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Abstract

The paper is devoted to the numerical solution of advection-diffusion problems of
Boussinesq type, by means of adapted numerical methods. The adaptation occurs
at two levels: along space, by suitably semidiscretizing the spatial derivatives
through finite differences based on exponential fitting; along time integration,
through an adapted IMEX method based on exponential fitting itself. Stability
analysis is provided and numerical examples showing the effectiveness of the ap-
proach, also in comparison with the classical one, are given.
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1. Boussinesq equation of hydrodynamics

Let us consider the following Boussinesq equation [15, 24]

∂h
∂t
=

K
S

h∂2h
∂x2 +

(
∂h
∂x

)2

− ϑ∂h
∂x

 .
Such a problem governs one-dimensional groundwater flows on a sloping impervi-
ous base, where h denotes the height of the watertable, S is the drainable porosity,
K is the hydraulic conductivity and ϑ is the slope of the impervious base. In par-
ticular, if h shows a small deviation from the weighted depth, Boussinesq equation
assumes the following form

∂h
∂t
= γ
∂2h
∂x2 − ν

∂h
∂x
,
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i.e. it results to be a linear-diffusion equation, where γ is the angle between the
beach face and the horizontal datum and ν = Kϑ/S . As in [22], we are interested
in solving the problem for (x, t) ∈ [0,+∞) × [0,+∞) and equipping it by the
following initial condition

h(x, 0) = h0(x),

and moving boundary condition

h(X(t), t) = f (t), t > 0,

being X(t) the parametric formulation of the moving boundary, depending on time.
Therefore, h0(x) gives the analytic expression of the initial watertable, while X(t),
i.e. the abscissa of the moving boundary, following [22], can be regarded as

X(t) =
f (t)

tan(γ)
.

In summary, we are interested in the following linear advection-diffusion problem:

ht(x, t) = γhxx(x, t) − νhx(x, t), x > 0, t > 0,
h(x, 0) = h0(x), x ≥ 0,

h(X(t), t) = f (t), t ≥ 0.
(1.1)

As proved in [14], if problem (1.1) is subject to a periodic boundary condition
dictated by

f (t) = exp(iωt), (1.2)

where i is the imaginary unit, the solution exhibits the following form

h(x, t) = exp(αx + i(βx + ωt)),

with α, β ∈ R. Taking into account the hydrodynamical features of the problem,
the authors in [22] were able to determine suitable values of α and β, leading to
the following final profile of the solution of (1.1)

h(x, t) = exp
[(
ν

2D
− µ

)
x
]

exp
[
i(ωt − ρx)

]
, (1.3)

being

µ =
1

2D

√
2

√
ω2 +

ν4

16D2 +
ν2

2
.
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In above formula, D is a constant depending on the transmissivity and the porosity
S , ω provides the temporal frequency and ρx is the phase. Thus, since in presence
of periodic boundary conditions dictated by (1.2) problem (1.1) shows a solution
of the form (1.3), it is worth designing a numerical scheme that takes into account
such a qualitative behavior, as described in the remainder of the manuscript.

1.1. Following known qualitative behaviors of the solutions: the role of adapted
numerical methods

Numerical methods adapted to specific problems are usually intended as an ef-
ficient alternative to general purpose methods, which are designed in order to ex-
actly solve (within round-off error) problems with polynomial solutions. Adapted
methods are instead meant to exactly solve (within round-off error) problems
whose solutions exhibit a non-polynomial qualitative behavior, a-priori known:
we mention, for instance, periodic behaviors, oscillations and exponential decays
or growths. In such cases, classical methods may result to be quite inefficient
because they would need a very small value of the stepsize to reach a certain ac-
curacy, while it would be useful employing fitted formulae shaped on suitably
chosen functions, e.g. exponential and trigonometrical functions according to the
solution of the problem and its features. On all above considerations exponential
fitting technique relies (see [13, 17] and references therein), based on the idea of
designing a space of approximants spanned by suitable chosen basis functions,
forming the so-called fitting space.

