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Abstract

The paper presents an adapted numerical integration for advection-reaction-diffusion
problems. The numerical scheme, exploiting the a-priori knowledge of the qualita-
tive behaviour of the solution, gains advantages in terms of efficiency and accuracy
with respect to classic schemes already known in literature. The adaptation is here
carried out through the so-called trigonometrical fitting technique for the discretiza-
tion in space, giving rise to a system of ODEs whose vector field contains both stiff
and non-stiff terms. Due to this mixed nature of the vector field, an Implicit-Explicit
(IMEX) method is here employed for the integration in time, based on the first order
forward-backward Euler method. The coefficients of the method here introduced rely
on unknown parameters which have to be properly estimated. In this work, such an
estimate is performed by minimizing the leading term of the local truncation error. The
effectiveness of this problem-oriented approach is shown through a rigorous theoretical
analysis and some numerical experiments.

Keywords: Advection-reaction-diffusion problems, periodic plane wave solutions,
trigonometrical fitting, parameter estimation, adapted method of lines, IMEX
methods.

1. Introduction

The treatise is devoted to the numerical integration of nonlinear advection-reaction-
diffusion problems having periodic waves as fundamental solutions. The general ex-
pression of such systems is the following:

∂u
∂t

= d1
∂2u
∂x2 + a1

∂u
∂x

+ f1(u, v),

∂v
∂t

= d2
∂2v
∂x2 + a2

∂v
∂x

+ f2(u, v),

(1.1)

with proper initial and boundary conditions. The functions u, v : D = [0, X] ×
[0,∞) −→ R are state variables denoting, for example, the concentrations of certain
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interacting biological species; the advection coefficients a1 and a2 represent the velo-
cities of the transport medium, such as water or air; the terms d1 > 0 and d2 > 0 are
diffusion coefficients and may also include the parametrizations of turbulence. The
reaction term [ f1(u, v), f2(u, v)]T is linked to the interactions between the various in-
volved species and generally models the results of their chemical interactions. These
systems are widely used in the applications: for instance, they are employed to model
air pollution phenomena [16] or to understand morphogenesis [18].

For the numerical integration of such problems, classic methods could require a
very small step-size to accurately follow the oscillatory behaviour of the exact solu-
tion because they are based on general purpose formulae constructed in order to be
exact (within round-off error) on polynomials up to a certain degree. Since we focus
on systems having an oscillating exact solution, it may be more convenient to employ
fitted formulae developed in order to be exact on functions other than polynomials: this
strategy is nowadays well-known as trigonometrical fitting (see [14, 17] and references
therein) and the basis functions are typically supposed to belong to a finite-dimensional
space called fitting space. The choice of a suitable fitting space is suggested by the a-
priori known information about the exact solution, so the coefficients of the resulting
adapted method are no longer constant as in the classic case, but rely on a parameter
characterizing the exact solution, whose value is clearly unknown. As a result, the
trigonometrical fitting strategy implies two main challenges: the choice of a suitable
fitting space and the accurate estimate of the unknown parameters. In this paper, the
oscillatory dynamics of the considered problems suggests the adoption of a trigono-
metrically fitted space and the minimization of the leading term of the local truncation
error allows to accurately estimate the parameter.

Extending the ideas introduced in [6], we present a numerical scheme which spa-
tially discretizes the system (1.1) by means of trigonometrically fitted finite differences
and employs an Implicit-Explicit (IMEX) method, based on the first order forward-
backward Euler method, to integrate in time the resulting system of ordinary differen-
tial equations

y′ = Ay + f (y),

where A is a matrix whose size depends on the number of spatial grid points and f (y)
is a vector-valued function.

The choice of a time integration scheme based on IMEX method is suggested by the
mixture nature of such system actually composed by stiff components (arising from the
diffusion term) and nonlinear ones (coming from the reaction and the advection terms).
Indeed, an IMEX numerical method implicitly integrates the stiff terms and explicitly
integrates the others [2, 19, 30], obtaining benefits in term of efficiency and stability.

The paper is organized as follows: in Section 2 and 3 we develop a problem-
oriented numerical scheme for the general advection-reaction-diffusion system (1.1);
Section 4 concerns the rigorous analysis of accuracy and stability properties of the in-
troduced method and the estimate of the parameters appearing in the coefficients of the
method, while Section 5 provides some numerical experiments. Finally, Section 6 is
devoted to present some conclusions.
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2. An adapted numerical scheme

We aim to solve system (1.1), equipped by the following initial conditions

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), x ∈ [0, X] , (2.1)

and periodic boundary conditions

u(0, t) = u(X, t), v(0, t) = v(X, t),
∂u
∂t

(0, t) =
∂u
∂t

(X, t),
∂v
∂t

(0, t) =
∂v
∂t

(X, t).
(2.2)

Following the method of lines (see [13, 20, 21] and references therein), we spatially
discretize the domainD in

