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Abstract. We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide
efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required com-
putational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qual-
itative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially
fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special pur-
pose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and
Volterra integral equations.

Partial differential equations generating periodic wavefronts

Let us consider the following reaction-diffusion problem [15, 18]

ut = uxx + λ(r)u − ω(r)v, vt = vxx + ω(r)u + λ(r)v, (1)

where u, v : [0,∞) × [0,T ] −→ R, r =
√

u2 + v2, ω(0) > 0, λ(0) > 0. It is a nonlinear problem, whose nonlinearity is
dictated by the functions λ(r) and ω(r)

It is well known (compare [12, 13, 19] and references therein) that such problem generate periodic wavefronts
admitting the following parametrization [15],

u(x, t) = r̂ cos(ω(̂r)t ±
√
λ(̂r)x), v(x, t) = r̂ sin(ω(̂r)t ±

√
λ(̂r)x), (2)

with r̂ ∈ R is such that λ(̂r) > 0. Though incomputable, the expression (2) a priori clarifies the periodic character in
time and space. We provide a spatial discretization of (1), by means of trigonometrically fitted finite differences, as
follows [7, 8]. For a given function u(x, t) defined on the rectangular domain D = [x0, X] × [t0,T ] ⊂ R2, we compute
the following three-point finite difference

∂2u
∂x2 (x, t) ≈

1
h2 (a0u(x + h, t) + a1u(x, t) + a2u(x − h, t)) , (3)

where h is a given spatial stepsize, whose coefficients a0, a1 and a2 are computed in order to make it exact on the
functional basis

F = {1, sin(µx), cos(µx)}, (4)

with µ ∈ R, leading to

a0(z) = −
z2

2(cos(z) − 1)
, a1(z) =

z2

cos(z) − 1
, a2(z) = −

z2

2(cos(z) − 1)
, (5)



FIGURE 1. Numerical solution of (1), with initial conditions (7), boundary conditions (6), with parameters given by (8). The left
figure is the plot of u(x, t), the one on the right is v(x, t). The solution is computed by solving the semi-discretized problem obtained
by the three-point trigonometrically fitted finite difference (3), with coefficients (5).

with z = µh. The chosen fitting space (4) depends on the unknown parameter µ which can be recovered by the
parametrization (2) of the wavefront: indeed, at the mesh point (xi, t j), the value

zi j =

√
λ(ri j)h,

where ri j =
√

u2
i j + v2

i j, is assumed as estimation of the parameter. Such an estimate is clearly cheap, since it does not
require applying optimization techniques or solving nonlinear systems of equations as in [9, 10, 14] and references
therein.

We now present some numerical results obtained by solving the system of PDEs (1) with λ(r) and ω(r) of the
form λ(r) = λ0 − rp, ω(r) = ω0 − rp, with λ0, ω0, p ∈ R+.

∂u
∂x

(0, t) =
∂v
∂x

(0, t) = 0, lim
x→+∞

u(x, t) = lim
x→+∞

v(x, t) = 0, (6)

and the initial conditions

u(x, 0) = f0(x), v(x, 0) = g0(x). (7)

We assume

λ0 = 1, ω0 = 2, p = 1.8, A = 0.1, ξ = 0.8. (8)

Figures 1 shows the profile of the solutions originated by applying the trigonometrically fitted spatial semi-
discretization with 3 points, i.e through finite differences (3) with coefficients (5), and solving in time with the ode15s
Matlab routine. Analogously, the solutions of the semi-discretized problem by standard finite difference (3), with
coefficients a0(z) = 1, a1(z) = −2, a2(z) = 1, are depicted in Figure 2; also in this case, the ode15s time solver is
applied. We have involved 50 subinterval in the spatial semi-discretization: hence, the spatial stepsize is h = 3. As it
is visible from Figure 1, the profile of the obtained solutions is coherent with the expected dynamics, while such a
situation is not visible in Figure 2, since an unstable behavior is visible in the results.



