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Abstract. The purpose of the talk is the presentation of some recent advances murierical solution of differential
equations, with special emphasis to reaction-diffusion problems, Hamaiftggroblems and ordinary differential equations
with discontinuous right-hand side. As a special case, in this short pe@docus on the solution of reaction-diffusion
problems by means of special purpose numerical methods particatiajyted to the problem: indeed, following a problem
oriented approach, we propose a modified method of lines based omheyeof finite differences shaped on the qualitative
behavior of the solutions. Constructive issues and a brief analysigesernted, together with some numerical experiments
showing the effectiveness of the approach and a comparison with gxstivers.
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PERIODIC PLANE WAVESIN REACTION-DIFFUSION PROBLEMS

We focus on reaction-diffusion problems modeled by coupkedial differential equations (PDES) of the type
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with D, > 0 andD,, > 0. This problem exhibits traveling waves as fundamentaltsmis [19], thus it has been widely
used in Life Science to model problems generating periodiges along their dynamics: this is typical of cell cycles
[9, 16], behaving as a biochemical oscillator.

These situations are also typically encountered in intialee calcium signaling [20]: indeed, calcium shows many
differrent types of oscillations in time and space, in rem®to various extracellular signals [2]. Among many
existing mathematical models, that described in [20] isedasn the release of calcium from intracellular stores
through channels that are sensitive to the regulatory mit#d®;: the main idea, first presented in [1], is that external
stimuli produce increased concentrations of, IBausing the release of calcium from these internal stahader the

mathematical point of view, in the model provided in [1, 20 dynamics of this process is governed by two partial
differential equations
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in the unknowng(x,t) andn(x,t), respectively denoting the local calcium concentratiodh #e fraction of receptors
that have not been inactivated by calcium. As it arises fr@in [D. denotes the cytosolic diffusion coefficient of
calcium, ks is the maximum total calcium fluk represents a basal current through sensitive chanpnglges the
rate of calcium pumping out of the cytosky, is the calcium concentration at which the rate of calcium pung from
the cytosol is at half-maximunty is the time constant for the dynamicsmi,t), k» is the rate of production of new
receptors. Coherently with the biological evidence, tHet&ms derived in [20] under suitable initial and boundary
conditions, exhibit an oscillatory dynamics both in space i time.



A special case of (1) is given by-w problems [8, 10, 11, 14, 15, 19, 23]
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with r = (1?2 +v?)%2, A (0) > 0 andw(0) > 0, having a one-parameter family of periodic plane wavestiwis [15]
u(x,t) = r‘cos(w(f)t +/A (f)x) :
v(x,t) =fsin (w(r”)ti VA (f)x) ,

for any r € R such thatA (f) > 0. Though incomputable, this parametrization is very usefudevelop a problem
oriented numerical scheme that gains a significant benefit the a priori knowledge of the qualitative behavior of
the solution: this point of view deeply falls in the spirit @kponential fittingechnique (EF, see [17, 18, 21, 22] and
references therein).

Classically, EF based numerical methods arise from thetatiap of existing methods, in order to let them exactly
integrate (within round-off error) problems having sabuis in a functional space spanned by basis functions other
than polynomials, to be chosen in accordance with the behatithe solution [17, 18, 21, 22]. The corresponding
methods are characterized by on non-constant coefficiginise they depend on parameters related to the solutions
which need to be suitably computed. Choosing a proper figpace and accurately providing and estimate of the
unknown parameters is a crucial problem [5, 6, 12, 13], stilolved in many situations; however, forw problems,
the parametrization (4) turns to be useful in order to apgrdhe aforementioned two issues.

In the remainder of the treatise, we provide a spatial sasuiretization of problem (3) through adapted finite
differences properly developed taking into account theimeaof the solutions (4) and solve in time the resulting
system of ordinary differential equations.