Dh = {(xi, t) : xi = ih, i = 0, . . . ,N − 1, h = X/(N − 1)} ,

where h is the chosen spatial step-size. The resulting semi-discrete system of ordinary
differential equations has the following expression

u′0(t) = u′N−1(t), (2.3a)

u′i(t) = d1∆(II)
n [ui(t), h] + a1∆(I)

n [ui(t), h] + f1(ui(t), vi(t)), i = 1, . . . ,N − 2 (2.3b)
v′0(t) = v′N−1(t) (2.3c)

v′i(t) = d2∆(II)
n [vi(t), h] + a2∆(I)

n [vi(t), h] + f2(ui(t), vi(t)), i = 1, . . . ,N − 2 (2.3d)

where
ui(t) = u(xi, t), vi(t) = v(xi, t), i = 0, . . . ,N − 1,

while ∆
(II)
n [φi(t), h] and ∆

(I)
n [φi(t), h] (with φi(t) = ui(t) or φi(t) = vi(t)) are the n-point

fitted finite difference formulae used to approximate the second spatial derivatives and
the first spatial derivatives, respectively. The system (2.3) is also joined with the initial
conditions

ui(0) = ψ1(xi), vi(0) = ψ2(xi), i = 0, . . . ,N − 1. (2.4)

For the approximation of the spatial derivatives, we follow the well-known trigonomet-
rical fitting procedure (see, for instance, [14, 17]) which consists in constructing for-
mulae in order to be exact on basis functions belonging to a finite-dimensional space
called fitting space. Such functions are chosen according to the a-priori information
about the qualitative behaviour of the exact solution. Since we focus on problems hav-
ing periodic solutions, we choose the following trigonometric fitting space

F = {1, sin(µx), cos(µx)}, (2.5)

with spatial frequency µ ∈ R+ and we adapt the three-point finite difference formulae
to compute the required spatial derivatives.

As in [5, 6], we consider the three-point finite difference formula to approximate
the second spatial derivative

∆
(II)
3 [φi(t), h] =

1
h2 (a0(z) φi−1(t) + a1(z) φi(t) + a2(z) φi+1(t)) , (2.6)
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and we impose its exactness (within round-off error) on functions belonging to the
trigonometrical fitting space (2.5), thus obtaining the following expressions for the
coefficients:

a0(z) =
z2

2(1 − cos z)
= a2(z), a1(z) = −

z2

1 − cos z
, (2.7)

with z = µh. Such coefficients are no longer constant, as in general purpose formulae,
but depend on the parameter z. In general, z , 0 because h , 0 and the frequency
is not null in case of periodic solutions. Nonetheless, when z tends to 0, the variable
coefficients (2.7) tend to the classical ones:

a0 = 1 = a2, a1 = −2. (2.8)

Therefore, the trigonometrically fitted formula preserves the second order of accuracy
of the corresponding classic one.
In a similar way, we develop the adapted three-point finite difference formula for the
approximation of the first spatial derivative:

∆
(I)
3 [φi(t), h] =

1
h

(b0(z) φi−1(t) + b1(z) φi(t) + b2(z) φi+1(t)) . (2.9)

The linear difference operator associated to (2.9) is given by

L[h, b(z)]φ(x, t) =
∂φ(x, t)
∂x

−
1
h

[
b0(z) φ(x − h, t) + b1(z) φ(x, t) + b2(z) φ(x + h, t)

]
.

(2.10)
Imposing the exactness of the formula (2.9) on functions belonging to the above-
mentioned trigonometrical fitting space (2.5) is equivalent to annihilating the linear
difference operator (2.10) on such functions. Moreover, since the difference operator
is invariant for translations, it is sufficient to annihilate it for x = 0:

L[h, b(z)]1
∣∣∣
x=0 = b0(z) + b1(z) + b2(z) = 0,

L[h, b(z)] sin(µx)
∣∣∣
x=0 = b0(z) sin z − b2(z) sin z + z = 0,

L[h, b(z)] cos(µx)
∣∣∣
x=0 = b0(z) cos z + b1(z) + b2(z) cos z = 0.

(2.11)

Thus, the coefficients of the trigonometrically fitted three-point formula (2.9) are

b0(z) = −
z

2 sin z
, b1(z) = 0, b2(z) =

z
2 sin z

. (2.12)

Also in this case, the arising coefficients, when z tends to 0, assume the classic values

b0 = −
1
2
, b1 = 0, b2 =

1
2
. (2.13)

Therefore, the trigonometrically fitted formula preserves the second order of accuracy
of the corresponding classic one also in this case.
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As regards time integration, we consider the equivalent formulation of the system
(2.3b)-(2.3d)

U′(t) = d1A(z)U(t) + a1B(z)U(t) + F1(U(t),V(t)),

V ′(t) = d2A(z)V(t) + a2B(z)V(t) + F2(U(t),V(t)),
(2.14)

with

U(t) =


u1(t)
u2(t)
...

uN−1(t)

 , F1(t) =


f1(u1(t), v1(t))
f1(u2(t), v2(t))

...
f1(uN−1(t), vN−1(t))

 ,

V(t) =


v1(t)
v2(t)
...

vN−1(t)

 , F2(t) =


f2(u1(t), v1(t))
f2(u2(t), v2(t))

...
f2(uN−1(t), vN−1(t))

 ,

δ2(z) =
z2

2(1 − cos z)
, A(z) =

δ2(z)
h2



−2 1 1
1 −2 1

. . .

1
1 1 −2


,

δ1(z) =
z

sin z
, B(z) =

δ1(z)
2h



0 1 −1
−1 0 1

. . .

1
1 −1 0


,

or, in a more compact form,

W ′(t) = A(z)W(t) + B(z)W(t) + F (W(t)), (2.15)

where

W =

[
U
V

]
, A(z) =

[
d1A(z)

d2A(z)

]
,

B(z) =

[
a1B(z)

a2B(z)

]
, F =

[
F1
F2

]
.

