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Abstract

The numerical solution of reactionflision equations of-w type, which are known to
possess a one-parameter family of periodic plane waveigotis object of this paper.
Due to the periodic character of such solutions, a specialgae numerical integration
is here proposed, based on adapted finifiecdnces. The adaptation occurs at the level
of the problem, by a suitable spatial semi-discretizatiasda on trigonometrically
fitted finite diferences. Numerical experiments confirming tlieaiveness of the
approach are given.
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1. Introduction

The paper is concerned with the numerical solution of systefrpartial diterential
equations (PDEs), represented in terms of two couplediogadiffusion equations of

the form
u(x, t) D, O u(x, t) fu(u,v)
= + , (1.2)
v(xt) |, 0 Dy v(x.t) |, fu(u,v)
with D, > 0 andD, > O, typically modeling the interactions of two biologicalespes

whose concentrations are denotedufy, t) andv(x, t). It is known (for instance, refer
to [23]) that traveling waves are fundamental solutionslot), of type

ux,t)=U®@, wvxt)=V(,

wherez = x — at denotes the traveling wave coordinate, beirthe wave speed.

Many systems of interest in life sciences have been suadbssiodelled by reaction-
diffusion equations, especially for those problems typicadhilgting the generation of
periodic waves along their dynamics. For instance, cellesyare frequently clock-like
[8, 17], behaving if they are driven by an autonomous biodbehoscillator.

Among coupled reaction-flusion equations (1.1), a remarkable interesfiio
type equations is visible in the existing literature (fostance, refer to [7, 10, 11, 15,
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16, 23, 24] and references thereid}w reaction-difusion equations are PDEs of the

u(x, t) } [ u(x, t) A)  —o(r) H u(x, t) ]
t

+

1.2)
V(X, 1) V(X t) w()  Ar) V(X 1)

beingr = (U + V%2, with 2(0) > 0 andw(0) > 0. It is known (refer to [23]) that any
isolated zero ofi(:) correspond to a limit cycle in the reaction kinetics: théecpliar
property has madéw systems a prototype model for reactiorfifaision systems whose
kinetics have a limit cycle [23].

A first attempt in analyzing and representing the solutiorflo?) has been given
in [16], where the authors proved that the system (1.2) hasegparameter family of
periodic plane waves solutions (thus having constant shagespeed and oscillating
both in space and in time), given by

XX

u(x.t) = F cos(w(P)t £ VA[F)X), L
V(x. 1) = Psin(w(P)t = a(F)x), 1.3)

for any value of the parameter € R satisfyingA(f) > 0. This representation of
the plane waves is clearly useless for practical purposeefiends on the unknown
parameterY, but it will be important hereinafter to assess suitablmarical schemes,
see Remark 2.1.

Indeed, the periodic character of the problem suggestsojpose a humerical so-
lution of (1.2) which takes into account this qualitativehbeior, i.e. by means of a
special purposenumerical solver more tuned to follow the periodic behaviorthe
spirit of the so-calle@xponential fittingechnique (EF, refer to the recent review paper
on the topic [20] and references therein and the classicabgraph [18]; in the case of
differential equations, we specifically refer to [4, 5, 6, 9, 12,19, 26] and references
therein).

The existing literature on EF-based methods has providedriic number of
adaptations of classical numerical methods to better nigaibr follow known quali-
tative behaviors (e.g. periodicity, oscillations, expatie decay of the solution). This
problem-oriented approachftiirs from the classical one, given by the emplogen-
eral purposemethods, which would require a very small stepsize to atelyrfollow
the prescribed dynamics, if compared to problem-basedadsthwith a subsequent
deterioration of the numerical performances, especialbgims of &iciency. For this
reason, many classical numerical methods have been adapteder to more #i-
ciently approach problems with oscillatory solutions (g2 and references therein).

