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Abstract

The numerical solution of reaction-diffusion equations ofλ-ω type, which are known to
possess a one-parameter family of periodic plane wave solutions, is object of this paper.
Due to the periodic character of such solutions, a special purpose numerical integration
is here proposed, based on adapted finite differences. The adaptation occurs at the level
of the problem, by a suitable spatial semi-discretization based on trigonometrically
fitted finite differences. Numerical experiments confirming the effectiveness of the
approach are given.
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1. Introduction

The paper is concerned with the numerical solution of systems of partial differential
equations (PDEs), represented in terms of two coupled reaction-diffusion equations of
the form
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, (1.1)

with Du > 0 andDv > 0, typically modeling the interactions of two biological species
whose concentrations are denoted byu(x, t) andv(x, t). It is known (for instance, refer
to [23]) that traveling waves are fundamental solutions of (1.1), of type

u(x, t) = U(z), v(x, t) = V(z),

wherez= x− at denotes the traveling wave coordinate, beinga the wave speed.
Many systems of interest in life sciences have been successfully modelled by reaction-

diffusion equations, especially for those problems typically exhibiting the generation of
periodic waves along their dynamics. For instance, cell cycles are frequently clock-like
[8, 17], behaving if they are driven by an autonomous biochemical oscillator.

Among coupled reaction-diffusion equations (1.1), a remarkable interest toλ-ω
type equations is visible in the existing literature (for instance, refer to [7, 10, 11, 15,
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16, 23, 24] and references therein).λ-ω reaction-diffusion equations are PDEs of the
form
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beingr = (u2 + v2)1/2, with λ(0) > 0 andω(0) > 0. It is known (refer to [23]) that any
isolated zero ofλ(·) correspond to a limit cycle in the reaction kinetics: this peculiar
property has madeλ-ω systems a prototype model for reaction-diffusion systems whose
kinetics have a limit cycle [23].

A first attempt in analyzing and representing the solution of(1.2) has been given
in [16], where the authors proved that the system (1.2) has a one-parameter family of
periodic plane waves solutions (thus having constant shapeand speed and oscillating
both in space and in time), given by

u(x, t) = r̂ cos
(

ω(r̂)t ±
√

λ(r̂)x
)

,

v(x, t) = r̂ sin
(

ω(r̂)t ±
√

λ(r̂)x
)

,
(1.3)

for any value of the parameter ˆr ∈ R satisfyingλ(r̂) > 0. This representation of
the plane waves is clearly useless for practical purposes (it depends on the unknown
parameter ˆr), but it will be important hereinafter to assess suitable numerical schemes,
see Remark 2.1.

Indeed, the periodic character of the problem suggests to propose a numerical so-
lution of (1.2) which takes into account this qualitative behavior, i.e. by means of a
special purposenumerical solver more tuned to follow the periodic behavior, in the
spirit of the so-calledexponential fittingtechnique (EF, refer to the recent review paper
on the topic [20] and references therein and the classical monograph [18]; in the case of
differential equations, we specifically refer to [4, 5, 6, 9, 12, 13, 19, 26] and references
therein).

The existing literature on EF-based methods has provided a certain number of
adaptations of classical numerical methods to better numerically follow known quali-
tative behaviors (e.g. periodicity, oscillations, exponential decay of the solution). This
problem-oriented approach differs from the classical one, given by the employ ofgen-
eral purposemethods, which would require a very small stepsize to accurately follow
the prescribed dynamics, if compared to problem-based methods, with a subsequent
deterioration of the numerical performances, especially in terms of efficiency. For this
reason, many classical numerical methods have been adaptedin order to more effi-
ciently approach problems with oscillatory solutions (see[20] and references therein).

A special purpose numerical method for the solution of functional equations ex-
actly integrates (within round-off error) problems whose solution lies in a finite dimen-
sional linear space (the so-calledfitting space) spanned by a set of functions other than
polynomials, properly chosen according to the behavior of the solution [18, 20]. The
main difference between general and special purpose numerical methods is that the
former are characterized by constant coefficients, while the latter depend on variable
coefficients, which are functions of the parameters characterizing the solution (e.g. the
frequency of the oscillations in case of problems with oscillatory solutions or the rate
of decay in case of problems with exponentially decaying solutions).
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In this direction, two main problems arise:

(i) choosing a fitting space which is as much as possible suitable to represent the
solution of the problem;

(ii ) accurately computing/estimating the parameters on which the numerical method
depends.