As aforementioned, the basis functions follow the same qualitative behavior
of the solution of the problem, and, therefore, they are oscillatory with a certain
frequency if the solution is oscillatory, or exponentially decay with a certain rate
if the solution is of decaying exponential type. The values of the frequencies or
decay rates are clearly present in the basis functions and, of course, unknown;
accurately detecting their values is a necessary step in applying adapted methods
which is normally based on minimizing or annihilating the principal error term [6,
8] or trying to exploit theoretical a-priori known informations on the problem as in
[5]. Thus, an effective employ of exponentially fitting methods relies on suitably
choosing the fitting space and accurately estimating the unknown parameters.

Referring to problem (1.1), we propose an adapted numerical scheme based
on two separate steps: the first one consists in the spatial semidiscretization of
the operator by a proper modification of the method of lines, while the second
one deals with a suitable time integration, taking into account the nature of the re-
sulting semidiscretized system. In particular, since the resulting system of ODEs
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exhibits stiff components (arising from the diffusion term) and non-stiff ones (aris-
ing from the advection term), it is more natural to differently treat them, by means
of implicit-explicit (IMEX) numerical methods that implicitly integrate the stiff
terms and explicitly the other ones, following the classical idea [1, 23].

The manuscript is organized as follows: Section 2 introduces the spatial semidis-
cretization of the problem, by means of exponentially fitted finite differences,
adapted to both the diffusion and the advection terms; Section 3 shows the de-
velopment of an adapted IMEX time solver for the semidiscrete problem, while
Section 4 analyzes its stability properties; Section 5 is devoted to the illustration
of numerical results showing the effectiveness of the approach; some conclusions
are given in Section 6.

2. Spatial semidiscretization of the problem

As announced in the previous section, we aim to solve problem (1.1) by first
providing a spatial semidiscretization that takes into account the nature of the
solution. First of all, let us better clarify the selection of the numerical domain:
taking into account that the dynamics evolves in an unbounded domain with free
boundary, i.e. [0,∞)×[0,∞), the actual domain of integration is chosen as follows

D = [0, X(T )] × [0,T ], (2.4)

where T is a large enough real number such that any further increase would not
affect the solution at all. Thus, problem (1.1) reformulated in [0, X(T )] × [0,T ]
assumes the form

ht(x, t) = γhxx(x, t) − νhx(x, t), (x, t) ∈ (0, X(T )) × (0,T ],

h(x, 0) = h0(x), x ∈ [0, X(T )],

h(0, t) = h(X(T ), t) = f (t), t ∈ [0,T ].

(2.5)

Following the method of lines (see [12, 19, 20] and references therein), we con-
sider the following spatially discretized domain

D∆x = {(xi, t) : xi = i∆x, i = 0, . . . ,N − 1, ∆x = X(T )/(N − 1)},
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where ∆x is the spatial integration step. Then, problem (1.1) in D∆x is equivalent
to the following initial value problem

h′0(t) = f ′(t),

h′i(t) = γΓ2 − νΓ1, 1 ≤ i ≤ N − 2,

h′N−1(t) = f ′(t),

hi(0) = h0(xi), 0 ≤ i ≤ N − 1,

(2.6)

where Γ2 is a finite difference approximating the second spatial derivative in (2.5),
and Γ1 is a finite difference for the approximation of the first spatial derivative in
(2.5). Inspired by [5, 7], we approximate the first and second spatial derivatives
by the following finite differences

Γ2 =
α0h(xn−1, t) + α1h(xn, t) + α2h(xn+1, t)

∆x2 ,

Γ1 =
β0h(xn−1, t) + β1h(xn, t)

∆x
,

(2.7)

and compute α0, α1, α2, β0 and β1 in order to make Γ2 and Γ1 exact on exponential
functions, motivated by the qualitative behaviour of the solution (1.3).

