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Abstract

In this paper a general class of diffusion problem is considered, where the
standard time derivative is replaced by a fractional one. For the numerical
solution, a mixed method is proposed, which consists of a finite difference
scheme through space and a spectral collocation method through time. The
spectral method considerably reduces the computational cost with respect to
step-by-step methods to discretize the fractional derivative. Some classes of
spectral bases are considered, which exhibit different convergence rates and
some numerical results based on time diffusion reaction diffusion equations
are given.
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1. Introduction

Although fractional calculus dates back to the XIX century, only in the
last 50-60 years has growing interest been paid to this subject in modelling
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applications. The time fractional derivative oD{y(t) depends on the past
history of the function y(t), and so time fractional differential systems are
naturally suitable to describe evolutionary processes with memory when 0 <
a < 1. For values 1 < a < 2 the phenomena that are modelled have wave
like properties - see [13]. Fractional models are increasingly used in many
modelling situations including viscoelastic materials in mechanics 30, 42,
anomalous diffusion in transport dynamics of complex systems [25, 33|, soft
tissues such as mitral valve in the human heart [40], some biological processes
in rheology [12], the kinetics of complex systems in spatially crowded domains
(compare [1] and references therein contained), the spread of HIV infection
of CD4+ T-cells [11], Brownian motion [31, 34]. A number of applications
modelled by time-fractional differential equations can be found in [21] and in
the references therein. In many cases, the derivative index a belongs to the
interval (0, 1), like in [1, 11-13, 40, 41].

One important application area where both time and space fractional
models are becoming important is in the field of water diffusion magnetic
resonance imaging. Conventional MRI studies are based on the assumption
of Gaussian diffusion, but biological tissues are structurally heterogeneous
and under large diffusion weighting gradients the acquired signal has a heavy
tail which is characteristic of anomalous diffusion [18] and hence fractional
diffusion models are relevant. Anomalous diffusion MRI studies have been
conducted in the brain [19], cardiac tissue [6], liver [3] and cartilage |37].
Specifically time fractional diffusion MRI models have been developed in
[17, 29, 32|, while fractional diffusion models of cardiac electrical propagation
have been considered in [5, 8|.

In this paper we consider a time-fractional reaction diffusion problem

Pu(zr,t)  O?

= gt )+ (), () €0, X]x[0,7], (11)

subject to boundary conditions (such as Neumann or Dirichlet boundary
conditions) as well as to suitable initial conditions. Here u : [0, T] x [0, X| —
R, f:]0,7] x [0,X] — R. If 0 < o < 1 initial conditions are of the type
u(z,0) = ug(x), if 1 < o < 2 initial conditions are of the type u(z,0) = ug(x),
ur(z,0) = ugo(x) (compare |2, 21| and references therein). In the following
we restrict our attention to the case 0 < o < 1. Some results of existence and
uniqueness of solution can be found in [27, 28|, where the analytical solution
is also expressed in form of Fourier series. We adopt Caputo’s definition of



fractional derivative:

o 1 t (n)
Oa?iit) = oDMy(t) = T —a) /0 (tiJT)E;—)l—ndT’ n—1l<a<n, neN
Some fundamental notions on fractional calculus may be found in [35].

One of the features of time fractional models is that they are examples of
non-local models and as the solution depends on all its past history, numerical
step-by-step methods are computationally expensive. On the other hand,it is
well known that spectral methods can avoid the discretization of the ’heavy
tail” and are exponentially convergent [23, 26, 41, 45, 46] and so are suitable
for non-local problems avoiding the difficulty of using time discretization
techniques that need to use all, or most, of the history. This motivates us
to use a numerical scheme consisting of a spectral method through time, on
a suitable basis of functions, and a finite-difference method through space,
whose coefficients are adapted according to the qualitative behaviour of the
solution.

The paper is organized as follows. In Section 2 we introduce a mixed
spectral collocation method, applied to the semi-discrete problem generated
by a finite difference scheme through space. Section 3 deals with the com-
putation of matrix D and vector d, which is a crucial part of the overall
method. Section 4 is devoted to the choice of the bases of functions of the
spectral method and of the collocation points. Some numerical experiments
are illustrated in Section 5. Finally, we give some concluding remarks.