In the case ofλ-ω systems, both problems (i) and (ii ) can be treated by taking into
account the existing theoretical studies on the problem, i.e. the possible representation
of the periodic plane wave solutions of (1.2), given by (1.3).

The spirit of this paper is that of solvingλ-ω reaction-diffusion systems (1.2), by
means of special purpose numerical methods based on exponential fitting. To the best
of our knowledge, this represents one of the first attempts toapply this technique to
partial differential equations, together with [3]. More specifically, we aim to employ
finite difference schemes adapted to the qualitative behavior of the problem and, after a
spatial semi-discretization based on such formulae, to solve the corresponding system
of ordinary differential equations by means of a proper time integrator.

The paper is organized as follows: Section 2 is devoted to theconstruction and the
analysis of adapted finite differences for the approximation of the spatial second deriva-
tive appearing in (1.2); the corresponding spatial semi-discretization is introduced in
Section 3; the numerical evidence is then described in Section 4. Some conclusions are
given in Section 5.

2. Special purpose second order finite differences

As above discussed, we aim to provide a spatial semi-discretization of the system
of PDEs (1.2) by means of finite differences adapted to the problem. In particular, due
to the fact that (1.2) possess a one-parameter family of periodic wave solutions (1.3),
thus oscillating both in space and in time, we propose trigonometrically fitted finite
differences for the numerical approximation of the second orderspace derivative ap-
pearing in (1.2). We propose here two versions of adapted finite differences, involving
three and five consecutive points in the space discretization.

2.1. A three-point trigonometrically fitted finite difference

We review in this subsection part of the results derived in [3] for a given function
u(x, t) defined on the rectangular domain

D = [x0,X] × [t0,T] ⊂ R
2.

The purpose is that of deriving a numerical approximation ofthe second derivative with
respect tox by the three-point finite difference formula

∂2u
∂x2

(x, t) ≈ 1
h2

(a0u(x+ h, t) + a1u(x, t) + a2u(x− h, t)) , (2.4)

of nearest neighbors type (i.e. employing, for any givenx, the adjacent meshpoints
x− h andx+ h), whereh is a given spatial stepsize.
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For our particular purposes, i.e. provide a special purposespatial semi-discretization
of (1.2), we need a trigonometrically fitted version of formula (2.4). Thus, we consider
the following fitting space

F = {1, sin(µx), cos(µx)}, (2.5)

with frequencyµ ∈ R, whose meaning is clarified in Remark 2.1, and associate to (2.4)
the linear operator

L[h,a]u(x, t) =
∂2u
∂x2

(x, t) − 1
h2

(

a0u(x+ h, t) + a1u(x, t) + a2u(x− h, t)
)

. (2.6)

The unknown values ofa0, a1 anda2 are computed by imposing the exactness of (2.4)
on the functional set (2.5) or, equivalently, by annihilating the operator (2.6) on every
element of (2.5). This leads to the linear system


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


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


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





a0 + a1 + a2 = 0,

a0 − a2 = 0,

(a0 + a2) cos(z) + a1 = −z2,

(2.7)

with z= µh, whose solution is given by

a0(z) = − z2

2(cos(z) − 1)
, a1(z) =

z2

cos(z) − 1
, a2(z) = − z2

2(cos(z) − 1)
. (2.8)

As usual for trigonometrically fitted formulae, the coefficients are functions of the pa-
rameterz which is determined a posteriori (refer to Remark 2.1): thisis the main dif-
ference with general purpose formulae, which depends on constant coefficients, while
special purpose ones are characterized by non-constant coefficients. In general, the
value ofz is realistically non-zero, since neither the stepsize or the frequency (at least
in presence of oscillations or periodicities, which is our case) are equal to zero. This
fact has a benefit on the solvability of the system (2.7), whose determinant of the coef-
ficient matrix is given by

2(1− cosz), (2.9)

which annihilates also inz= 0. We will also take care in the implementations to avoid
values ofh such that the correspondingzmakes (2.9) equal to zero.