2.1. Time integration by IMEX methods

The components of the system of ODEs (2.15) arise from different processes (dif-
fusion, advection and reaction), so they reveal a different nature: the diffusion term is
typically stiff and the reaction and advection constituents may be nonlinear [1, 12, 30].
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Due to the presence of a stiff part, a totally explicit method would be stable only using
a very small step-size. On the other side, an implicit method would better treat the stiff-
ness but it would be more expensive and more complex than explicit ones, especially
because of the nonlinearity. In similar cases, it may be more convenient employing
the so-called implicit-explicit (IMEX) methods (see [1, 2, 3, 4, 19, 30] and references
therein), which implicitly integrate only the components that need it (stiff constituents)
and explicitly integrate the others, achieving benefits in stability and efficiency.

Let us now describe how a general IMEX method works. We consider the following
differential problem

u̇ = f (u) + νg(u), t ∈ [0,T ], (2.16)

where f (u) is a possibly nonlinear term that we do not want to integrate implicitly,
while νg(u) is a stiff term requiring an implicit integration (normally, when problem
(2.16) arises from a spatial semidiscretization of a reaction-diffusion PDE, νg(u) is
connected to the diffusion term). We next consider a uniform time grid of M points

t j = jk, j = 0, 1, . . . ,M − 1,

in [0,T ], with constant stepsize k. Then, general linear s-step IMEX methods are
defined by [2]

un+1 +

s−1∑
j=0

a jun− j = k
s−1∑
j=0

b j f (un− j) + ν

s−1∑
j=−1

c jg(un− j), (2.17)

where c−1 , 0. One can recognize from (2.17) that, as desired, the term depending
on f (u) is explicitly integrated, while that depending on g(u) is integrated implicitly.
An example of IMEX method is given, for instance, by the so-called Euler-IMEX
discretization [2], given by

un+1 − un = k
(

f (un) + νg(un+1)
)
, (2.18)

having order 1. Further examples of IMEX methods, also of higher order, are given in
[1, 2, 19].

We now specialize the Euler-IMEX discretization (2.18) to Equation (2.15), obtain-
ing

U j+1 = U j + k d1 A j+1U j+1 + k a1 B jU j + k F1(U j,V j),

V j+1 = V j + k d2 A j+1V j+1 + k a2 B jV j + k F2(U j,V j),
(2.19)

or, in a more compact form,

W j+1 = W j + k A j+1W j+1 + k B jW j + k F(W j). (2.20)

The matrices A and B depend on the parameter µ, which has to be estimated. The
selection technique is shown in Section 4.
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3. Accuracy and stability analysis

We now present an accuracy analysis of the method (2.20), denoted as IMEX-TF
in the remainder of the treatise. In particular, Theorem 3.1 shows that the order of con-
sistency of the numerical scheme is O(z2) + O(k). This result matches the expectations
since the fitted finite difference formulae used to approximate spatial derivatives have
order 2 and rely on z and the IMEX-Euler method has order 1.

Theorem 3.1. The IMEX-TF method (2.20) is consistent with the problem (1.1) and
the order of consistency is O(z2) + O(k), where z = µh as in (2.7)-(2.12) and k is the
time stepsize.

Proof: The local truncation error at the (i, j + 1)-grid point is given by

P i, j+1
h,k [φ] =

φ(xi, t j+1) − φ(xi, t j)
k

−
dφδ2(z)

h2

(
φ(xi−1, t j+1) − 2φ(xi, t j+1) + φ(xi+1, t j+1)

)
−

aφδ1(z)
2h

(
φ(xi+1, t j) − φ(xi−1, t j)

)
− fφ

(
u(xi, t j), v(xi, t j)

)
,

(3.1)

where φ = u or φ = v and

aφ = a1, dφ = d1, fφ = f1, if φ = u,

aφ = a2, dφ = d2, fφ = f2, if φ = v.

We consider the following Taylor series expansions in order to appropriately rewrite
the residual operator (3.1)

φ(xi, t j+1) = φ(xi, t j) + k
(
∂φ

∂t

)
i, j

+
k2

2

(
∂2φ

∂t2

)
i, j

+ O(k3), (3.2a)

φ(xi+1, t j+1) = φ(xi, t j+1) + h
(
∂φ

∂x

)
i, j+1

+
h2

2

(
∂2φ

∂x2

)
i, j+1

+ O(h3), (3.2b)

φ(xi−1, t j+1) = φ(xi, t j+1) − h
(
∂φ

∂x

)
i, j+1

+
h2

2

(
∂2φ

∂x2

)
i, j+1

+ O(h3), (3.2c)

(
∂2φ

∂x2

)
i, j+1

=

(
∂2φ

∂x2

)
i, j

+ k
[
∂

∂t

(
∂2φ

∂x2

)]
i, j

+
k2

2

[
∂2

∂t2

(
∂2φ

∂x2

)]
i, j

+ O(k3), (3.2d)

φ(xi+1, t j) = φ(xi, t j) + h
(
∂φ

∂x

)
i, j

+
h2

2

(
∂2φ

∂x2

)
i, j

+ O(h3), (3.2e)

φ(xi−1, t j) = φ(xi, t j) − h
(
∂φ

∂x

)
i, j

+
h2

2

(
∂2φ

∂x2

)
i, j

+ O(h3) . (3.2f)
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We next reformulate the equation (3.2a) as follows

φ(xi, t j+1) − φ(xi, t j)
k

=

(
∂φ

∂t

)
i, j

+
k
2

(
∂2φ

∂t2

)
i, j

+ O(k2),

we sum (3.2b) and (3.2c), taking into account (3.2d), obtaining

φ(xi+1, t j+1)−2φ(xi, t j+1)+φ(xi−1, t j+1) = h2
(
∂2φ

∂x2

)
i, j

+h2k
[
∂

∂t

(
∂2φ

∂x2

)]
i, j

+O(k2h2)+O(h4),

and we subtract the (3.2f) from the (3.2e), achieving

φ(xi+1, t j) − φ(xi−1, t j) = 2h
(
∂φ

∂x

)
i, j

+ O(h3) .