2. The method

We consider in a first analysis the time-fractional diffusion problem (1.1)
subject to Neumann boundary conditions and initial conditions:
du(0,t)  du(X,t)

o dr 0,t €0, 7] wu(r,0)=wuy(z),z € [0, X]. (2.1)

2.1. Semi-discretization through space
The first step to solve the problem (1.1)(2.1) consists of applying a finite-
difference scheme to discretize the spatial derivative. We use a space dis-

cretization which is suitable to treat both Neumann and Dirichlet condition.
We introduce a uniform mesh on [0, X], given by:

rg=0<x <---<zxpp, Ty =mAz, Az =X/M.
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To approximate the spatial derivative in (1.1), in the internal points, we
adopt this centered finite difference scheme:
Pulxit)  asu(xioy,t) + aqu(a;, t) + agu(wigr, t) | O'u(é,t) (Ax)?
dx? (Ax)? ozt 12

, (2.2)

€ € [x;_1,xi11], assuming that v is sufficiently smooth.

In the case of the classical centered finite difference scheme, we have ag =
a; = —1 and a; = 2. Alternatively, if the solution has an oscillatory behavior
with respect to the spatial variable, and an estimate of the frequency is
available, we may apply the exponentially-fitted centered finite difference
scheme introduced in [9, 10| (compare also [7]). We refer to [9] for the exact
expression of coefficients ag, a; and as in this case. An extensive monograph
on the exponential fitting theory is [20].

At the boundary, we consider two different second order approximations of
the Neumann condition: the centered difference approximation

u(z + Az, t) — u(z — Az, t) N (Ar)?
2Ax 6

Uy (z,1) = Uge(2,1) + O((Az)*) (2.3)

and

—3u(xo, t) + du(xo + Az, t) — u(xo + 2Ax,t)
2Ax

B2 (w0, 1) + O((AT)3),

—3u(xpr, t) +4u(re — Az, t) — u(xy — 2Ax, 1)
, —2Ax
B (2, 1) + O((Ax)?).

Placing the nodes on the vertex of each cell gives rise to a common space
discretization to treat both Neumann and Dirichlet conditions. Moreover,
this choice is totally in line with the existing literature regarding the method
of lines [38, 39], also in its adapted version with non-polynomial basis [7, 9,
10).

By introducing the discrete differential operator L:

g (o, t) =

(2.4)

Uz (a1, t) =

agu(x; 1,t) + ayu(z;, t) + agu(z;q, t)
(Az)? ’
at the internal mesh points, the equation (1.1) may be written as
0*u(x;, t)
ot»

Lu(x;,t) =

= Lu(z;,t) + f(z,t) + R(x;,t), i=1,...,M —1,



where

1 ot 9
N < = — : :
R0 < 5 o |t )| (A (2.5
Then, the semi-discretization of (1.1) is given by
J*u(t
a‘;ﬁ ) L@ +£00), (2.6)

where u(t) = [u!(t) ...« 1(t)]T, ui(t) is an approximation of u(z;,t), f(t) =
[f(z1,t) ... f(xy_1,t)]T, L is the following tridiagonal matrix of dimension
M —1: ) )
ap Qo
az ap Qg
L= . (2.7)
o A1 Qg
Az ay

If the boundary conditions are discretized by (2.3), we have:
ut(t) =u(t) and WwMT(t) = MTH(2), (2.8)
while if we apply (2.4), it gives

4

ul(t) = gul(t) — 1

% guM_l(t) - guM_Q(t). (2.9)
Both schemes (2.2)(2.8) and (2.2)(2.9) are second order accurate, thanks to
(2.3)-(2.5).

u?(t) and uM(t) = L

2.2. Full discretization

We approximate each component u'(f) of the solution of (2.6) by a func-
tion u'y(t) of the type

N
uly(t) = Zzlépj(t) (modal expansion). (2.10)

Jj=0

By introducing a set of collocation points to = 0 < t; < --- < tny = T, this
approximation can be also expressed as

u'y(t) = Z o, (t)uly(t;) (nodal expansion). (2.11)
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The above functions P;(t) are chosen both to well reproduce the behavior of
the analytical solution, and such that their fractional derivative can be easily
computed analytically. The choice of the basis functions P;(¢), j =0,..., N,
will be discussed in Sec. 4. On the other hand, functions ¢;(¢) (and their
fractional derivatives) are not known and should be computed in some way.
We observe that from (2.11) they have to satisfy ¢;(tx) = 0;%, where 0, is
the Kronecker delta. We define