For the derived trigonometrically fitted finite difference, the following accuracy
result holds [3].

Theorem 2.1. Suppose that u∈ C4(Ω), whereΩ = [x− h, x+ h] × [0,T], being h> 0.
Then, the trigonometrically fitted finite difference formula(2.4), whose coefficients are
given by(2.8), has second order of accuracy.

We observe that the coefficients (2.8), whenz tends to 0, tend to the classical coef-
ficients

a0 = 1, a1 = −2, a2 = 1, (2.10)

of the corresponding general purpose finite difference, which has second order of ac-
curacy as well. Thus, the trigonometrical fitting adaptation of (2.4) preserves the order
of accuracy of the corresponding general purpose version with coefficients given by
(2.10).
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2.2. A five-point trigonometrically fitted finite difference

We now introduce a new trigonometrically fitted finite difference of order 4 for the
numerical approximation of the second order spatial derivative in (1.2). Also in this
case we aim to provide a nearest neighbors finite difference formula and, in order to
gain higher order of accuracy than the three-point case, we involve five consecutive
meshpoints. Thus, the formula we consider has the followingform

∂2u
∂x2

(x, t) ≈ 1
h2

(

a0u(x+ 2h, t) + a1u(x+ h, t) + a2u(x, t)

+ a3u(x− h, t) + a4u(x− 2h, t)
)

,

(2.11)

whereh is a given increment of thex variable. We derive a trigonometrically fitted
version of (2.11) in correspondence of the fitting space

F = {1, sin(µx), cos(µx), xsin(µx), xcos(µx)}. (2.12)

We associate to (2.11) the following linear operator

L[h,a]u(x, t) =
∂2u
∂x2

(x, t) − 1
h2

(

a0u(x+ 2h, t) + a1u(x+ h, t)

+ a2u(x, t) + a3u(x− h, t) + a4u(x− 2h, t)
)

,

(2.13)

and, in order to derive the unknown coefficientsa0, a1, a2, a3 anda4, we annihilate it
on the chosen space (2.12), i.e.

L[h,a]1 = 0,

L[h,a]xi sin(µx)
∣

∣

∣

∣

x=0
= 0, i = 0,1,

L[h,a]xi cos(µx)
∣

∣

∣

∣

x=0
= 0, i = 0,1.

We observe that each evaluation is always referred to the point (x, t) = (0,0), due to the
invariance in translation of linear operators, as discussed in [18]. This leads to

a0 = −
zcsc

(

z
2

)5
sec

(

z
2

)

(2− 2 cos(z) − zsin(z))

32
,

a1 =
zcsc

(

z
2

)4
(sin(z) − zcos(z))

4
,

a2 =
zcsc

(

z
2

)4
sec

(

z
2

) (

zcos
(

z
2

)

+ 2zcos
(

3z
2

)

− 2 sin
(

3z
2

))

8
,

a3 = a1,

a4 = a0,

(2.14)

with z= µh.
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Remark 2.1. The chosen fitting spaces(2.5) and (2.12), as it normally happens in
function fitting techniques (refer to [18, 20] and references therein), explicitly depend
on the parameterµ which can be interpreted as the frequency of the oscillations occur-
ring in the solution of(1.2). As a consequence, the corresponding numerical method
will depend on variable coefficients: this is visible, for instance, in the expression of
the coefficients(2.8) and (2.14)of the finite differences(2.4) and (2.11), respectively.
Numerical methods depending on variable-coefficients are effectively useful when a
proper estimation of the unknown parameters is actually computable, as it has been
clarified in many different situations in the literature (we refer to the review paper [20]
and references therein). In our case, we have gained a particular benefit from the
knowledge of a parametric representation of the periodic plane wave solutions(1.3),
which clearly shows that sine and cosine are evaluated in