We now expand δ1(z) and δ2(z) in power series as follows

δ1(z) = 1 +
z2

6
+

7z4

360
+ O(z6), δ2(z) = 1 +

z2

12
+

z4

240
+ O(z6) .

Hence, the local truncation error (3.1) becomes

P i, j+1
h,k [φ] =

(
∂φ

∂t

)
i, j

+
k
2

(
∂2φ

∂t2

)
i, j

+ O(k2) − fφ(u(xi, t j), v(xi, t j))

−
dφ
h2

[
1 +

z2

12
+

z4

240
+ O(z6)

] h2
(
∂2φ

∂x2

)
i, j

+ h2k
(
∂

∂t

(
∂2φ

∂x2

))
i, j

+ O(h2k2) + O(h4)


−
aφ
2h

[
1 +

z2

6
+

7z4

360
+ O(z6)

] 2h
(
∂φ

∂x

)
i, j

+ O(h3)


=

(
∂φ

∂t

)
i, j
− dφ

(
∂2φ

∂x2

)
i, j
− aφ

(
∂φ

∂x

)
i, j
− fφ

(
u(xi, t j), v(xi, t j)

)
+ k

1
2

(
∂2φ

∂t2

)
i, j
− dφ

(
∂

∂t

(
∂2φ

∂x2

))
i, j

 + O(k2) + O(h2)

− z2
 dφ
12

(
∂2φ

∂x2

)
i, j

+
aφ
6

(
∂φ

∂x

)
i, j

+ O(h2) + O(k)
 + O(z4).

Since u(x, t) and v(x, t) are the components of the exact solution of the problem (1.1),
the following equation is verified(

∂φ

∂t

)
i, j
− dφ

(
∂2φ

∂x2

)
i, j
− aφ

(
∂φ

∂x

)
i, j
− fφ

(
u(xi, t j), v(xi, t j)

)
= 0.

Thus, the local truncation error assumes the following expression

P i, j+1
h,k [φ] = k

1
2

(
∂2φ

∂t2

)
i, j
− dφ

(
∂

∂t

(
∂2φ

∂x2

))
i, j

 + O(k2) + O(h2)

− z2
 dφ
12

(
∂2φ

∂x2

)
i, j

+
aφ
6

(
∂φ

∂x

)
i, j

+ O(h2) + O(k)
 + O(z4)

= O(k) + O(z2).

(3.3)
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Theorem 3.1 also allows us to prove the convergence of the numerical scheme
(2.20), as explained in the following theorem.

Theorem 3.2. Suppose that the vector valued function F(W(·, t j)) is smooth enough
and satisfies the bound

‖∇F‖∞ ≤ Fmax .

Then, the global error
E j+1 = W(·, t j+1) −W j+1

fulfills the bound

∥∥∥E j+1
∥∥∥
∞
≤ (1 + kBmax + kFmax) j

j∑
β=0

1
(1 − kAmax)β+1 max

s=1,2,..., j+1

∥∥∥∥R(s)
h,k

∥∥∥∥
∞
,

being R( j+1)
h,k = O(k)+O(z2) and Amax and Bmax upper bounds for ‖A(z)‖∞ and ‖B(z)‖∞,

respectively. In other terms, under the above hypothesis, the IMEX-TF method (2.20)
is convergent.

Proof: The discretization error in a fixed time grid point t j+1 is

E j+1 = W(·, t j+1) −W j+1, (3.4)

where W(·, t j+1) is the exact solution in t j+1. Consistency of the method (see Theorem
3.1) implies that

W(·, t j+1) = W(·, t j) + k A(z) W(·, t j+1) + k B(z)W(·, t j) + k F(W(·, t j)) + R
( j+1)
h,k , (3.5)

where R( j+1)
h,k = O(k) + O(z2).

Hence, the discretization error (3.4) becomes

E j+1 = W(·, t j) + k A(z) W(·, t j+1) + k B(z)W(·, t j) + k F(W(·, t j)) + R
( j+1)
h,k

−W j − k A(z) W j+1 − kB(z)W j − kF(W j)

= E j + k A(z) E j+1 + k B(z)E j + k
(
F(W(·, t j)) − F(W j)

)
+ R

( j+1)
h,k .

Since by assumption F is smooth enough,, we can apply the Mean Value Theorem:∥∥∥F(W(·, t j)) − F(W j)
∥∥∥
∞

= ‖∇F‖∞
∥∥∥W(·, t j) −W j

∥∥∥
∞

= ‖∇F‖∞
∥∥∥E j

∥∥∥
∞
.

Moreover, the hypothesis ‖∇F‖∞ ≤ Fmax leads to∥∥∥F(W(·, t j)) − F(W j)
∥∥∥
∞
≤ Fmax

∥∥∥E j
∥∥∥
∞
.