2.1. Discretization of the diffusion term
We first provide the expression of the discretized diffusion term Γ2, given by

the first equation in (2.7), i.e. we compute the unknown coefficients α0, α1, α2.
This aim is achieved by taking into account the parametrization (1.3) of the solu-
tion of the problem (1.1): indeed, such a parametrization indicates that the solution
is of the form

exp(αx) exp(i(βx + ωt)),

or, equivalently,
exp((α + iβ)x) exp(iωt),

which suggest us the employ of the following fitting space for the approximation
of the second order spatial derivative

F = {1, exp(ζx), x exp(ζx)},

with ζ ∈ C. In summary, we are looking for the following approximant

hxx(xn, t) ≈ Γ2 =
α0h(xn−1, t) + α1h(xn, t) + α2h(xn+1, t)

∆x2 ,
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imposing its exactness on F . For the computation of the coefficients of Γ2, we
introduce the following linear operator

L[∆x]h(x, t) = hxx(x, t) − α0h(x − ∆x, t) + α1h(x, t) + α2h(x + ∆x, t)
∆x2 .

We evaluate L[∆x]1, L[∆x] exp(ζx), L[∆x]x exp(ζx) and, due to the invariance
in translation of the operator, we refer to the values gained in correspondence of
x = 0 and annihilate them, obtaining the following linear system of equations

α0 + α1 + α2 = 0

α0 exp(−z) + α1 + α2 exp(z) = z2

−α0 exp(−z) + α2 exp(z) = 2z

with z = ζ∆x. The solution of such system is given by

α0 = −
zez(2 − 2ez + zez)

(ez − 1)2 ,

α1 =
z(2 − 2e2z + z + ze2z)

(ez − 1)2 ,

α2 = −
z(2 − 2ez + z)

(ez − 1)2 .

(2.8)

Of course, it is evident that such coefficients are no longer constant, as in the
classical polynomial case, but are functions of z. In general, z , 0 because ∆x ,
0 and the ζ is generally non-zero (at least for non-degenerate cases), ensuring
that the denominators in (2.8) are non-zero. Nevertheless, when z tends to 0, the
variable coefficients (2.8) tend to the classical values

α0 = α2 = 1, α1 = −2. (2.9)

Hence, the exponentially fitted formula retains the same order of accuracy of the
corresponding classical one, which is equal to 2.

2.2. Discretization of the advection term
We now discretize the advection term by the approximant Γ1 given by the

second equation in (2.7). As aforementioned, the choice of the fitting space is
dictated by the parametrization of the solution (1.3) and is given by

G = {1, exp(ζx)},
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with ζ ∈ C. We now compute

hx(xn, t) ≈ Γ1 =
β0h(xn−1, t) − β1h(xn, t)

∆x
,

imposing its exactness on G. We introduce the following linear operator

M[∆x]h(x, t) = hx(x, t) − β0h(x − ∆x, t) + β1h(x, t)
∆x

.

We evaluate M[∆x]1, M[∆x] exp(ζx) and annihilate the values gained in corre-
spondence of x = 0, obtaining the linear system β0 + β1 = 0

β0 exp(−z) + β1 = z

with z = ζ∆x. The solution of such system is given by

β0 =
z

e−z − 1
,

β1 = −
z

e−z − 1
.

(2.10)

Also in this case, when z tends to 0, the variable coefficients (2.10) tend to the
classical values

β0 = 1, β1 = −1 (2.11)

and, therefore, the exponentially fitted formula retains the same order of accuracy
of the corresponding classical one, which is equal to 1.