√
λ(r̂)x. This suggests us

to employ as estimation of the parameter z= µh in (2.8)and (2.14)at the mesh point
(xi , t j) the value

zi j =

√

λ(r i j )h,

where
r i j =

√

u2
i j + v2

i j .

with ui j ≈ u(xi , t j), vi j ≈ v(xi , t j). In this way, we have gained an approximation of
the fitted parameters without applying optimization techniques or solving nonlinear
systems of equations as in [5, 13] and references therein. Thus, the overall computa-
tional cost is not compromised, in our case, by the computation of the parameter. This
also confirms that, in designing adapted numerical solvers,it is particularly useful to
acquire as much theoretical information on the problem as possible.

A final constructive issue regards the link between the special purpose finite dif-
ference (2.11) with coefficients (2.14) and its corresponding classical general purpose
version. The latter can be easily recovered by annihilatingthe linear operator (2.13) on
the monomial basis{1, x, x2, x3, x4}, i.e.

L[h,a]1 = 0,

L[h,a]xi
∣

∣

∣

∣

x=0, t=0
= 0, i = 1,2,3,4.

This leads to

a0 = −
1
12
, a1 =

4
3
, a2 = −

5
2
, a3 =

4
3
, a4 = −

1
12
, (2.15)

i.e. to the classical five-point finite difference

∂2u
∂x2

(x, t) ≈ − 1
12h2

(

u(x+ 2h, t) − 16u(x+ h, t) + 30u(x, t)

− 16u(x− h, t) + u(x− 2h, t)
)

,

(2.16)

which is known to have fourth order of accuracy. We observe that the coefficients (2.14)
of the finite difference (2.11), thus obtained with respect to the functionalbasis (2.12),
i.e.

{1, sinµx, cosµx, xsinµx, xcosµx},
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whenz tends to 0, tend to the classical coefficients (2.15), obtained with respect to the
monomial basis

{1, x, x2, x3, x4}.
As a natural consequence, also the expression of the error associated to the trigonomet-
rically fitted formula tends to that of the classical one. Thus, the trigonometrically fit-
ted finite difference (2.11) with coefficients (2.14) retains the same order of accuracy of
that based on polynomials with coefficients given by (2.15), i.e. it has order 4. Hence,
the non-polynomial version of existing general purpose formulae do not deteriorate
their order of accuracy (this also happens in many other contexts, such as interpolation,
quadrature, numerical solution of ordinary differential equations [18, 20]).

Remark 2.2. The choices of the fitting spaces(2.5)and (2.12)reveal a similarity with
the Fourier spectral method of lines [25]. Actually, in a more general sense, one could
recognize a close similarity among trigonometrically fitted method of lines, based on
suitably truncating the mixed basis

{1, sinµx, cosµx, xsinµx, xcosµx, ...} (2.17)

or the trigonometrical basis

{1, sinµx, cosµx, sin 2µx, cos 2µx, ...} (2.18)

and the Fourier spectral method of lines, obtained in correspondence of the functional
basis

{1, sinx, cosx, sin 2x, cos 2x, ...}. (2.19)

We point out here two similarities and one significant difference. A clear similarity
is given by the form of the chosen basis functions, especially in (2.18) and (2.19),
as well as by the fact that the number of chosen basis functions influence the order
of convergence. For instance, formula(2.4) with coefficients(2.8) attains order 2 (3
basis functions are employed for its construction, i.e. those in (2.5)), while formula
(2.11)with coefficients(2.14)attains order 4 (5 basis functions are employed for its
construction, i.e. those in(2.12)). As one can easily expect, higher orders can be
achieved by coherently augmenting, at the same time, the number of points in the finite
difference as well as the number of basis functions. A significantdifference is given
by the gained level of adaptation to the problem: indeed, thestandard Fourier basis
(2.19)does not contain an explicit reference to the problem under consideration, while
the trigonometrically fitted ones(2.17)and (2.18)depends on the parameterµ which
is closely connected to the solution of the problem. This makes the trigonometrically
fitted approach more problem oriented and, thus, more accurate, as observed in Section
4.