We next take into account the following norms

‖A(z)‖∞ = dmax ‖A(z)‖∞ = dmax
4δ2(z)

h2 = dmax
2µ2

1 − cos(µh)
≤ Amax,

‖B(z)‖∞ = amax ‖B(z)‖∞ = amax
δ1(z)
2h

= amax
µ

2 sin(µh)
≤ Bmax,
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being dmax = max {d1, d2} and amax = max {a1, a2}. Hence, we can obtain an upper
bound for the norm of the discretization error:∥∥∥E j+1

∥∥∥
∞
≤

∥∥∥E j
∥∥∥
∞

+ k ‖A(z)‖∞
∥∥∥E j+1

∥∥∥
∞

+ k ‖B(z)‖∞
∥∥∥E j

∥∥∥
∞

+ k
∥∥∥F(W(·, t j)) − F(W j)

∥∥∥
∞

+
∥∥∥∥R( j+1)

h,k

∥∥∥∥
∞

≤
∥∥∥E j

∥∥∥
∞

+ kAmax

∥∥∥E j+1
∥∥∥
∞

+ kBmax

∥∥∥E j
∥∥∥
∞

+ kFmax

∥∥∥E j
∥∥∥
∞

+
∥∥∥∥R( j+1)

h,k

∥∥∥∥
∞
.

The last inequality can be recast by isolating the discretization error at j + 1 step∥∥∥E j+1
∥∥∥
∞
≤

1 + kBmax + kFmax

1 − kAmax

∥∥∥E j
∥∥∥
∞

+
1

1 − kAmax

∥∥∥∥R( j+1)
h,k

∥∥∥∥
∞
. (3.6)

We indicate
Q =

1 + kBmax + kFmax

1 − kAmax
and S =

1
1 − kAmax

,

and recursively apply Equation (3.6) until the discretization error at first step appears,
as follows:∥∥∥E j+1

∥∥∥
∞
≤ Q

∥∥∥E j
∥∥∥
∞

+ S
∥∥∥∥R( j+1)

h,k

∥∥∥∥
∞

≤ Q j+1
∥∥∥E0

∥∥∥
∞

+ Q jS
∥∥∥∥R(1)

h,k

∥∥∥∥
∞

+ · · · + QS
∥∥∥∥R( j)

h,k

∥∥∥∥
∞

+ S
∥∥∥∥R( j+1)

h,k

∥∥∥∥
∞
.

Since
∥∥∥E0

∥∥∥
∞

= 0, the following inequality holds for each j:∥∥∥E j+1
∥∥∥
∞
≤ S

(
Q j + Q j−1 + · · · + Q + 1

)
max

s=1,2,..., j+1

∥∥∥∥R(s)
h,k

∥∥∥∥
∞

≤ (1 + kBmax + kFmax) j
j∑

β=0

1
(1 − kAmax)β+1 max

s=1,2,..., j+1

∥∥∥∥R(s)
h,k

∥∥∥∥
∞
−−−−→
h,k→0

0.

�

Finally, we provide the following stability analysis of the numerical scheme (2.20).

Theorem 3.3. Suppose that the vector valued function F(W(·, t j)) is smooth enough
and satisfies the bound

‖∇F‖∞ ≤ Fmax. (3.7)

If ∥∥∥(I − kA)−1
∥∥∥
∞

(
‖I + kB(z)‖∞ + kFmax

)
≤ 1, (3.8)

then the method (2.20) is stable.

Proof: Following the idea in [29], a method is stable if the error caused by an incoming
perturbation does not blow up. For this reason, we perturb the solution W j as follows

W̃ j = W j + δ,

10



and we write the numerical scheme (2.20) for both W j and W̃ j:

W j+1 = (I − kA(z))−1 (I + kB(z)) W j + k(I − kA(z))−1F(W j), (3.9a)

W̃ j+1 = (I − kA(z))−1 (I + kB(z)) W̃ j + k(I − kA(z))−1F(W̃ j). (3.9b)

The error E j+1 = W j+1 − W̃ j+1 due to the perturbation is given by

E j+1 = (I − kA(z))−1 (I + kB(z)) E j + k(I − kA(z))−1
(
F(W j) − F(W̃ j)

)
,

and its norm verifies the following inequality∥∥∥E j+1
∥∥∥
∞
≤ ϑ ‖I + kB(z)‖∞

∥∥∥E j
∥∥∥
∞

+ kϑ
∥∥∥F(W j) − F(W̃ j)

∥∥∥
∞
,

where ϑ =
∥∥∥(I − kA(z))−1

∥∥∥
∞

. Applying the Mean Value Theorem to the reaction term
and exploiting the hypothesis (3.7), we derive the following bound∥∥∥F(W j) − F(W̃ j)

∥∥∥
∞
≤ ‖∇F‖∞

∥∥∥W j − W̃ j
∥∥∥
∞
≤ Fmax

∥∥∥E j
∥∥∥
∞
, (3.10)

which leads to ∥∥∥E j+1
∥∥∥
∞
≤ ϑ

(
‖I + kB(z)‖∞ + kFmax

) ∥∥∥E j
∥∥∥
∞
.

This stability inequality implies the stability condition

ϑ
(
‖I + kB(z)‖∞ + kFmax

)
≤ 1,

that gives the thesis.

�

4. Parameter selection

We now propose a strategy to estimate the parameter µ in (2.5), necessary for the
computation of the coefficients (2.7) and (2.12) of the trigonometrically fitted finite
difference formulae for the approximation of the spatial derivatives. The proposed
strategy relies on manipulating the leading term of the local truncation error, whose
expression at each grid point is provided in the proof of the Theorem 3.1, i.e.