A special purpose numerical method for the solution of fiomztl equations ex-
actly integrates (within roundfberror) problems whose solution lies in a finite dimen-
sional linear space (the so-calliing spacé spanned by a set of functions other than
polynomials, properly chosen according to the behaviohefdolution [18, 20]. The
main diference between general and special purpose numerical dseihdohat the
former are characterized by constant ffieeéents, while the latter depend on variable
codficients, which are functions of the parameters characterittie solution (e.g. the
frequency of the oscillations in case of problems with datlry solutions or the rate
of decay in case of problems with exponentially decayingtsmhs).



In this direction, two main problems arise:

(i) choosing a fitting space which is as much as possible saitablepresent the
solution of the problem;

(ii) accurately computirfgstimating the parameters on which the numerical method
depends.

In the case ofl-w systems, both problems) @nd (i) can be treated by taking into
account the existing theoretical studies on the problemtlie possible representation
of the periodic plane wave solutions of (1.2), given by (1.3)

The spirit of this paper is that of solvingw reaction-dffusion systems (1.2), by
means of special purpose numerical methods based on exj@riigiing. To the best
of our knowledge, this represents one of the first attemptpfy this technique to
partial diferential equations, together with [3]. More specificallg aim to employ
finite difference schemes adapted to the qualitative behavior of theéepn and, after a
spatial semi-discretization based on such formulae, teesthle corresponding system
of ordinary diferential equations by means of a proper time integrator.

The paper is organized as follows: Section 2 is devoted tedhstruction and the
analysis of adapted finitefiierences for the approximation of the spatial second deriva-
tive appearing in (1.2); the corresponding spatial sesdr@itization is introduced in
Section 3; the numerical evidence is then described in &edti Some conclusions are
given in Section 5.

2. Special purpose second order finite dierences

As above discussed, we aim to provide a spatial semi-digatign of the system
of PDEs (1.2) by means of finiteftierences adapted to the problem. In particular, due
to the fact that (1.2) possess a one-parameter family obgierivave solutions (1.3),
thus oscillating both in space and in time, we propose tiogogtrically fitted finite
differences for the numerical approximation of the second mpace derivative ap-
pearing in (1.2). We propose here two versions of adaptet filitterences, involving
three and five consecutive points in the space discretizatio

2.1. Athree-point trigonometrically fitted finitefflirence
We review in this subsection part of the results derived |f¢8 a given function
u(x, t) defined on the rectangular domain
D =[x, X] x [to, T] € R2.

The purpose is that of deriving a numerical approximatiothefsecond derivative with
respect tox by the three-point finite dierence formula
u
X2
of nearest neighbors type (i.e. employing, for any gixerthe adjacent meshpoints
x —handx + h), whereh is a given spatial stepsize.

(%, 1) ~ h_12 (agu(x + h,t) + a;u(x, t) + agu(x — h, t)), (2.4)



For our particular purposes, i.e. provide a special purppagal semi-discretization
of (1.2), we need a trigonometrically fitted version of folm(2.4). Thus, we consider
the following fitting space

F = {1, sin(ux), cos@x)}, (2.5)

with frequencyu € R, whose meaning is clarified in Remark 2.1, and associate4) (2
the linear operator

L[h,a]u(x,t) = %(x, t) - h—lz(aou(x + h,t) + aau(x, t) + axu(x — h, t)). (2.6)

The unknown values ay, a; anda, are computed by imposing the exactness of (2.4)
on the functional set (2.5) or, equivalently, by annihilgtthe operator (2.6) on every
element of (2.5). This leads to the linear system

a+a+a =0,
p-a=0 (2.7)
(a + ap) cos) + a, = -7,

with z = uh, whose solution is given by

Z 7 B Z
2cos0-) 207 Gsp-1 *97 Sesg oy
As usual for trigonometrically fitted formulae, the ¢heients are functions of the pa-
rameterz which is determined a posteriori (refer to Remark 2.1): thithe main dif-
ference with general purpose formulae, which depends ostaohcoéicients, while
special purpose ones are characterized by non-constafiic@rds. In general, the
value ofzis realistically non-zero, since neither the stepsize erftaquency (at least
in presence of oscillations or periodicities, which is oas&) are equal to zero. This
fact has a benefit on the solvability of the system (2.7), wtdeterminant of the coef-
ficient matrix is given by

(2 = - (2.8)

2(1- cosz), (2.9)

which annihilates also im = 0. We will also take care in the implementations to avoid
values ofh such that the correspondizgnakes (2.9) equal to zero.