¥;(t) == oD7p;(1),

then we derive the following approximation
N
oDl (t) & oDjuiy(t) = ) v (uiv(ty).
=0

Therefore we impose

N N
oD (th) m Y y(t)uiy = Y Wy (ta)us; + Golt)uo(ws), (2.12)
=0 j=1

k=1,...,N, where u;; = uly(¢;) ~ u(z;,t;) and ug(z) is given by (2.1).
In equation (2.6), we substitute the fractional derivative of u’(t) in ¢t = t;
by (2.12) and, by adding the discretized boundary conditions, we obtain a
system of N(M +1) equations in N(M +1) unknowns u; j, i =0,..., M, k =
L,...,N. As amatter of fact, once the basis of functions {P;(t)} ., is chosen,
the values ¢;(t;), 7 =0,....,N, k= 1,..., N can be easily computed, as it
will be shown in Sec. 3. In the following subsections we will examine in some
details the fully discrete systems corresponding to the various discretized

boundary conditions.



2.2.1. Boundary conditions discretized by centered difference (2.3)
By discretizing the boundary conditions with formula (2.3), we get (2.8)
and, by (2.6), we obtain

N
(ap + ag)uy p + aruoy
Z Q/Jj(tk)uoyj = (AZE)Q + f(m()a tk)a
§=0
N
A1k + A1 + QoUiy1 & .
Uity = ——— (ia;)Q R flat),i=1, M — 1,

0
(ap + ag)upr—1 1 + arupsk

(Ax)?

Vi(te)um; = + f(zamr, te),

M=5

o

j:

with £ = 1,..., N. Hence, the fully discretized counterpart of the problem
(1.1)(2.1) is given by the following linear system

1
DU +duy” = A UM+F. (2.13)

The square matrix M, of dimension (M + 1), is defined as

ay a9
(ap +az) ay ag
ag a1 a9

M —
)
ag a; (ag+ az)
L CLO (1/1 .
Moreover
(D)k,; = ¢;(te), (d) =olty), k,j=1,...,N, (2.14)
and

(U0)7:+1 = Uo(l‘z‘,), (U)k,7:+1 = U k, (F)k,1:+1 = f(mi, tk)v

k=1,...,N,i=0,...,M. Matrix D and vector d will be computed in
Sec. 3. Equation (2.13) is a Sylvester equation, whose solution is unique if
and only if the matrices (Ax)?D and M have distinct eigenvalues [4].



2.2.2. Boundary conditions discretized by (2.4)
From the approximation (2.4) at the boundary nodes, we obtain (2.9),
4

thus we get ug, = §u1’k — guzk and up gk = Up—1k — SUpm—2k- Likewise

the previous case, we formulate a Sylvester equation of type (2.13), where
the square matrix M has dimension (M — 1) and is defined as

i (Ch =+ %CLQ) ag
(ao — %Gz) ap Qg

apg ap Qg

ap a1 Q9
Qo a1 (CLQ—%GO)

ag ((11 + %GJO) ]

the matrix D and the vector d are given in (2.14) and

(U)k,i = Uik, (F)kz = f(%‘, tk), (Uo)i = Uo(%‘% (2-15)
k=1,....,.N,i=1,...,M — 1.

2.3. Problem (1.1) with Dirichlet conditions

Now we consider the problem (1.1) with the homogeneous Dirichlet con-
ditions and initial value wug(z) :

u(0,t) =u(X,t) =0,t € [0,7] wu(z,0)=wuy(z),z €0, X]. (2.16)

By the same centered finite difference scheme (2.2), we obtain the semi-
discrete system (2.6) with u°(t) = u™(t) = 0. Then, by applying the
spectral-collocation method we get the fully discrete system with the ad-
ditional conditions wugy, = 0, and up = 0, & = 1,..., N. This system is
equivalent to a Sylvester equation of type (2.13), with M = L, where L is
defined in (2.7). The other matrices and vectors are defined as in (2.15).