Remark 2.1. It is important to highlight that previous approaches on the numer-
ical solution of partial differential equations by exponentially fitted methods have
already been considered in the literature, though characterized by different basis
functions. For instance (see [16, 18] and references therein), for the convection-
diffusion problem

−ε∆u + a∇u + bu = f , 0 < ε ≪ 1,

the following fitting space has been considered{
1, x, . . . , xp, exp

(
1
ε

∫
a
)
, x exp

(
1
ε

∫
a
)
, . . . , xp−1 exp

(
1
ε

∫
a
)}
, (2.12)

which is, differently from our case, more closely related to the problem rather than
to its solution. This is visible from the arguments of the exponentials in (2.12),
which generally do not match those of the solution of the problem.
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3. Adapted IMEX Euler method

We now focus our attention on the time integration of the spatially semidis-
cretized system (2.6). In order to highlight a proper time integrator for this prob-
lem, we recast it in the following matrix form

h′(t) = A(z)h(t) + B(z)h(t),

where

A(z) =
1
∆x2



0 0 0 . . . 1

γα0 γα1 γα2

γα0 γα1 γα2

. . .
. . .

. . .

γα0 γα1 γα2

1 0 0


∈ RN×N ,

B(z) =
1
∆x



0 0 . . . 0
−νβ0 −νβ1

−νβ0 −νβ1

. . .
. . .

−νβ0 −νβ1

0 0


∈ RN×N , (3.13)

and

h′(t) =



h′0(t)

h′1(t)
...

h′N−1(t)


, h(t) =



h0(t)

h1(t)
...

hN−2(t)

f ′(t)


.

The first summand, depending on the matrix A(z), belongs to the diffusion
term, thus it is notoriously stiff [1, 11] and requires an implicit solver in the
time integration, while the part belonging to the advection term, i.e. the sum-
mand depending on B(z), can be treated by an explicit time integrators. Thus, it
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looks worthwhile solving this problem by an implicit-explicit (IMEX) time solver
[1, 3, 4, 11] which creates a good compromise among accuracy, stability and com-
putational cost. With respect to the fully discretized domain

D∆x,∆t = {(xi, t j) : xi = i∆x, t j = j∆t, i = 0, . . . ,N − 1, j = 0, 1, . . . ,M − 1},
(3.14)

being ∆x = X(T )/(N − 1) and ∆t = T/(M − 1), we integrate (2.6) in time with the
following adapted IMEX-Euler scheme

h j+1 = ε0h j + ε1

(
∆tA(z)h j+1 + ∆tB(z)h j

)
, j = 0, . . . ,M − 2, (3.15)

where h j = h(t j). The adapted version of the IMEX-Euler method we aim to in-
troduce, coherently with the space discretization discussed in Section 2, is carried
out by taking into account the character in time of the solution (1.3), which shows
an exponential behaviour of complex parameter. Hence, we compute the unknown
coefficients ε0, ε1 and ε2 by imposing the exactness of the time integrator (3.15)
on the fitting space

H = {1, exp(iωt)}.
We introduce the following linear operator

L[∆t]h(t) = h(t + ∆t) − ε0h(t) − ε1 (∆tA(z)h(t + ∆t) + ∆tB(z)h(t))

and, by means of Taylor series arguments around (x, t) and neglecting O(∆t2)
terms, we recast it as

L̃[∆t]h(t) = h(t + ∆t) − ε0h(t) − ε1∆th′(t).

We observe that L and L̃ differ for O(∆t2), which does not compromise the accu-
racy of the resulting IMEX-Euler method, having order 1.

We evaluate
L[∆x]1, L[∆x]e(x, t),

being 1 = [1, . . . , 1]T ∈ RN and e(x, t) = exp(iωt)1 and, due to the invariance
in translation of the operator, we refer to the values gained in correspondence of
t = 0 and annihilate them, obtaining the following linear system of equations 1 − ε0 = 0

exp(iw) − ε0 − iwε1 = 0
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with w = ω∆t. The solution of such system is given by

ε0 = 1,

ε1 = −
i
(
eiw − 1

)
w

.

(3.16)

Also in this situation, w , 0 because ∆t , 0 and the ω is generally non-zero (at
least for non-degenerate cases), ensuring that the denominators in (3.16) are non-
zero. Moreover, as expected, when w tends to 0, the variable coefficients (3.16)
tend to the classical values

ε0 = ε1 = 1. (3.17)

of the coefficients of the IMEX-Euler method based on algebraic polynomials.
Hence, the exponentially fitted formula retains the same order of accuracy of the
corresponding classical one, which is equal to 1.