For the derived trigonometrically fitted finite fiérence, the following accuracy
result holds [3].

Theorem 2.1. Suppose that & C*(Q), whereQ = [x - h, x+ h] x [0, T], being h> 0.
Then, the trigonometrically fitted finiteffirence formulg2.4), whose caogicients are
given by(2.8), has second order of accuracy.

We observe that the ctiients (2.8), whe tends to 0, tend to the classical coef-
ficients
ag =1, a=-2, a=1, (2.10)
of the corresponding general purpose finitdedience, which has second order of ac-
curacy as well. Thus, the trigonometrical fitting adaptati (2.4) preserves the order
of accuracy of the corresponding general purpose versitim eaidficients given by
(2.10).



2.2. Afive-point trigonometrically fitted finiteffirence

We now introduce a new trigonometrically fitted finitédfdrence of order 4 for the
numerical approximation of the second order spatial dévigan (1.2). Also in this
case we aim to provide a nearest neighbors finifiedince formula and, in order to
gain higher order of accuracy than the three-point case nw@hvie five consecutive
meshpoints. Thus, the formula we consider has the folloviona

d%u

1
W(X’ t) = ﬁ(aou(x + 2h, 1) + aau(X + h, t) + axu(x, t)

(2.11)
+ agu(x — h,t) + aqu(x — 2h, 1)),

whereh is a given increment of th& variable. We derive a trigonometrically fitted
version of (2.11) in correspondence of the fitting space

F = {1, sin(ux), cosfX), X Sin(uXx), X COSux)}. (2.12)

We associate to (2.11) the following linear operator

d%u 1
L[h,a]u(x,t) = W(X’ t) — F(aou(x+ 2h,t) + a;u(x + h, ) (2.13)

+ axu(x, t) + agu(x — h, t) + a4u(x — 2h,t)),

and, in order to derive the unknown dbheientsag, a;, a,, az andag, we annihilate it
on the chosen space (2.12), i.e.

Lh,a]l =0,
L[h,a]x sin(yx)|x_0 -0, i=01,
L[h, a]x COS@X)L_O =0, i=01

We observe that each evaluation is always referred to the pot) = (0, 0), due to the
invariance in translation of linear operators, as disalgs¢18]. This leads to

zcsc(%)5 seq%) (2- 2cos(2) - zsin(2))

%= 32
zcsc(g)4 (sin@) — zcosg))
a = ,
1 , 4 (2.14)
zesc(%) seq(3) (zcos(%) + 2zcos(¥) - 2sin(%))
ap = ,
8
az = a,
a4 = dp,

with z = uh.



Remark 2.1. The chosen fitting spacg2.5) and (2.12) as it normally happens in
function fitting techniques (refer to [18, 20] and refereadkerein), explicitly depend
on the parameten which can be interpreted as the frequency of the oscillatmerur-
ring in the solution of(1.2). As a consequence, the corresponding numerical method
will depend on variable cggcients: this is visible, for instance, in the expression of
the cogficients(2.8) and (2.14) of the finite djferenceg2.4) and (2.11) respectively.
Numerical methods depending on variablejficents are gectively useful when a
proper estimation of the unknown parameters is actually matable, as it has been
clarified in many dfferent situations in the literature (we refer to the reviewpa[20]
and references therein). In our case, we have gained a pdatidenefit from the
knowledge of a parametric representation of the periodanplwave solutionél.3),
which clearly shows that sine and cosine are evaluated/Aff)x. This suggests us
to employ as estimation of the parametet zh in (2.8) and (2.14)at the mesh point
(%, t;) the value

zj = JA(rijh,

22
Mij = U5 + V5

with uj = u(x,t;), vij = v(x,t;). In this way, we have gained an approximation of
the fitted parameters without applying optimization tegeis or solving nonlinear
systems of equations as in [5, 13] and references thereins,Tihe overall computa-
tional cost is not compromised, in our case, by the compradf the parameter. This
also confirms that, in designing adapted numerical solvigis,particularly useful to
acquire as much theoretical information on the problem assjide.

where

A final constructive issue regards the link between the gpecirpose finite dif-
ference (2.11) with cd@&cients (2.14) and its corresponding classical generalgagrp
version. The latter can be easily recovered by annihildtiedinear operator (2.13) on
the monomial basigl, x, X2, x3, X%}, i.e.