3. Semi-discretization of the operator

We now apply the results developed in the previous sections to the originalλ-ω
system (1.2). More precisely, following [23], we are going to consider the system of
PDEs (1.2) in the unbounded domain

D = [0,∞) × [0,T],

7



equipped by the following boundary conditions

∂u
∂x

(0, t) =
∂v
∂x

(0, t) = 0, (3.20a)

lim
x→+∞

u(x, t) = lim
x→+∞

v(x, t) = 0, (3.20b)

and the initial conditions
u(x,0) = f0(x),

v(x,0) = g0(x).
(3.21)

This problem is now aimed to be treated by suitably applying the method of lines (refer
to [14, 21, 22] and references therein), i.e. through a semi-discretization of the problem
along the spatial variable. The periodic nature of the solution, described in Section
1, suggests us to proceed by employing the trigonometrically fitted finite differences
derived in Section 2. We now describe in details how the semi-discretized problem is
derived.

In the practice, as also suggested in [23], we are going to solve the problem on a
bounded domain [0,X] × [0,T] whereX is a large real number. In correspondence of
this large value ofX, instead of (3.20b), we actually consider the following boundary
conditions

u(X, t) = v(X, t) = 0.

More precisely,X is chosen in such a way that any further increase on it have negligi-
ble effects on the solution, thus making above zero boundary conditions realistic and
coherent with (3.20b). In summary, we consider the following boundary conditions in
[0,X]

∂u
∂x

(0, t) =
∂v
∂x

(0, t) = 0, (3.22a)

u(X, t) = v(X, t) = 0. (3.22b)

We next considerN equidistant points in the spatial interval [0,X] and denote byh the
distance between two consecutive points. The semi-discretized domain, denoted by
Dx, results to be

Dx =

{

(x j , t) : x j = jh, j = 0, . . . ,N − 1, h =
X

N − 1

}

.

We next denote byu j(t) = u(x j , t), 0 ≤ j ≤ N − 1. As a consequence, the original
problem (1.2) with boundary conditions (3.22a)-(3.22b) and initial conditions (3.21) is
transformed in the following system of 2N ordinary differential equations

u′0(t) = u′2(t), (3.23a)

v′0(t) = v′2(t), (3.23b)

u′ i(t) = ∆n[ui(t),h] + λ(r)ui(t) − ω(r)vi(t), 1 ≤ i ≤ N − 2 (3.23c)

v′ i(t) = ∆n[vi(t),h] + ω(r)ui(t) + λ(r)vi(t), 1 ≤ i ≤ N − 2 (3.23d)

u′N−1(t) = 0, (3.23e)

v′N−1(t) = 0. (3.23f)
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This system of ordinary differential equations is then equipped of the initial conditions

u j(0) = f0(x j), v j(0) = g0(x j), 0 ≤ j ≤ N − 1.

We observe that Equations (3.23a) and (3.23b) arise from theboundary conditions
(3.22a), taking into account that

∂u
∂x

(0, t) ≈ u0(t) − u2(t)
2h

= 0,
∂v
∂x

(0, t) ≈ v0(t) − v2(t)
2h

= 0,

which implies thatu0(t) = u2(t) andv0(t) = v2(t). On the other hand, Equations (3.23c)
and (3.23d) are obtained by approximating the second spatial derivative ∂

2u
∂x2 (x, t) with

the chosen finite difference∆n[u(x, t),h], depending onn consecutive meshpoints. Fi-
nally, Equations (3.23e) and (3.23f) are obtained by considering the boundary condi-
tions (3.22b).

4. Numerical experiments

We now present some numerical results obtained by solving the system of PDEs
(1.2) withλ(r) andω(r) of the form

λ(r) = λ0 − r p, (4.24)

ω(r) = ω0 − r p, (4.25)

andλ0, ω0, p ∈ R+.
By employing the semi-discretization introduced in Section 3, we are specifically

considering the system of ODEs (3.23a)-(3.23f) with boundary conditions (3.22a)-
(3.22b) and initial conditions (3.21) given by

u j(0) = v j(0) = Aexp(−ξx j), 0 ≤ j ≤ N − 1. (4.26)

In the experiments, as in [23], we will always consider the following values of the
above parameters

λ0 = 1, ω0 = 2, p = 1.8, A = 0.1, ξ = 0.8. (4.27)

We proceed in two different directions: indeed, we consider the spatially semi-
discretized version (3.23a)-(3.23f) of the problem, by approximating the spatial deriva-
tive both with the standard and the trigonometrically fittedfinite differences; we next
solve the obtained semi-discretized problem by employing aproper time solver.