Remark 3.1. Of course the application of the adapted numerical scheme requires
the computation of the parameters z and w in (2.8), (2.10) and (3.16). Parame-
ter estimation in exponentially fitted methods usually requires optimization tech-
niques having as objective function the leading term of the local discretization
error or solving nonlinear systems of equations in order to annihilate such error
term [6, 8, 10]. In our case, we can efficiently approach the problem of computing
the unknown parameters by exploiting the expression given by (1.3), suggesting
us to define

z =
(
ν

2D
− µ − iρ

)
∆x,

w = iω∆t.

The case of parameter estimation when a parametrization of the solution of the
problem is not known is object of [9], in the case of reaction-diffusion problem.

4. Stability analysis

We now aim to analyze the stability properties of our numerical scheme. While
accuracy properties are mostly highlighted by the constructive issues themselves,
stability deserves an independent analysis, which also clarifies the relationship be-
tween the classical method (i.e. classical finite differences for the spatial semidis-
cretization and classical IMEX-Euler time integration) and the adapted one (i.e.
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adapted finite differences for the spatial semidiscretization and exponentially fit-
ted IMEX-Euler method for the time integration).

Following the idea in [21], we aim to prove stability by controlling the propa-
gation of the error caused by an incoming perturbation. To do this, we perturb the
solution h j as follows

h̃ j = h j + δ j,

and study the behaviour of the error

E j = h j − h̃ j.

Consequently, the following stability result occurs.

Theorem 4.1. For the IMEX-Euler method (3.15) for the semidiscrete problem
(2.6), the following stability inequality occurs∥∥∥E j+1

∥∥∥∞ ≤ ∥M∥∞ ∥∥∥E j
∥∥∥∞ , (4.18)

where
M = Λ (ε0I + ε1∆tB(z)) , (4.19)

being Λ = (I − ε1∆tA(z))−1 and I the identity matrix in RN×N .

Proof: We first recast the IMEX-Euler method (3.15) in the following compact
form

h j+1 = Λ
(
ε0h j + ε1∆tB(z)h j

)
,

obtaining by collecting the approximations in the same step point at each hand
side. Similarly, we get the following expression of the perturbed method

h̃ j+1 = Λ
(
ε0h̃ j + ε1∆tB(z)̃h j

)
,

Therefore, the corresponding error associated to the introduced propagation is
given by

E j+1 = h j+1 − h̃ j+1 = Λ (ε0I + ε1∆tB(z)) E j,

and passing to its norm gives the thesis. �
Thus, according to Theorem 4.1, for the stability analysis it is sufficient to

analyze the inequality
∥M∥∞ < 1 (4.20)

with M given by (4.19). Let us specialize this inequality for both the classical and
adapted cases:
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• for the classical case, covered by Theorem 4.1 when z and w tend to zero,
we know that ε0 = ε1 = 1 and the matrix B(z) reduces to

B̃ =
1
∆x



0 0 . . . 0
−ν ν

−ν ν

. . .
. . .

−ν ν

0 0


,

and the matrix A(z) is equal to

Ã =
1
∆x2



0 0 0 . . . 1

γ −2γ γ

γ −2γ γ

. . .
. . .

. . .

γ −2γ γ

0 1


.

Since
∥∥∥B̃

∥∥∥∞ = 2|ν|/∆x, then

∥M∥∞ ≤
∥∥∥∥(I − ∆tÃ

)−1∥∥∥∥ (
1 + 2

∆t
∆x
|ν|

)
.