L[h,all =0,
L[h,a]x =0, i=1234
x=0, t=0
This leads to
1 4 5 4 1
B=-75 =z %= &=z =z (2.15)
i.e. to the classical five-point finite fiierence
Uy~ L (Ut 20 1) — 16u(x + h.t) + 30U(x.1)
T e ’ ’ ’ (2.16)

—16u(x — h, t) + u(x — 2h, t)),

which is known to have fourth order of accuracy. We obseraéttie cofficients (2.14)
of the finite diference (2.11), thus obtained with respect to the functibasis (2.12),
i.e.

{1, sinux, cosuX, X SinuX, X Cosux},



whenztends to 0, tend to the classical ibgents (2.15), obtained with respect to the
monomial basis
{1, %, %2, %3, x4

As a natural consequence, also the expression of the esariated to the trigonomet-
rically fitted formula tends to that of the classical one. §hilne trigonometrically fit-
ted finite diference (2.11) with cdBcients (2.14) retains the same order of accuracy of
that based on polynomials with déieients given by (2.15), i.e. it has order 4. Hence,
the non-polynomial version of existing general purposenidae do not deteriorate
their order of accuracy (this also happens in many othemestsitsuch as interpolation,
quadrature, numerical solution of ordinaryfdrential equations [18, 20]).

Remark 2.2. The choices of the fitting spacgs5)and (2.12)reveal a similarity with
the Fourier spectral method of lines [25]. Actually, in a re@eneral sense, one could
recognize a close similarity among trigonometrically fittmethod of lines, based on
suitably truncating the mixed basis

{1, sinuX, cosuX, X SinuX, X cosuX, ...} (2.17)
or the trigonometrical basis
{1, sinux, cosux, Sin 2ux, cos 2uX, ...} (2.18)

and the Fourier spectral method of lines, obtained in cgoreslence of the functional
basis
{1, sinx, cosX, Sin 2X, c0S X, ...}. (2.19)

We point out here two similarities and one significanfatence. A clear similarity

is given by the form of the chosen basis functions, espgdial{2.18) and (2.19),

as well as by the fact that the number of chosen basis furectitiuence the order
of convergence. For instance, formula.4) with cogficients(2.8) attains order 2 (3
basis functions are employed for its construction, i.e.séhm (2.5)), while formula
(2.11) with cogficients(2.14) attains order 4 (5 basis functions are employed for its
construction, i.e. those i(2.12). As one can easily expect, higher orders can be
achieved by coherently augmenting, at the same time, theeruwh points in the finite
difference as well as the number of basis functions. A signifidgference is given
by the gained level of adaptation to the problem: indeed,stia@dard Fourier basis
(2.19)does not contain an explicit reference to the problem undesideration, while
the trigonometrically fitted one®.17)and (2.18) depends on the parameterwhich

is closely connected to the solution of the problem. Thisesidhke trigonometrically
fitted approach more problem oriented and, thus, more adeyes observed in Section
4,

3. Semi-discretization of the operator

We now apply the results developed in the previous sectiorkée original1-w
system (1.2). More precisely, following [23], we are goingcbnsider the system of
PDEs (1.2) in the unbounded domain

D =[0,) x [0, T],



equipped by the following boundary conditions

ou ov

a—X(O, t) = 6_)((0’ t) =0, (3203)
lim u(x,t) = lim v(xt) =0, (3.20b)
X—+00 X—+00

and the initial conditions
u(x, 0) = fo(x),

V(X, 0) = go(X).