3. Computation of matrix D and vector d

To formulate the discrete system (2.13) we have to compute matrix D
and vector d, whose entries are given by the evaluation of functions ,(t) =
oD{p;(t) at the collocation points ;. Functions ¢;(¢) may be analytically
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computed by (2.10) and (2.11), and then );(¢) are derived. In practice, this
analytical approach is highly time-consuming even by using some symbolic
tools (such as Mathematica®) and not applicable at all for N > 4. Moreover,
such procedure is not portable in a routine for the solution of the problem
(1.1)(2.1). Thus, it is necessary to find an automatic procedure, which does
not involve any symbolic calculation. This goal may be achieved by virtue
of the following proposition. Here we adopt Matlab notation and [d, D] is
the matrix whose first column is vector d and the other columns are given
by matrix D.

Proposition 3.1. The following equality holds:

[d,D] =P B, (3.1)
where B = A" and
Polte) -+ Pulto) DYPo(ty) -+ DPy(ty)
A= ST P = : :
Polty) - Pn(tn) D*Po(ty) -+ D*Py(tn)

Proof. By applying the interpolation conditions at the points tq,tq,...,ty,
to the modal expansion (2.10), we get the linear system of dimension N + 1

A’ = uly,
o o " T . . ; T

where ' = [ 4§ ... af |7, un'= [ ui(te) ... ui(ty) ] . Thus

= A'uy = Buly, ie 4 = Z Byjul(t;),l=0,...,N.
Then

N N /N
uly(t) = Zuﬂ’l( Z Z Bijuy (1, Z (Z BleI(t)> wy(t;).

=0 = 7=0 1=0

From this we obtain the functions ¢;(¢) of the nodal expansion (2.11) and
their fractional derivatives:

N N
=Y Byhit), ()= oDi'g;(t) =D By o DIPi(1),
=0

=0

and (3.1) follows. O



We notice that the computation of A~! is not expensive, since N usually
is small (N < 10, as we will see in the numerical experiments), although the
condition number of A may affect the accuracy.

The computational kernel of the proposed method consists of the com-
putation of matrix D, and of the solution of the Sylvester equation (2.13).
Thanks to Prop. 3.1, the construction of D requires the inversion of a matrix
of dimension N and a matrix multiplication, therefore the computational cost
is O(N?). The solution of the Sylvester system (2.13) is a matrix of dimen-
sion less or equal to N M, thus by a direct solver method the computational
cost is O(NM)3, but this cost may be reduced to O(N® + M?3) [4].

4. Function bases and collocation points of the spectral method

We consider three different classes of functions as basis for the spectral
method: a power basis, a polynomial basis and a trigonometric basis. Each
of them satisfies the condition to have a fractional derivative defined in R.

In the case of (1.1) with f = 0 and when the Laplacian is replaced by the
discrete operator A, the solution of the ensuing linear systems is given by

y(t) = Eo(At)yo.
Here - .
Eal2) = ; T(1+aj)

is the Mittag Leffler (ML) function and T is the gamma function, see the
monograph [24] and survey [16] on the properties of generalised ML functions.
Note Fi(z) = exp(z) and a characteristic of ML functions is a heavy tail.
As the general solution of the test problem (1.1)(2.1) depends on the ML
function, one natural choice for the function basis {y;} 7 is:

P R A (4.1)

The fractional derivatives of such functions are given by (compare e.g. [35])

[(aj +1) oli-1)

Df1=0, (Dft" =
T TG =D+

L i=1,2,....

A second basis consists of a class of Jacobi polynomials shifted in the
interval [0,7]. We recall that Jacobi polynomials piY) () are orthogonal
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with respect to the weight function (1 — z)%(1 + z)° in the interval [—1,1].
The n-th Jacobi polynomial shifted in [0, 7] is Péfﬁ_}?) (r) = Péa’b)(%‘” —1).

We adopt the class of Jacobi polynomials P,&“"“)(:c) shifted in [0, 7], with
v = [a]. The choice of this basis is inspired by the spectral theory developed
for the fractional Sturm Liouville problem in [43] (see also [46]). If 0 < a < 1,
we have

= (n+k+1)! k

Pur (@) = ;(_1)714; et Di(n— BT (42)

Its fractional derivative is easy to compute, and for k € N gives

k! k— :
ODa k _ F(k:—oz-i—l)gj a’ if k = |_Oé-|,
. 0, otherwise.