Figures 1 and 2 show the profiles of the solutions originated by applying the trigono-
metrically fitted spatial semi-discretization (with 3 and 5points, i.e. through finite dif-
ferences (2.4) and (2.11) with coefficients (2.8) and (2.14), respectively) and solving in
time with theode15s Matlab routine. The solutions of the semi-discretized problem
by standard finite differences are also depicted in Figures 1 and 2; also in this case, the
ode15s time solver is applied. The problem is solved for (x, t) ∈ [0,150]× [0,60], as
in [23]. The space interval is large enough in order to make the use of the boundary
conditions (3.22a)-(3.22b) instead of (3.20a)-(3.20b) realistic, as highlighted in [23].
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We have involved 50 subintervals in the spatial semi-discretization with 3 points (Fig-
ure 1) and 20 subintervals in the spatial semi-discretization with 5 points (Figure 2):
hence, the spatial stepsizes areh = 3 andh = 7.5, respectively.

As it is visible from Figures 1 and 2, the profiles of the solutions obtained via the
trigonometrically fitted method of lines are coherent with the expected dynamics and,
in particular, with that described in [23]. Such a situationis not visible for the classical
method of lines, since an unstable behavior is visible in Figure 1 for the three-point
semi-discretization, while a total loss of the periodic character of the solution is evident
in Figure 2 for the five-point semi-discretization: this is also pointed out by the range of
variability of the solutions shown in Tables 1 and 2. Thus, inthe comparison between a
standard finite difference and a trigonometrically fitted one for theλ-ω problem (1.2),
one can recognize a much more stable behavior of the latter and a clear ability to retain
the periodic character of the solutions.

As highlighted by the representation (1.3) of the periodic plane waves solutions,
the range of variability is given by [−r̂ , r̂], suggesting that we should expect symmetric
values of the boundary of such interval with respect to the origin. As shown in Tables
1 and 2, the best results in this sense are obtained by employing the trigonometrically
fitted finite difference depending on 5 points. This aspect gives us a measure of the
accuracy of our approach which, in comparison with the classical one, results to be
more accurate and stable.

A further comparison is then provided with respect to Matlabpdepe routine, which
acts as an authomatic solver for a class of PDEs of the type

c

(

x, t, ϕ,
∂ϕ

∂x

)

∂ϕ

∂t
= x−m ∂

∂x

(

xm f (x, t, ϕ,
∂ϕ

∂x
)

)

+ s

(

x, t, ϕ,
∂ϕ

∂x

)

,

suitably equipped by initial and boundary conditions. Problem (1.2) falls into this class
of equations, by assuming

c

(

x, t, ϕ,
∂ϕ

∂x

)

= [1, 1]T,

f

(

x, t, ϕ,
∂ϕ

∂x

)

=

[

∂u
∂x
,
∂v
∂x

]T

,

s

(

x, t, ϕ,
∂ϕ

∂x

)

= [λ(r)u− ω(r)v, ω(r)u+ λ(r)v]T ,

m= 0.

The routinepdepe is based on employing finite differences depending on a number of
points which is automatically selected by the solver. Figure 3 shows the profiles of the
solution of (1.2), with initial conditions (3.21), boundary conditions (3.22a)-(3.22b), in
correspondence of several values of the spatial stepsizeh. From a first glance, one can
easily recognize that an accurate computation of the solution throughpdepe requires a
severe mesh refinement: indeed, forh = 15 orh = 7.5 the wavefront is very irregular
and badly approximated; forh = 3, the wavefront appear more regular, but it is not
accurately matched with the zero boundary condition. A muchbetter situation occurs
for h = 1.5. This is absolutely coherent with the description provided by the developers
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in the inline guide: they clearly state the routine is able tosolve problems with a modest
accuracy, thus severe mesh refinements are needed in order toaccurately reproduce the
profiles of the solutions. This gap does not occur in employing trigonometrically fitted
finite differences, which look accurate also with larger values of the stepsize, as shown.