P i, j+1
h,k [φ] = k

1
2

(
∂2φ

∂t2

)
i, j
− dφ

(
∂

∂t

(
∂2φ

∂x2

))
i, j

 + O(k2) + O(h2)

− z2
 dφ
12

(
∂2φ

∂x2

)
i, j

+
aφ
6

(
∂φ

∂x

)
i, j

+ O(h2) + O(k)
 + O(z4),

where φ = u or φ = v and z = µh. Its z-dependent part in the leading term is given by

T i, j+1(z) = −
z2

6

dφ
2

(
∂2φ

∂x2

)
i, j

+ aφ

(
∂φ

∂x

)
i, j

 . (4.1)

11



We first manipulate the expression (4.1), by approximating the involved spatial
derivatives through the trigonometrically fitted finite difference formula (2.6) and (2.9)
with coefficients (2.7) and (2.12), obtaining

T i, j+1(z) ≈ T
i, j+1

(z) = −
z2

6

(
dφ αi, j

4h2

z2

1 − cos z
+ aφ βi, j

z
2h sin z

)
, (4.2)

and we estimate the parameter µ at each inner grid point with a value that annihilates
the function (4.2). Since z > 0, we solve the nonlinear system

dφ αi, jz sin z + 2haφ βi, j(1 − cos z) = 0.

For this purpose, we consider the Mc-Laurin expansion of the functions sin z and 1 −
cos z truncated at the fourth order term and solve the nonlinear algebraic equation

dφ αi, j

(
1 −

z2

6

)
+ h aφ βi, j

(
1 −

z2

12

)
= 0,

whose solutions are

z = ±

√√√√12
(
dφ αi, j + h aφ βi, j

)(
2dφ αi, j + h aφ βi, j

) .
Therefore, an estimate for the parameter µ is the following

µ =
1
h

√√√√12
(
dφ |αi, j| + h aφ |βi, j|

)(
2dφ |αi, j| + h aφ |βi, j|

) . (4.3)

This result can be improved by considering a control factor ζ < 1 which depends on
the problem and satisfies

Ci, jζ
2 ≤ 1, (4.4)

where

Ci, j =

∣∣∣∣∣∣24 (dφαi, j + haφβi, j)
2dφαi, j + haφβi, j

∣∣∣∣∣∣ . (4.5)

Indeed, the following relation holds:

∣∣∣T i, j+1 (ζµ)
∣∣∣ =

h2

12
ζ2 Ci, j Di, j ≤

h2

12
Di, j ≤

h2

12
Ci, j Di, j =

∣∣∣T i, j+1(µ)
∣∣∣ , (4.6)

where T i, j+1 is the leading term of the local truncation error given by (4.1) and

Di, j =

∣∣∣∣∣∣dφ2
(
∂2φ

∂x2

)
i, j

+ aφ

(
∂φ

∂x

)
i, j

∣∣∣∣∣∣ . (4.7)

We observe that the last inequality in (4.6) derives from Ci, j ≥ 1. The relation (4.6)
shows that

∣∣∣T i, j+1(ζµ)
∣∣∣ is closer to the minimum of T i, j+1 than

∣∣∣T i, j+1(µ)
∣∣∣, so the control

12



factor ζ improves the estimate of the parameter µ. Hence, we compute this factor by
using the condition (4.4)

ζ =

√
2dφ + haφ

24(dφ + haφ)
(4.8)

and we estimate the parameter µ as follows

µ̄ =
ζ

h

√√√√12
(
dφ |αi, j| + h aφ |βi, j|

)(
2dφ |αi, j| + h aφ |βi, j|

) . (4.9)

We observe that the estimate (4.9) does not require a larger additional computa-
tional effort, such as in [7, 8, 9, 11] and references therein, because it does not rely on
employing numerical solvers for algebraic equations or numerical optimization strate-
gies.

5. Numerical experiments

We now provide some numerical results concerning the integration of some advection-
reaction-diffusion problems. In the remainder of this section, we refer to the introduced
scheme (2.20) as IMEX-TF and to the classic forward-backward Euler method applied
to the system (2.15) as IMEX-class.

Example 5.1. We consider the following system

∂u
∂t

= d1
∂2u
∂x2 + a1

∂u
∂x

+ (a1 − d1) t + d1u − a1v + (u − v)2 + sin(2x),

∂v
∂t

= d2
∂2v
∂x2 + a2

∂v
∂x
− (a2 + d2) t + a2u + d2v + u2 + v2 − 2t (u + v) + 2t2,

(5.1)

where u, v : D = [0, 4π] × [0, 1] −→ R, d1 = 0.5, d2 = 0.1, a1 = 0.5, a2 = 0.1. This
problem is equipped by initial conditions

u(x, 0) = sin x, v(x, 0) = cos x, x ∈ [0, 4π] , (5.2)

and periodic boundary conditions

u(0, t) = t = u(4π, t), v(0, t) = t + 1 = v(4π, t), t ∈ [0, 1] . (5.3)

The exact solution is given by

u = t + sin x, v = t + cos x,

and, therefore, it lies in the functional space spanned by (2.5). For this reason, the
adoption of the trigonometrically fitted method (2.20) is justified and the exact value
for the parameter µ on which the basis functions (2.5) depend is equal to the exact
frequency in the spatial oscillations, i.e. µ = 1.
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As shown in Figure 1, the numerical solution of the problem (5.1) computed by the
numerical method (2.20) oscillates in space with constant shape and speed and matches
well the periodic boundary conditions. Moreover, Table 1 shows that, using the same
spatial integration stepsize, the IMEX-TF method (2.20) is much more accurate than its
classic counterpart IMEX-class, based on algebraic polynomials. Actually, the classic
method achieves the same accuracy obtained by the IMEX-TF with h̄ = π/5 when
the spatial integration stepsize is reduced to h = h̄/64 at least. This extreme reduction
strongly increases the computational cost, so the IMEX-TF scheme appears much more
convenient.