This problem is now aimed to be treated by suitably applyireghethod of lines (refer
to [14, 21, 22] and references therein), i.e. through a shsaretization of the problem
along the spatial variable. The periodic nature of the smhjtdescribed in Section
1, suggests us to proceed by employing the trigonomelyifittied finite diferences
derived in Section 2. We now describe in details how the s#isgretized problem is
derived.

In the practice, as also suggested in [23], we are going teegbke problem on a
bounded domain [X] x [0, T] where X is a large real number. In correspondence of
this large value o, instead of (3.20b), we actually consider the following bhdary
conditions

(3.21)

u(X,t) = v(X,t) = 0.

More preciselyX is chosen in such a way that any further increase on it haviigireg
ble dfects on the solution, thus making above zero boundary donditealistic and
coherent with (3.20b). In summary, we consider the follapoundary conditions in
[0, X]

ou ov
6_x(0’ t) = 6_x(0’ t) =0, (3.22a)
u(X,t) = v(X,t) = 0. (3.22b)

We next consideN equidistant points in the spatial interval K] and denote by the
distance between two consecutive points. The semi-digecetlomain, denoted by
Dy, results to be

. X
sz{(Xj,t):Xj:Jh, j=0,...,N-1, hzm}.

We next denote by;(t) = u(x;,t), 0 < j < N -1. As a consequence, the original
problem (1.2) with boundary conditions (3.22a)-(3.22b] anitial conditions (3.21) is
transformed in the following system of\2ordinary diferential equations

Uo(t) = U'a(t), (3.23a)
Vio(t) = V2(t), (3.23b)
Ui () = An[ui(t), h] + ANUi() — w(r)vi(t), 1<i<N-2 (3.23c)
Vi(t) = An[vi(t), h] + w(r)ui(®) + Ar)vi(t), 1<i<N-2 (3.23d)
U'noa(t) =0, (3.23e)
Vn-1(t) = 0. (3.23f)



This system of ordinary flierential equations is then equipped of the initial cond#io
uj(0) = fo(x;), Vvj(0)=go(x)), O<j<N-1

We observe that Equations (3.23a) and (3.23b) arise frorhdhadary conditions
(3.22a), taking into account that

Uo(t) — Up(t) Vo(t) — vo(t)
2h 2h

which implies that(t) = ux(t) andvy(t) = vo(t). On the other hand, Equations (3.23c)
and (3.23d) are obtained by approximating the second $|nlmﬁiyative%(x, t) with
the chosen finite dlierenceA,[u(x, t), h], depending om consecutive meshpoints. Fi-
nally, Equations (3.23e) and (3.23f) are obtained by casid the boundary condi-

tions (3.22b).

ou ov
—(0,1) = 0, —(0O,t) = 0
6x(0’ ) ’ ax( 1) ’

4. Numerical experiments

We now present some numerical results obtained by solviagystem of PDEs
(1.2) with A(r) andw(r) of the form

A(r) = o - 1P, (4.24)
w(r) = wo —rP, (4.25)

andAg, wo, p € R*.

By employing the semi-discretization introduced in Satt we are specifically
considering the system of ODEs (3.23a)-(3.23f) with boupdanditions (3.22a)-
(3.22b) and initial conditions (3.21) given by

u;j(0) = vj(0) = Aexp(=¢£xj), O0<j<N-1 (4.26)

In the experiments, as in [23], we will always consider thiéofeing values of the
above parameters

lo=1 wp=2 p=18 A=01 ¢=08. (4.27)

We proceed in two dierent directions: indeed, we consider the spatially semi-
discretized version (3.23a)-(3.23f) of the problem, byragpnating the spatial deriva-
tive both with the standard and the trigonometrically fitfexte differences; we next
solve the obtained semi-discretized problem by employipgpaer time solver.

Figures 1 and 2 show the profiles of the solutions originayeafiplying the trigono-
metrically fitted spatial semi-discretization (with 3 angdnts, i.e. through finite dif-
ferences (2.4) and (2.11) with déieients (2.8) and (2.14), respectively) and solving in
time with theode15s Matlab routine. The solutions of the semi-discretized pob
by standard finite diierences are also depicted in Figures 1 and 2; also in thisttese
ode15s time solver is applied. The problem is solved fart) € [0, 150] x [0, 60], as
in [23]. The space interval is large enough in order to makeuse of the boundary
conditions (3.22a)-(3.22b) instead of (3.20a)-(3.20MYistic, as highlighted in [23].