Type of finite difference min
(x,t)∈[0,150]×[0,60]

u(x, t) max
(x,t)∈[0,150]×[0,60]

u(x, t)

Standard on 3 points −0.9697 70.0670
Standard on 5 points −2.8550· 10−4 0.1000

Trigonometrically fitted on 3 points −0.9912 1.3403
Trigonometrically fitted on 5 points −1.0379 1.0366

Table 1: Range of variability of the values of the numerical approximation of the solutionu(x, t) of (1.2), with
initial conditions (3.21), boundary conditions (3.22a)-(3.22b), in correspondence of the parameters given by
(4.27), by various finite differences for the spatial semi-discretization.

Type of finite difference min
(x,t)∈[0,150]×[0,60]

v(x, t) max
(x,t)∈[0,150]×[0,60]

v(x, t)

Standard on 3 points −3.7892 4.9338· 104

Standard on 5 points −4.0383· 10−4 0.1000
Trigonometrically fitted on 3 points −1.1873 1.0837
Trigonometrically fitted on 5 points −1.0416 1.0376

Table 2: Range of variability of the values of the numerical approximation of the solutionv(x, t) of (1.2), with
initial conditions (3.21), boundary conditions (3.22a)-(3.22b), in correspondence of the parameters given by
(4.27), by various finite differences for the spatial semi-discretization.

5. Conclusions

We have proposed an alternative approach for the numerical solution of reaction-
diffusion systems ofλ-ω type (1.2), based on the employ of trigonometrically fitted
finite differences. This approach is problem-oriented: since it is known from the litera-
ture [23] that the problem has a one-parameter family of periodic plane wave solutions,
an adapted numerical approach taking into account this qualitative behavior has been
preferred. Clearly, the numerical solution of other problems than that considered in
this paper can be handled by non-polynomially fitted methodsas well, but they would
need to be suitably adapted to the problem under investigation. In developing the spe-
cial purpose approach, the theoretical knowledge of many aspects of the problem have
been taken into account: they have guided, in particular, the choice of the fitting space
and that of the fitted parameters. Numerical evidence highlights that this approach is
promising in solving partial differential equations whose solutions are periodic plane
waves or, more in general, have an a priori known qualitativebehavior, which can be
exploited in developing a proper numerical scheme. Furtherefforts will be thus ori-
ented in this direction, i.e. introducing and analyzing adapted numerical techniques in
order to approach other differential operators and providing techniques of parameter
estimations.
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Figure 1: Numerical solution of (1.2), with initial conditions (3.21), boundary conditions (3.22a)-(3.22b),
with parameters given by (4.27). The left figures are the profiles ofu(x, t) computed by solving the semi-
discretized problem (3.23a)-(3.23f) obtained by the three-point trigonometrically fitted finite difference (2.4)
with coefficients (2.8) (top) and the classical one with coefficients (2.10) (bottom). Analogously, the right
figures are the profiles ofv(x, t).
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Figure 2: Numerical solution of (1.2), with initial conditions (3.21), boundary conditions (3.22a)-(3.22b),
with parameters given by (4.27). The left figures are the profiles ofu(x, t) computed by solving the semi-
discretized problem (3.23a)-(3.23f) obtained by the five-point trigonometrically fitted finite difference (2.11)
with coefficients (2.14) (top) and the classical one with coefficients (2.15) (bottom). Analogously, the right
figures are the profiles ofv(x, t).
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Figure 3: Profile of the solutions of (1.2), with initial conditions (3.21), boundary conditions (3.22a)-(3.22b)
computed bypdepe Matlab routine with different values of the spatial stepsize. The left column depictsthe
profiles ofu(x, t), while in the right one the graphs ofv(x, t) are drawn.
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