It is definitely important to stress that this good property of the method (2.20)
IMEX-TF is influenced by the knowledge of an accurate value of the parameter µ,
as it is evident in Table 2. Indeed, the error drastically increases when the value of the
parameter µ moves away from the exact value µ = 1 and becomes almost the same
obtained by the classic IMEX when µ = 0.2. In this case, it is more convenient using
the IMEX-class method because it is much more efficient. Therefore, when the exact
values of the parameters correlated to trigonometrical fitting are unknown, the signifi-
cant benefits of this strategy could be lost unless an accurate technique is employed to
estimate them. Following the idea presented in Section 4, we estimate the parameter µ
at each grid point by minimizing the µ−dependent leading term of the local truncation
error. Although the exact spatial frequency is constant, its estimate is pointwise com-
puted in order to limit the accumulation of the error. Table 3 shows that the IMEX-TF
method combined with this estimate is still more accurate than the corresponding clas-
sic one. Finally, Figure 2 depicts the estimate for the parameter µ at each grid point.
We highlight that the estimated values for the parameter are significantly close to the
exact value (µ = 1).

Method h CPU Time Error
IMEX-TF π/5 114.551534 0.000006

IMEX-class π/5 7.254047 0.103574
IMEX-class π/10 78.499703 0.025453
IMEX-class π/20 29.452989 0.006355
IMEX-class π/40 132.944052 0.001592
IMEX-class π/80 1627.527233 0.000398
IMEX-class π/160 14774.495908 0.000099

Table 1: Comparison between the IMEX-TF method (2.20) and the corresponding classic IMEX in terms
of spent time and true error for the integration of (5.1) joined with initial conditions (5.2) and periodic
boundary conditions (5.3). The IMEX-TF method has been applied using the exact value for the spatial
frequency (µ = 1). The time stepsize is k = 0.01.

Example 5.2. We now integrate the following system having time-dependent model
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Figure 1: Numerical solution of the test problem (5.1), with initial conditions (5.2) and boundary conditions
(5.3) computed by the new method (2.20) with spatial stepsize h = π/10 and time stepsize k = 0.01. The
component u(x, t) is depicted on the top and the component v(x, t) is represented on the bottom.

parameters and a nonlinear reaction term:

∂u
∂t

=
t
2
∂2u
∂x2 − t

∂u
∂x

+ u2 + v2 − 2t2,

∂v
∂t

=
t
4
∂2v
∂x2 +

t
2
∂v
∂x

+ uv − t2 −
sin(4x)

2
+ 1,

(5.4)

where u, v : D = [0, 4π]× [0, 1] −→ R. Such a problem is provided with the following
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Method µ CPU Time Error
IMEX-TF 1 411.717839 2.63 10−8

IMEX-TF 0.8 150.275763 0.009196
IMEX-TF 0.2 151.695372 0.024440
IMEX-TF 5 166.281466 0.686977
IMEX-TF 10 147.545746 2.253046

IMEX-class − 78.499703 0.025453

Table 2: Accuracy and efficiency of the IMEX-class method and the IMEX-TF scheme (2.20) applied with
different values of the parameter µ in the integration of the problem (5.1) with a time stepsize k = 0.01 and
a spatial grid width h = π/10.

Method µ CPU Time Error
IMEX-TF 1 114.551534 0.000006
IMEX-TF Estimated 170.041090 0.038655

IMEX-class − 7.254047 0.103574

Table 3: Accuracy and efficiency of the IMEX-class method, the IMEX-TF scheme (2.20) applied with the
exact value of the parameter (µ = 1) and the IMEX-TF scheme combined with the estimated value (4.9) of
the parameter µ for the integration of the problem (5.1) provided with initial conditions (5.2) and periodic
boundary conditions (5.3). The spatial grid width is h = π/5 and the time stepsize is k = 0.01.

Figure 2: Estimate of the parameter in each grid point computed by using the optimization strategy described
in Section 4 for the integration of test problem (5.1), with initial conditions (5.2) and boundary conditions
(5.3), spatial stepsize h = π/5 and time stepsize k = 0.01.

initial conditions

u(x, 0) = − sin 2x, v(x, 0) = − cos 2x, x ∈ [0, 4π] , (5.5)
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and periodic boundary condition

u(0, t) = t = u(4π, t), v(0, t) = t − 1 = v(4π, t), t ∈ [0, 1] . (5.6)

Since the exact solution is

u = t − sin 2x, v = t − cos 2x,

it could be more convenient using the trigonometrically fitted IMEX-TF scheme (2.20).
In this case, the exact value of the parameter which the basis functions (2.5) depend on
is µ = 2.
Table 4 reports that the IMEX-TF method (2.20) applied with the exact value for the
parameter µ is much more accurate than the corresponding classic IMEX Euler method.
When the IMEX-TF scheme is combined with the estimated value (4.9) for this param-
eter, however, the accuracy decreases but it is still higher than in the classic case, as
shown in Table 5.