We have involved 50 subintervals in the spatial semi-diszaton with 3 points (Fig-
ure 1) and 20 subintervals in the spatial semi-discretimatiith 5 points (Figure 2):
hence, the spatial stepsizes hre 3 andh = 7.5, respectively.

As it is visible from Figures 1 and 2, the profiles of the sauog obtained via the
trigonometrically fitted method of lines are coherent whik £xpected dynamics and,
in particular, with that described in [23]. Such a situati®not visible for the classical
method of lines, since an unstable behavior is visible inufggl for the three-point
semi-discretization, while a total loss of the periodicreltéer of the solution is evident
in Figure 2 for the five-point semi-discretization: this is@pointed out by the range of
variability of the solutions shown in Tables 1 and 2. Thugshmmcomparison between a
standard finite dference and a trigonometrically fitted one for the problem (1.2),
one can recognize a much more stable behavior of the latties alear ability to retain
the periodic character of the solutions.

As highlighted by the representation (1.3) of the periodanp waves solutions,
the range of variability is given by-F, f], suggesting that we should expect symmetric
values of the boundary of such interval with respect to thgirmr As shown in Tables
1 and 2, the best results in this sense are obtained by empltye trigonometrically
fitted finite diference depending on 5 points. This aspect gives us a medsilne o
accuracy of our approach which, in comparison with the @as®ne, results to be
more accurate and stable.

A further comparison is then provided with respect to Maflabpe routine, which
acts as an authomatic solver for a class of PDEs of the type

dp\dp 0 dy 9
t, m__IX"f(xt, 0, — o, —
clxte 5o) 5 = (e 50) + ot 52,

suitably equipped by initial and boundary conditions. Feab(1.2) falls into this class
of equations, by assuming

d¢
=[1, 1T
(X Lo, ax) I',
Oy ou ov|
(X L, c’)x) [6x’ a_x} ’

(x t, ga,g ) [A(Nu = w(r)v, w()u+ A(r)V]",
m=0.

The routinepdepe is based on employing finite fiérences depending on a number of
points which is automatically selected by the solver. Fégishows the profiles of the
solution of (1.2), with initial conditions (3.21), boungasonditions (3.22a)-(3.22b), in
correspondence of several values of the spatial stepsiZeom a first glance, one can
easily recognize that an accurate computation of the soltiiroughpdepe requires a
severe mesh refinement: indeed, fioe 15 orh = 7.5 the wavefront is very irregular
and badly approximated; fdr = 3, the wavefront appear more regular, but it is not
accurately matched with the zero boundary condition. A mhter situation occurs
forh = 1.5. This is absolutely coherent with the description progidg the developers
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in the inline guide: they clearly state the routine is ablsdlve problems with a modest
accuracy, thus severe mesh refinements are needed in osteti@tely reproduce the
profiles of the solutions. This gap does not occur in emplpyiigonometrically fitted

finite differences, which look accurate also with larger values oftéesize, as shown.

Type of finite diference min u(x, t) max u(x, t)
(xt)€[0,150]x[0,60] (xt)€[0,150]x[0,60]
Standard on 3 points -0.9697 70.0670
Standard on 5 points -2.8550- 1074 0.1000
Trigonometrically fitted on 3 point -0.9912 1.3403
Trigonometrically fitted on 5 point -1.0379 1.0366

Table 1: Range of variability of the values of the numericgragimation of the solution(x, t) of (1.2), with
initial conditions (3.21), boundary conditions (3.228)22b), in correspondence of the parameters given by
(4.27), by various finite dierences for the spatial semi-discretization.