Another possible choice, which may be useful for oscillatory problems, is the
trigonometric basis

N N
1, cos(wt), sinwt, cos(2wt), sin(2wt), . . ., cos (?Cﬁ) , sin <7Wt> . (4.3)

where N is even and w is an estimate of the frequency of the solution. In
this case, the fractional derivatives are also easy to compute and

oDf* cos(jwt) = (wj)® cos (wjt + ag) , oDy sin(jwt) = (wy)“ sin (wjt + ag) .

We note that the behaviour of the error is affected not only by the choice

of a suitable basis of functions, but also by the choice of the collocation

points. The easiest choice is to consider equidistant nodes in the time interval

[0,T]. We consider Chebyshev zeros and extrema shifted in [0, 77, since the

properties of these points in the interpolation theory may help to reduce the
collocation error.

5. Numerical experiments

We performed the numerical tests in Matlab. To solve the full-discrete
Sylvester system (2.13) we applied the Matlab function lyap. In the following
tables and figures we report the error computed in [ ,-norm

CITOT = WX | ax luie — u(x;, 1)),

where u(x,t) is the exact solution of the considered problem.
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5.1. Test example 1

We consider as a test example the time-fractional heat equation, i.e. the
problem (1.1)(2.1) with f(z,t) = 0. If ug(x) and uf(z) are piecewise contin-
uous in [0, X|, the general solution is 22|

)= 8+ S cvcos (M5 Bul—(hn/x),
k=1

2 (¥ kms
E— 2 > (.
= /0 uo(s) cos < e ) ds, k>0

X =27, ug(x) = —0.05 cos(x), (5.1)

we get by simple calculations u(x,t) = —0.05 cos(z) E, (—t%).

To evaluate the exact solution, we computed the ML function by Matlab
codes mlf [36] and ml [14, 15|, which have the same accuracy but the latter
is much faster.

In order to numerically verify the accuracy of the space-discretization, we
fix a sufficiently large number N of the functions of the spectral basis and
vary the dimension of the space mesh M. In this way that the error due to
the spectral method along time is negligible and the global error is essentially
given by the spatial discretization. The results are listed in Tab. 1, where cd
indicates the number of correct digits of the solution (the error is written as
107°?) and the effective order is computed by the following formula

cd(M) — cd(M/2)
log,, 2 '

and

If we consider

Depr =

The effective order of classical finite difference is 2, both in the case of
the scheme classl described in Subsubsec. 2.2.1 and in the case of class2,
described in Subsubsec. 2.2.2. On the other hand, the exponentially-fitted
finite difference [9] has effective order equal to 3: we suppose that the first
term of the error expansion vanishes thanks to the special form of the exact
solution and to the fact that the coefficients ag, a;,as depends on the fre-
quency of the solution. We obtained similar results with other values of .

Now we analyze the error due to the spectral method through time. To
this aim, we fix a large value M of the space mesh and let N vary, i.e. the

12



Table 1: Error on test example 1, « = 1/2 and T" = 1. Power basis (4.1) through time
with equidistant collocation points.

classl N =9 class2 N =9 exp-fitt N =38

| M [ ed | pegs [ ed [ peyy [ ed [ peys |
5]2.73 1.86 1.82
10 ]3.34| 2.01 || 288 3.40 |[2.77| 3.14
20 {3.94| 2.00 |/ 3.8 3.30 | 3.68| 3.05
40 | 454 | 2.00 | 451 | 1.12 || 459| 3.01
80| 5.14 | 2.00 |[513] 2.06 | 5.50| 3.01
160 | 5.74 | 2.00 |[5.75| 2.04 | 6.41| 3.04

dimension of the spectral basis. Since the accuracy of the overall scheme
depends both on the discretization error and on the accuracy of the solution
of the system (2.13), we analyzed the condition number of matrix D too.

In Fig. 1 we plotted the error and the condition number of D for the power
spectral basis (4.1). For a = 1/2 the method exhibits an exponential con-
vergence, while the condition number of D is increasing with N. The ill-
conditioning of D is responsible for the loss of accuracy for N > 9. A similar
behavior is observed for o« = 1/10, where the condition number of D grows
faster. We notice that in both cases, the exponential convergence is lost as
cond(D) > 10°. No significant difference is shown by varying the set of col-
location points. For ae = 9/10, cond(D) is much smaller, especially for the
Chebyshev roots and extrema, and consequently the accuracy of the method
is preserved. The reason for a flat line of the error for N > 8 is that the error
of the space-discretization has become predominant with respect to the error
through time.