Hence, it is sufficient to check, for stability purposes, that∥∥∥∥(I − ∆tÃ
)−1∥∥∥∥ (

1 + 2
∆t
∆x
|ν|

)
< 1;

• for the adapted case, the infinity norm of the matrix B(z) in (3.13) is equal
to |ν|(|β0| + |β1|)/∆x. Thus,

∥M∥∞ ≤ ∥ (I − ε1∆tA(z))−1 ∥
(
1 + 2|νε1|

∆t
∆x

∣∣∣∣∣∣ z
exp(−z) − 1

∣∣∣∣∣∣
)

and it is sufficient to secure, for stability purposes, that

∥ (I − ε1∆tA(z))−1 ∥
(
1 + 2|νε1|

∆t
∆x

∣∣∣∣∣∣ z
exp(−z) − 1

∣∣∣∣∣∣
)
< 1.

Examples of these bounds are provided in the following section.
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5. Numerical experiments

We now present the numerical evidence originated by applying the IMEX-
Euler scheme (3.15) to the advection-diffusion problem (1.1), with the following
values of the parameter

γ = −5, ν = −2, D = 3, ρ = 10,

in correspondence of several values of the frequencyω. The domain chosen for the
integration is given by the square (x, t) ∈ [0, 100]×[0, 100], which is discretized in
space and in time with different values of the stepsizes ∆x and ∆t. The compared
solvers are the following:

• IEclass, obtained by coupling the spatial semidiscretization based on clas-
sical finite differences (2.7) with coefficients (2.9) and (2.11) with the clas-
sical IMEX-Euler time integration, giving rise to (3.15) with coefficients
(3.17);

• IEef, obtained by coupling the spatial semidiscretization based on adapted
finite differences (2.7) with coefficients (2.8) and (2.10) with the classical
IMEX-Euler time integration, giving rise to (3.15) with coefficients (3.16).

The results here reported are oriented in two directions: first of all, confirm-
ing the effectiveness of the approach IEef based on adapted methods as well as
providing a comparison between IEclass and IEef in terms of stability, at the
same computational cost. Figures 1 and 2 show the profile of the real part of the
numerical solution for ω = −2, obtained by the two aforementioned solvers with
stepsizes ∆x = 1/10 and ∆t = 1. An unstable behaviour of IEclass is clearly
visible, while IEef is able to correctly reproduce the profile of the solution. We
observe that such stable and unstable behaviors observed in Figures 1–3 are co-
herent with the result highlighted in Theorem 4.1: indeed, the value of ∥M∥∞ is
equal to 1 for the classical case IEclass, while for IEef it is equal to 0.0302. The
solution obtained with IEef is also zoomed in Figure 3, which better highlights
the shape of the oscillations.

6. Conclusions

We have introduced an alternative approach for the numerical solution of ad-
vection diffusion problems (1.1) by means of adapted methods which take into
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account the qualitative behaviour of the solution. The approach here presented is
based on spatial semidiscretization of the advection and diffusion terms by expo-
nentially fitted finite differences and the time integration of the resulting system
of ODEs by an exponentially fitted IMEX-Euler solver. This novel approach, in
comparison with its classical counterpart based on algebraic polynomials, pro-
vides a more stable method, as theoretically proved in Section 4 and confirmed
by the numerical experiments in Section 5. Further development of this research
will be oriented to introducing adapted numerical methods for other evolutionary
operators and problems, by emphasizing on the analysis of stability and accuracy
properties in comparison with existing approaches, and on an efficient and accu-
rate parameter estimation.

Acknowledgments
This work was supported by GNCS-INDAM project. The authors are grateful to
the anonymous referees for their comments, which helped improving this paper.

Figure 1: Real part of the numerical solution of (1.1) with ω = −2 computed by IEclass solver,
with ∆x = 1/10 and ∆t = 1.
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Figure 2: Real part of the numerical solution of (1.1) with ω = −2 computed by IEef solver, with
∆x = 1/10 and ∆t = 1.

Figure 3: Real part of the numerical solution of (1.1) with ω = −2 computed by IEef solver, with
∆x = 1/10 and ∆t = 1, zoomed for (x, t) ∈ [0, 100] × [0, 10].
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