Type of finite diference min V(X 1) max V(X t)
(x)<[0,150]x[0,60] (x1)<[0,150]x[0,60]
Standard on 3 points -3.7892 4.9338- 10
Standard on 5 points -4.0383- 1074 0.1000
Trigonometrically fitted on 3 point -1.1873 1.0837
Trigonometrically fitted on 5 point -1.0416 1.0376

Table 2: Range of variability of the values of the numericagdragimation of the solutior(x, t) of (1.2), with
initial conditions (3.21), boundary conditions (3.228)22b), in correspondence of the parameters given by
(4.27), by various finite dierences for the spatial semi-discretization.

5. Conclusions

We have proposed an alternative approach for the numenbatian of reaction-
diffusion systems of-w type (1.2), based on the employ of trigonometrically fitted
finite differences. This approach is problem-oriented: since it isvkrfoom the litera-
ture [23] that the problem has a one-parameter family obgkciplane wave solutions,
an adapted numerical approach taking into account thistgtia behavior has been
preferred. Clearly, the numerical solution of other prafdethan that considered in
this paper can be handled by non-polynomially fitted mettasdeell, but they would
need to be suitably adapted to the problem under investigatn developing the spe-
cial purpose approach, the theoretical knowledge of mapgais of the problem have
been taken into account: they have guided, in particularctoice of the fitting space
and that of the fitted parameters. Numerical evidence hyptdithat this approach is
promising in solving partial dierential equations whose solutions are periodic plane
waves or, more in general, have an a priori known qualitdieeavior, which can be
exploited in developing a proper numerical scheme. Furttferts will be thus ori-
ented in this direction, i.e. introducing and analyzingdd numerical techniques in
order to approach otherféerential operators and providing techniques of parameter
estimations.
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Figure 1: Numerical solution of (1.2), with initial conditie (3.21), boundary conditions (3.22a)-(3.22b),
with parameters given by (4.27). The left figures are the m®fifu(x,t) computed by solving the semi-
discretized problem (3.23a)-(3.23f) obtained by the thpeiat trigonometrically fitted finite dierence (2.4)
with codficients (2.8) (top) and the classical one with ffiméents (2.10) (bottom). Analogously, the right
figures are the profiles ofx, t).

D

Figure 2: Numerical solution of (1.2), with initial conditise (3.21), boundary conditions (3.22a)-(3.22b),
with parameters given by (4.27). The left figures are the m®fifu(x,t) computed by solving the semi-
discretized problem (3.23a)-(3.23f) obtained by the fie@ptrigonometrically fitted finite dference (2.11)
with codficients (2.14) (top) and the classical one withf@iee&nts (2.15) (bottom). Analogously, the right
figures are the profiles o{x, t).

12



Acknowledgments

This work was supported by the Italian National Group of Catimy Science (GNCS-
INDAM). We truly express our appreciation to the anonymoeferees for the high
quality comments, which have remarkably improved the paper

References

[1] A. Atri, J. AmunbpsoN, D. CLapaam, J. SieYD, A Single-Pool Model for Intracellular
Calcium Oscillations and Waves in Xenopus laevis Oqdiephys. Journal 65,
1727-1739 (1993).

[2] M.J. Berringg, Calcium oscillationsJ. Biol. Chem. 265, 9583-9586 (1990).

[3] R. D’Awmgrosio, B. PsternosTER, Numerical solution of a dfusion problem by ex-
ponentially fitted finite gference method$pringerPlus 3:425, doi:10.11/2893-
1801-3-425 (2014).

[4] R. D’Amsrosio, B. PaxrernostEr, Exponentially fitted singly diagonally implicit
Runge-Kutta methodd. Comput. Appl. Math. 263, 277-287 (2014).

[5] R. D’Awmsrosio, E. Esposito, B. PsrernosTER, Parameter estimation in two-step
hybrid methods for second order ordinaryfdrential equationsJ. Math. Chem.
50 (1), 155-168 (2012).

[6] R. D’Amsrosio, M. Ferro, B. ParerNosTER, Trigonometrically fitted two-step hy-
brid methods for special second order ordinaryfeliential equationsMath. Com-
put. Simul. 81, 1068-1084 (2011).

[7] G.B. ErmentrROUT, Small amplitude stable wavetrains in reactiofaéion sys-
tems Lecture Notes Pure Appl. Math. 54, 217-228 (1980).