In Fig. 2 some experiments with the Jacobi polynomials (4.2) are shown.
The convergence rate is considerably slower with respect to the power basis,
and poor results are observed for « = 1/10. Thus, the Jacobi polynomial
basis proves not to be suitable to approximate the considered problems be-
cause, we assume, it does not reflect the behavior of the analytical solution.
This is in agreement with [44|, where the convergence is slower if the solu-
tion is not sufficiently smooth. Finally, we performed some tests with the
trigonometric basis (4.3), but no convergence is seen, and moreover matrix
D is badly conditioned even for small values of N. In Fig. 2 the case o = 1/2

13



a=1/2

10 i 0=9/10 M=5000
—~ —e— uniform mesh 10°
9, N Chebyshev roots 4 _ _9_2:12“:;",35'1 ] /,/‘
'g 10" | —— Chebyshev extrema % ’ Ch;;;;'l . - "
[ o |
10 ‘ ; i 8 ﬁ%ézﬁk—v—*
o 2 4 6 8 10 |
N 10 2 3 4 5 6 7 8 9 10
10° N
10°
— .
Q 10° 5 s
:T) £ 107
v ] \
107° o %\
0 2 4 6 8 10 1 2 3 4 5 6 7 1
N N
" a=1/10
10 - -
—e&—uniform mesh
— —+— Chebyshev roots
[a] —v— Chebyshev extrema
F 5
T 10
S
o
° L
10 2 3 4 5 6 7 8 9 10
N
10°
107 b v
£
@ 0ot ]
~10| L L L L L L L L
0 2 3 4 5 6 7 8 9 10
N

Figure 1: Test example 1, 7' = 1. Condition number of matrix D and error with spectral
method by power basis (4.1) through time, and classical finite differences through space.
M = 1250 except for a = 9/10. There is a logarithmic scale on the y-axis.

and w = 1 is shown, but similar results are obtained for other values of «
and w. These results do not surprise, since the problem is not oscillatory in
time.

To analyze the performances of the spectral method for a larger time-
integration interval we set 7' = 10 and we carried out some tests for « = 1/2.
The results are plotted in Fig. 3. The performances are analogous to the case
T =1, although the convergence is somewhat slower.

5.2. Test example 2

Now we consider as test example the problem (1.1)(2.16) with f(z,¢) = 0.
If up(z) and uy(z) are piecewise continuous in [0, X|, the general solution is

2]
u(z,t) = ch sin (k;r(_a;) By (—(km /X)),

k=0

14



a=1/2 a=9/10
10" . . . . ! ! ! ! 10° - ! ! ! ! !
—=e— uniform mesh uniform mesh
—_ — —=+— Chebyshev roots
[a) —*— Chebyshev roots [a) —v— Chebyshev extrema
5 108 7 Chebyshev extrema 5
c c
Q Q v
o o
o g
10 ! f ! . . . . 10 . . . . . . . .
2 4 6 8 10 12 14 16 18 20 2 3 4 5 6 7 8 9 10
N N
107 ! ! ! ! ! ! ! ! 107 ! ! ! ! ! ! ! .
3 -3
5 M~ 5107 ]
£ 107 — i E
@ T v
10’4 L L L L L L L L 10’5 L L L L L L L L
2 4 6 8 10 12 14 16 18 20 1 2 3 4 5 6 7 8 9 10
N N
a=1/10 trigonometric basis «=1/2 ®=1
10 15
10 T T T T T T T T 10 T T T
3 —e— uniform mesh Y
—_ uniform mesh — —=+— Chebyshev roots
[m] ——+— Chebyshev roots [a) 10" | —— Chebyshev extrema 4
= =
'g 10° H| —o— Chebyshev extrema 1 E
<} 3 10° i
o o
100 10“ L L L L L L L
4 6 8 10 12 14 16 18 20 2 3 4 5 6 7 8 9 10
N N
107 T T T T T T T T 107 T T T T T T !
= J . -
g 107 ; | g e— 1
[} o . o
10’4 L L L L L L L L 10’3 L L L L L L L
2 4 6 8 10 12 14 16 18 20 2 3 4 5 6 7 8 9 10
N N

Figure 2: Test example 1, 7' = 1. Condition number of matrix D and error by Jacobi
polynomials (4.2) (up and bottom left) and by trigonometric basis (4.3) (bottom, right).