FIGURE 2. Numerical solution of (1), with initial conditions (7), boundary conditions (6), with parameters given by (8). The left
figure is the plot of u(x, t), the one on the right is v(x, t). The solution is computed by solving the semi-discretized problem obtained
by the standard version of the finite difference (3).

Volterra integral equations with periodic solutions

We consider the Volterra integral equation

y(x) = f (x) +

∫ x

−∞

k(x − s)y(s)ds, x ∈ [0, xend]

y(x) = ψ(x), −∞ < x ≤ 0,
(9)

with k ∈ L1(IR+), f continuous and T -periodic on [0, xend], ψ continuous and bounded on IR−. Under suitable hy-
potheses, (9) has a unique T -periodic solution [1]. In the numerical treatment, standard numerical procedures are not
efficient, especially for high frequency values, thus we propose a specially tuned direct quadrature (DQ) method based
on exponential fitting (compare also [2, 3, 4, 5]).

Following the exponential fitting theory, we formulate a DQ method which is exact whenever the solution y(x)
belongs to the fitting space

B1 := {1, x, sin(ωx), cos(ωx)}, (10)

and k(x) = exp(αx), α, ω ∈ R.
The DQ method we propose is based on the quadrature rule Q, with∫ X+h

X−h
g(x)dx ≈ Q[g](X) := h

1∑
k=0

akg(X + ξkh) (11)

where X > 0 and h > 0. We impose that such rule is exact on the fitting space

B := {eαx, xeαx, e(α±iω)x}, (12)

coming to a nonlinear system of equations in the unknowns weights and nodes. This yields to ak = ak(u, z), and
ξk = ξk(u, z), with u =: αh, z := ωh. Then it is an easy task to derive the composite quadrature rule based on the
formula (11):

I[g](X) =

∫ b

a
g(x)dx ≈ Qm[g] := h

m−1∑
j=0

1∑
k=0

ãkg(t j + ξ̃kh), (13)

where t j = a + h j, j = 0, . . . ,m, h = (b − a)/m, ãk = ak/2, ξ̃k = (1 + ξk)/2.



Given a uniform mesh on [0, xend], Ih := {xn = nh, n = 0, . . . ,N}, with h = xend/N, the DQ method based on the
exponentially fitted formula (13) reads

y(xn) ≈ f (xn) + (Iψ)(xn) + h
n−1∑
j=0

2∑
i=1

ãik(xn− j − ξ̃ih)y(x j + ξ̃ih), (14)

n = 1, ...,N, where

(Iψ)(xn) =

∫ 0

−∞

k(xn − s)ψ(s)ds,

or is a suitable approximation of such integral. To obtain a fully discretization of (9), an approximation of y(x j + ξ̃ih)
is needed. Therefore, we introduce an approximation by interpolation function P, on the points

(x j+l, y j+l), l = −r−, . . . , r+.

Two choices are available: the first one is the Lagrange polynomial interpolation, easy but unnatural since we are
assuming that the solution is a periodic function. The second one is a mixed-trigonometric interpolation, which is
exact on the fitting space (10) by design. In both cases the interpolating function P can be written as follows

P(x j + sh) =

r+∑
l=−r−

pl(s)y j+l,

where pl(s) do not depend on x j but only on r−, r+. Once we have approximated the values of the solution y(x j + ξ̃ih)
in (14) by the interpolation technique, the fully-discrete method is the following

yn = f (xn) + (Iψ)(xn) + h
n−1∑
j=0

2∑
i=1

ãik(xn− j − ξ̃ih)
r+∑

l=−r−

pl(ξ̃ih)y j+l,

n = 1, ...,N. We set r+ ≤ 1 to avoid the use of values of the solution in future mesh points. The method is explicit for
r+ = 0, and implicit for r+ = 1.

We underline that the proposed method has the same order as a DQ method based on standard 2-nodes Gauss
quadrature rule. The advantage of the exponentially fitted DQ method with mixed-trigonometric interpolation, is that
the error is smaller when periodic problems are treated and the gain is more relevant for high frequency values.
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