[8] J.E. RerrELL, T.Y. Tsari, Q. Yang, Modeling the cell cycle: why do certain circuits
oscillate?, Cell. 144(6), 874-885 (2011).

[9] J.M. Rranco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for
solving second order oscillatory IVPAppl. Math. Comp. 232, 643-657 (2014) .

[10] M.R. Garvig, J.F. Bowey, A reaction-difusion system of-w type. Part II: Nu-
merical analysisEuro. J. Appl. Math. 16, 621-646 (2005).

[11] J.M. GreenBergG, Spiral waves forl-w systemsAdv. Appl. Math. 2, 450-455
(1981).

[12] D. Horievoer, M. Van DatLe, Exponentially-fitted methods and their stability
functions J. Comput. Appl. Math. 236(16), 4006—4015 (2012).

[13] D. HoLLevoet, M. Van DaeLe, G. Vanben Berghe, Exponentially-fitted methods
applied to fourth order boundary value problendsComput. Appl. Math. 235(18),
5380-5393 (2011).

13



[14] E. Isaacson, H.B.KeLLEr, Analysis of Numerical Method®over Publications,
New York (1994).

[15] S. Koaa, Rotating spiral waves in reaction4flision systems. Phase singularities
of multiarmed wavesrog. Theor. Phys. 67, 164-178 (1982).

[16] N. KopeLt, L.N. Howarp, Plane wave solutions to reactiongision equations
Stud. Appl. Math. 52, 291-328 (1973).

[17] A.W. Murray, M.W. Kirscaner, Dominoes and clocks: the union of two views of
the cell cycle Science 246, 614621 (1989).

[18] L. Gr. Ixaru, G. Vanpen Bergug, Exponential Fitting Kluwer, Boston-
Dordrecht-London (2004).

[19] A. Paris, L. Ranpez, New embedded explicit pairs of exponentially fitted Runge-
Kutta methodsJ. Comput. Appl. Math. 234(3), 767776 (2010).

[20] B. PsrernosTER, Present state-of-the-art in exponential fitting. A conitibn ded-
icated to Liviu Ixaru on his 70-th anniversgrniComput. Phys. Commun. 183,
2499-2512 (2012).

[21] W.E. SHiesser, The Numerical Method of Lines: Integration of Partialf@ren-
tial Equations Academic Press, San Diego (1991).

[22] W.E. SHiesser, G.W. Grirritas, A Compendium of Partial Qerential Equa-
tion Models: Method of Lines Analysis with MatlaBambridge University Press
(2009).

[23] J.A. SierratT, On the evolution of periodic plane waves in reactiofftdiion
systems of-w type SIAM J. Appl. Math. 54(5), 1374-1385 (1994).

[24] M.J. Suith, J.D.M. RapEMAcHER, J.A. SiErrATT, Absolute stability of wavetrains
can explain spatiotemporal dynamics in reactiogfidiion systems of lambda-
omega typeSIAM J. Appl. Dyn. Systems 8, 1136-1159 (2009).

[25] Lroyp N. Treretuen, Finite Difference and Spectral Methods for Or-
dinary and Partial Dfferential Equations unpublished text, available at
http://people.maths.ox.ac.uk/trefethen/pdetext.html (1996).

[26] G. Vanpen Berche, M. Van Daece, H. Vanpe Vyver, Exponentially fitted Runge-
Kutta methods of collocation type: fixed or variable knotrpie?, J. Comput. Appl.
Math 159, 217-239 (2003).

14



4““ ) )
4 Y
‘ ‘ ¥ " oS
A A’ ; ;"s‘,\“..

\\'

I
e )

E el
"‘.*ff':\z'»:«fz(
] ‘v, ‘

Figure 3: Profile of the solutions of (1.2), with initial catidns (3.21), boundary conditions (3.22a)-(3.22b)
computed bypdepe Matlab routine with diferent values of the spatial stepsize. The left column defiets
profiles ofu(x, t), while in the right one the graphs ofx, t) are drawn.
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