this process is governed by two partial
differential equations

∂c
∂ t

= Dc
∂ 2c
∂x2 +kf luxµn

(

b+
1−b
k1+c

)

−
γc

kγ +c
,

τn
∂n
∂ t

=
k2

2

k2
2+c2

−n.

(2)

in the unknownsc(x, t) andn(x, t), respectively denoting the local calcium concentration and the fraction of receptors
that have not been inactivated by calcium. As it arises from [1], Dc denotes the cytosolic diffusion coefficient of
calcium,kf lux is the maximum total calcium flux,b represents a basal current through sensitive channels,γ gives the
rate of calcium pumping out of the cytosol,kγ is the calcium concentration at which the rate of calcium pumping from
the cytosol is at half-maximum,τn is the time constant for the dynamics ofn(x, t), k2 is the rate of production of new
receptors. Coherently with the biological evidence, the solutions derived in [20] under suitable initial and boundary
conditions, exhibit an oscillatory dynamics both in space and in time.



A special case of (1) is given byλ -ω problems [8, 10, 11, 14, 15, 19, 23]

∂u
∂ t

=
∂ 2u
∂x2 +λ (r)u−ω(r)v,

∂v
∂ t

=
∂ 2v
∂x2 +ω(r)u+λ (r)v,

(3)

with r = (u2+v2)1/2, λ (0)> 0 andω(0)> 0, having a one-parameter family of periodic plane waves solutions [15]

u(x, t) = r̂ cos
(

ω(r̂)t ±
√

λ (r̂)x
)

,

v(x, t) = r̂ sin
(

ω(r̂)t ±
√

λ (r̂)x
)

,
(4)

for any r̂ ∈ R such thatλ (r̂) > 0. Though incomputable, this parametrization is very useful to develop a problem
oriented numerical scheme that gains a significant benefit from the a priori knowledge of the qualitative behavior of
the solution: this point of view deeply falls in the spirit ofexponential fittingtechnique (EF, see [17, 18, 21, 22] and
references therein).

Classically, EF based numerical methods arise from the adaptation of existing methods, in order to let them exactly
integrate (within round-off error) problems having solutions in a functional space spanned by basis functions other
than polynomials, to be chosen in accordance with the behavior of the solution [17, 18, 21, 22]. The corresponding
methods are characterized by on non-constant coefficients,since they depend on parameters related to the solutions
which need to be suitably computed. Choosing a proper fittingspace and accurately providing and estimate of the
unknown parameters is a crucial problem [5, 6, 12, 13], stillunsolved in many situations; however, forλ -ω problems,
the parametrization (4) turns to be useful in order to approach the aforementioned two issues.

In the remainder of the treatise, we provide a spatial semi-discretization of problem (3) through adapted finite
differences properly developed taking into account the nature of the solutions (4) and solve in time the resulting
system of ordinary differential equations.

ADAPTED FINITE DIFFERENCES

We proposed in [4] an adapted three-point finite difference formula

∂ 2u
∂x2 (x, t)≈

1
h2 (a0u(x+h, t)+a1u(x, t)+a2u(x−h, t)) , (5)

whereh is a given spatial stepsize andu(x, t) is defined on the rectangular domain

D = [x0,X]× [t0,T]⊂ R
2.

Taking into account the parametrization (4) of the plane waves solutions, we compute the coefficientsa0, a1 anda2 of
(5) in order to make it exact on the linear space spanned by [4,3, 7]

F = {1,sin(µx),cos(µx)}. (6)

Hence, we obtain

a0(z) =−
z2

2(cos(z)−1)
, a1(z) =

z2

cos(z)−1
, a2(z) =−

z2

2(cos(z)−1)
, (7)

wherez= µh. One can easily recognize that the coefficients are now non-constant, but functions ofz. Such a parameter
can be estimated by analogy with (4), which shows that sine and cosine in the solution are evaluated in

√

λ (r̂)x. Thus,
we estimatez in the mesh point(xi , t j) by

zi j =
√

λ (r i j )h,

where
r i j =

√

u2
i j +v2

i j .



with ui j ≈ u(xi , t j), vi j ≈ v(xi , t j). This is a cheap estimate arising from the computation of thesolution in any mesh
point and without additional function evaluations.

It was proved in [4] that the trigonometrically fitted finite difference formula (5) with coefficients (7), has second
order of accuracy, as it happens in the classical case, i.e. for the formula (5) with constant coefficients

a0 = 1, a1 =−2, a2 = 1. (8)

Hence, the trigonometrical fitting adaptation of (5) retains the same order of accuracy of the corresponding constant
coefficient version.

SPATIAL SEMI-DISCRETIZATION OF THE OPERATOR

Following [19], we solve problem (3) in the unbounded domainD = [0,∞)× [0,T], and consider the following
boundary conditions

∂u
∂x

(0, t) =
∂v
∂x

(0, t) = 0, lim
x→+∞

u(x, t) = lim
x→+∞

v(x, t) = 0, (9)

and the initial conditions
u(x,0) = f0(x), v(x,0) = g0(x). (10)

In many practical situations [19], the problem is solved on abounded domain[0,X]× [0,T], whereX is a large real
number chosen in such a way that any further increase on it have negligible effects on the solution, and we consider
the following zero boundary conditions in[0,X]

∂u
∂x

(0, t) =
∂v
∂x

(0, t) = 0, u(X, t) = v(X, t) = 0. (11)

Chosen a fixed spatial stepsizeh, the semi-discretized domain is given byDx =
{

(x j , t) : x j = jh, j = 0, . . . ,N−1
}

.
By denotingu j(t) = u(x j , t), 0 ≤ j ≤ N − 1, the original problem (3) with boundary conditions (11) and initial
conditions (10) leads to the following system of 2N ordinary differential equations

u′0(t) = u′2(t), v′0(t) = v′2(t), (12a)

u′ i(t) = ∆n[ui(t),h]+λ (r)ui(t)−ω(r)vi(t), 1≤ i ≤ N−2 (12b)

v′ i(t) = ∆n[vi(t),h]+ω(r)ui(t)+λ (r)vi(t), 1≤ i ≤ N−2 (12c)

u′N−1(t) = 0, v′N−1(t) = 0. (12d)

with initial conditions
u j(0) = f0(x j), v j(0) = g0(x j), 0≤ j ≤ N−1.

We now provide a numerical evidence in correspondence of

λ (r) = 1− r1.8, ω(r) = 2− r1.8, (13)

and initial conditions (10) given by

u j(0) = v j(0) = 0.1exp(−0.8x j), 0≤ j ≤ N−1. (14)

Figure 1 shows the profiles of the solutions originated by applying the trigonometrically fitted spatial semi-
discretization by (5) with coefficients (7) and (8), with thesame spatial stepsizeh= 15. The profiles of the solutions
obtained via the trigonometrically fitted method of lines are coherent with the expected dynamics and, in particular,
with that described in [19]. Such a situation is not visible for the classical method of lines, since an unstable behavior
is visible in Figure 1. Thus, in the comparison between a standard finite difference and a trigonometrically fitted one
for theλ -ω problem (3), one can recognize a much more stable behavior ofthe latter and a clear ability to retain the
periodic character of the solutions. More results are reported in [3].
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FIGURE 1. Numerical solution of (3) in(x, t) ∈ [0,150]× [0,60], with initial conditions (10) and boundary conditions (11). The
left figures are the profiles ofu(x, t) computed by solving the semi-discretized problem (12a)-(12d) obtainedby the three-point
trigonometrically fitted finite (top) and the classical one (bottom). Analogously, the right figures are the profiles ofv(x, t). The
applied time solver is Matlabode15s.
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