(4)

ADAPTED FINITE DIFFERENCES

We proposed in [4] an adapted three-point finite differemeenfila
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whereh is a given spatial stepsize angk,t) is defined on the rectangular domain

(apu(x—+h,t) +aju(x,t) + au(x—h,t)), (5)

D =[x, X] X [to, T] € R

Taking into account the parametrization (4) of the planeasaolutions, we compute the coefficieagsa; anda, of
(5) in order to make it exact on the linear space spanned 18; [4,

7 = {1,sin(ux), cog )} ()
Hence, we obtain
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wherez= uh. One can easily recognize that the coefficients are now nostant, but functions & Such a parameter
can be estimated by analogy with (4), which shows that sidecasine in the solution are evaluatedjf (f)x. Thus,
we estimatez in the mesh pointx;, tj) by

zj = /A (rij)h,

o= 2 2

where



with uij =~ u(x;,tj), vij = v(X;,tj). This is a cheap estimate arising from the computation oStietion in any mesh
point and without additional function evaluations.

It was proved in [4] that the trigonometrically fitted finitéfdrence formula (5) with coefficients (7), has second
order of accuracy, as it happens in the classical caseoi.thd formula (5) with constant coefficients

ag=1, ar= -2, a=1 8

Hence, the trigopnometrical fitting adaptation of (5) resatine same order of accuracy of the corresponding constant
coefficient version.

SPATIAL SEMI-DISCRETIZATION OF THE OPERATOR

Following [19], we solve problem (3) in the unbounded domBir= [0,«) x [0, T], and consider the following
boundary conditions
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and the initial conditions
u(x,0) = fo(x), V(X,0) =go(X). (10)

In many practical situations [19], the problem is solved dianded domaifD, X] x [0, T], whereX is a large real
number chosen in such a way that any further increase on & hegligible effects on the solution, and we consider
the following zero boundary conditions j@, X|

au ov

S5O0 =300 =0, uX,t)=v(X,) =0 (1)

Chosen a fixed spatial stepsizeghe semi-discretized domain is given By = {(x,- ) :xj=jh, j=0,...,N— 1}.
By denotingu;(t) = u(xj,t), 0 < j < N—1, the original problem (3) with boundary conditions (11danitial
conditions (10) leads to the following system & Brdinary differential equations

Uo(t) =U2(t), Vo(t) =V>(t), (12a)
Ui(t) = Anfui(t),h + A (Nui(t) — w(r)vi(t), 1<i<N-2 (12b)
Vi(t) = Anlvi(t),h] + o(n)ui(t) +A(r)vi(t), 1<i<N-2 (12c)
U'N- 1(t) =0, VN 1(t) =0. (12d)

with initial conditions
uj(0) = fo(xj), Vvj(0)=0do(%j), 0<j<N-1
We now provide a numerical evidence in correspondence of

AN =1-r*8 w(r)=2-r8 (13)
and initial conditions (10) given by
uj(0) =v;j(0) =0.1exp(—0.8xj), 0<j<N-L1 (14)

Figure 1 shows the profiles of the solutions originated bylhapg the trigonometrically fitted spatial semi-
discretization by (5) with coefficients (7) and (8), with th@me spatial stepsite= 15. The profiles of the solutions
obtained via the trigonometrically fitted method of lines aoherent with the expected dynamics and, in particular,
with that described in [19]. Such a situation is not visilbe the classical method of lines, since an unstable behavior
is visible in Figure 1. Thus, in the comparison between adstethfinite difference and a trigonometrically fitted one
for the A-w problem (3), one can recognize a much more stable behavitbedatter and a clear ability to retain the
periodic character of the solutions. More results are ttean [3].



FIGURE 1. Numerical solution of (3) ir{x,t) € [0,150 x [0, 60], with initial conditions (10) and boundary conditions (11). The
left figures are the profiles af(x,t) computed by solving the semi-discretized problem (12a)-(12d) obtdipete three-point
trigonometrically fitted finite (top) and the classical one (bottom). Analolgptise right figures are the profiles ofx,t). The
applied time solver is Matlabde 15s.
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