M = 1250. There is a logarithmic scale on the y-axis.
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Figure 3: Test example 1, & = 1/2, T = 10. Condition number of matrix D and error
by power basis (4.1) (left) and Jacobi polynomials (4.2) (right). M = 1250. There is a

logarithmic scale on the y-axis.
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Figure 4: Test example 2, T' = 1. Condition number of matrix D and error by power basis
(4.1), except for bottom, right, where the Jacobi basis (4.2) was applied. M = 1250 where
not otherwise specified. There is a logarithmic scale on the y-axis.

and
krs

) X
Cp = y/ﬂ 11,0(8) sin 7 dS, k > 0.

If we consider
X =27, up(x) = —0.05sin(z), (5.2)

we get by simple calculations u(z,t) = —0.05 sin(x) E,(—t%).
In Fig. 4 and 5 some numerical experiments are shown. The performances
of the method are completely analogous to the case of Neumann conditions.
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Figure 5: Test example 2, « = 1/2, T' = 10. Condition number of matrix D and error by
power basis (4.1) (left) and Jacobi basis (4.2) (right). M = 1250. There is a logarithmic
scale on the y-axis.

5.3. Test example 3
Last test example is a nonlinear problem, i.e. a problem where the forcing

function depends on z, t and u. In particular, we consider the problem

o 2 3
: ggf:zqt) - aaxQU(ﬂ?;t) +u— U_ —|—g($,t), (xat) S [O’ 1] X [0’ 1]’ (53)

3
subject to Neumann boundary conditions and with initial condition ug(z) =
0. The function g(z,t) is such that u(z,t) = x%(3 — 22)t3**. This type
of equation has been proposed in [13|, where a two-dimensional problem is
considered, with the same type of nonlinearity.

By applying our method to problem (5.3) we obtain system (2.13), where
the matrix F now depends on U, thus we have to solve a nonlinear system
of dimension N (M —1). We used Matlab function fsolve, with starting guess
given by the null solution, with tolerance required for the function value
equal to 107", The results of numerical experiments are illustrated in Fig.
6, where we set «« = 0.8, as done in [13]. We observe exponential convergence
both in the case of power basis (4.1) and of Jacobi basis (4.2). As a matter of
fact, as IV increases the error of the spectral method vanishes and the global
error is given by the error of the finite difference method along space.

5.4. Test example 4

Finally we apply our method to equation (5.3) with o = 0.8, g(z,t) = 0
and ug(x) = 1y — 0.05cos(kozx), with 7; = 0.099669956223526 and ko =
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Figure 6: Test example 3, « = 0.8. Error by power basis (4.1) (left) and by Jacobi basis
(4.2) (right). M = 200. There is a logarithmic scale on the y-axis.
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Figure 7: Test example 4, o = 0.8. Estimated error by power basis (4.1) (left) and Jacobi
basis (4.2) (right). M = 200. There is a logarithmic scale on the y-axis.

0.474040841239853. These parameters are taken from [13|. The analytical
solution of this problem is not known. Thus, to verify the convergence, we
set as reference solution the numerical solution obtained with 10 functions
of the spectral basis. Then we compute the estimated error as the lo,-norm
of the difference between the solution with N functions and the reference
solution, computed at the last time step. The results are illustrated in Fig. 7.
We observe that also in this case the spectral method exhibits exponential
convergence, and the best rate of convergence is obtained with power basis.

6. Conclusions

We introduced a mixed spectral method to solve a time-fractional dif-
fusion problem. It consists of a finite difference through space, where the
coefficients may depend on an estimate of the frequency in the case of pe-
riodic problems, and of a spectral collocation method through time on a
suitable function basis. We underline that any symbolic computation has
been avoided and the method can be implemented straightforwardly in an
algorithm. The numerical experiments confirmed the order of accuracy of
the spatial discretization and showed that, if the spectral basis is suitably
chosen, the spectral method exhibits an exponential convergence.
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