Method h CPU Time Error
IMEX-TF π/5 28.688584 0.073308

IMEX-class π/5 7.098046 0.925135
IMEX-class π/10 11.372473 0.141530
IMEX-class π/20 28.251781 0.046213

Table 4: Comparison between the IMEX-TF method (2.20) and the corresponding classic IMEX in terms
of spent time and error for the integration of system (5.4) subject to initial conditions (5.5) and periodic
boundary conditions (5.6). The IMEX-TF method has been applied using the exact value for the spatial
frequency (µ = 2). The time stepsize is k = 0.01.

Method µ CPU Time True Error
IMEX-TF 2 28.688584 0.073308
IMEX-TF Estimated 192.364833 0.148646

IMEX-class − 7.098046 0.925135

Table 5: Accuracy and efficiency of the IMEX-class method, the IMEX-TF scheme (2.20) applied with the
exact value for the parameter µ (µ = 2) and the IMEX-TF scheme combined with the estimated value (4.9) of
the parameter µ in the integration of problem (5.4) equipped by initial conditions (5.5) and periodic boundary
conditions (5.6). The time stepsize is k = 0.01 and the spatial grid width is h = π/5.

We observe that the periodic character of the solution is independent on the periodic
boundary conditions: indeed, many significant examples in the literature, also regard-
ing applications to Mathematical Biology and relying on (advection-)reaction-diffusion
problems, produce periodic wavefronts, even starting from non-periodic boundary con-
ditions [6, 10, 12, 15, 22, 23, 24, 25, 26, 27, 28]. As an example of this feature, we
provide the following numerical test.
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Example 5.3. We consider the following advection-reaction-diffusion system provided
with a nonlinear reaction term

∂u
∂t

= d1
∂2u
∂x2 + a1

∂u
∂x

+ (a1 − d1)t + d1u − a1v + (u − v)2 + sin 2x,

∂v
∂t

= d2
∂2v
∂x2 + a2

∂v
∂x
− (d2 + a2)t + d2v + a2u + u2 + v2 − 2t(u + v) + 2t2,

(5.7)

where u, v : D =
[
0, 5

2π
]
× [0, 1] −→ R and d1 = 0.5, d2 = 0.1, a1 = 0.5 and a2 = 0.1.

This problem is joined with the following initial conditions

u(x, 0) = sin x, v(x, 0) = cos x, x ∈
[
0,

5
2
π

]
, (5.8)

and Dirichlet boundary conditions

u(0, t) = t, u
(

5
2
, t
)

= t + 1, v(0, t) = t + 1, v
(

5
2
, t
)

= t t ∈ [0, 1] . (5.9)

The exact solution is given by

u = t + sin x, v = t + cos x,

so it lies in the functional space spanned by (2.5). Hence, we properly employ the
trigonometrically fitted method (2.20). The exact value for the parameter µ on which
the basis functions (2.5) depend is equal to the exact frequency in the spatial oscilla-
tions, i.e. µ = 1.
Also in case of Dirichlet boundary conditions, the IMEX-TF scheme exhibits higher
accuracy than the corresponding IMEX-class method, even in case of estimated param-
eter, as reported in Tables 6 and 7.

Method h CPU Time Error
IMEX-TF π/4 21.996141 0.009786

IMEX-class π/4 5.194833 0.151768
IMEX-class π/8 7.815650 0.039661
IMEX-class π/16 13.462886 0.016891
IMEX-class π/32 31.839804 0.017157
IMEX-class π/64 167.576274 0.017672

Table 6: Accuracy and efficiency of the IMEX-class method and the IMEX-TF scheme (2.20) applied with
the exact value of the parameter (µ = 1) in the integration of problem (5.7) equipped by initial conditions
(5.8) and Dirichlet boundary conditions (5.9). The time stepsize is k = 0.01.
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Method µ CPU Time Error
IMEX-TF 1 21.996141 0.009786

IMEX-class – 5.194833 0.151768
IMEX-TF Estimated 47.486704 0.014169

Table 7: Accuracy and efficiency of the IMEX-class method, the IMEX-TF scheme (2.20) applied with the
exact value of the parameter (µ = 1) and the IMEX-TF scheme joined with the estimated parameter (4.9) for
the integration of the problem (5.7) provided with initial conditions (5.8) and Dirichlet boundary conditions
(5.9). The time stepsize is k = 0.01 and the spatial grid width is h = π/5.

6. Conclusions

We have developed an adapted numerical scheme to integrate advection-reaction-
diffusion problems generating periodic wavefronts. In particular, we have employed
trigonometrically fitted finite differences for the spatial discretization in order to accu-
rately follow the prescribed oscillations of the exact solution more efficiently. For the
time integration, we have applied an IMEX method, based on the first order forward-
backward Euler method, in order to treat in an efficient way the stiff and nonstiff parts.
The rigorous analysis of the good properties of the method has provided an expression
of the local truncation error which leads us to estimate the parameter correlated to the
coefficients of the trigonometrically fitted method without significantly increasing the
overall computational cost. Numerical experiments have confirmed the effectiveness
of the approach and its relation with the knowledge of an accurate estimation of the
parameter.

It is worth observing that this paper is a stepping stone in the direction of applying
the idea of an adapted numerical integration of multidimensional problems generating
complex qualitative behaviours. For such problems, the parameters of adapted methods
have to accurately be estimated along each spatial direction: this issue will be handled
in future works on the topic.
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