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Abstract

In this paper, an adapted numerical scheme for reactiffusitin problems generating
periodic wavefronts is introduced. Adapted numerical méghfor such evolutionary
problems are specially tuned to follow prescribed quéligdbehaviors of the solutions,
making the numerical scheme more accurate dicient as compared with traditional
schemes already known in the literature. Adaptation thindbg so-calle@dxponential
fitting techniqudeads to methods whose dheients depend on unknown parameters
related to the dynamics and aimed to be numerically computtste we propose a
strategy for a cheap and accurate estimation of such pagesnethich consists essen-
tially in minimizing the leading term of the local truncati@rror whose expression is
provided in a rigorous accuracy analysis. In particulag, ghesented estimation tech-
nigue has been applied to a numerical scheme based on coghiniadapted finite
difference discretization in space with an implicit-expligité discretization. Numer-
ical experiments confirming thefectiveness of the approach are also provided.

Keywords: Reaction-difusion problems, periodic plane wave solutions,
trigonometrical fitting, parameter estimation, adaptedhoe of lines, IMEX
methods.

1. Introduction

The work is focused on the numerical solution of nonlineact®n-difusion prob-
lems

du 8%u
a = dlﬁ + f]_(u, V),
X (1.2)
ov o°v
5t dzw + fa(u, v),

whered; > 0 andd, > 0 are the dfusion codficients andy, v : [0, «0)Xx[0, T] — Rare
state variables denoting, for example, the concentratibtwo interacting biological
species. The nonlinearity in the reaction terfy({, v), fo(u, v)]" is generally due to the
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occurrence of feedbacks, whereby a component influencegiyety or negatively) its
evolution or the evolution of the other constituents.

These problems are widely used in applications involvingliagory dynamical
systems (compare, for instance, [14, 15, 25, 26, 27, 28, (%181 references therein),
because their dynamics is typically characterized by tmegdion of wavefronts [19].
Hence, since the main feature of these systems is the wawawvibelof their funda-
mental solutions, it is worth assessing numerical schenféshvaccurately reproduce
it in the discretized dynamics. In particular, we aim to @aene a classic gap of stan-
dard numerical methods for oscillatory evolutionary pesbs, i.e. their requirement
of employing a very small stepsize to accurately reproduceszillatory dynamics,
due to the fact that they are thoughtgeneral purposdormulae developed in order
to be exact (within round4{b error) on polynomials up to a certain degree. When the
exact solution of a problem has a particular a-priori knowehdvior (e.g. periodic,
oscillatory in time and space, exponentially decayinginéy be more convenient to
use fitted formulae that are exact on functions other thaypnpohials: this technique
is nowadays well-known asxponential fitting(see [18, 20] and references therein)
and the chosen basis functions are normally assumed todolanfinite-dimensional
space calleditting space The fitting space is selected according to the a-priori know
information about the exact solution and, as a direct camsgee of this choice, the
basis functions also depend on parameters related to thigoso{e.g. the frequency of
the oscillations for oscillatory problems), whose values@early unknown.

Briefly, the main challenges connected to a significant usexpbnentially fitted
methods are the choice of an appropriate fitting space anddberate estimate of
the unknown parameters. This paper focuses on this lastgmolby proposing an
estimation strategy based on minimizing the leading terth@focal truncation error.

The numerical scheme presented here is obtained exterfténigeas introduced
in [11] for A-w systems to a general reactiorffdsion system (1.1): it consists in a
spatial discretization of the (1.1) through trigonomelii fitted finite diferences and
the time integration of the resulting system of ordinarffedential equations, having
the expression

y = Ay+ f(y),

whereA is a matrix whose size depends on the number of spatial gndspandf (y) is
a vector-valued function. We focus on systems havingfhaiimponent (arising from
the difusion term) and a relatively nonftone (coming from the reaction term).

Due to this mixed nature, we follow the path drawn in the éxgstiterature (see,
for instance, [1, 2, 3, 4, 21, 31] and references therein)digguan implicit-explicit
(IMEX) numerical method that implicitly integrates thefsterms and explicitly in-
tegrates the other ones. For the numerical integrationeoéyistem, a totally explicit
method would require strong restrictions on the stepsizeder to guarantee the sta-
bility because of the dtiness. On the other side, a fully implicit method would better
treat the sfifness but would be more expensive than an explicit one in dolac-
curately handle the nonlinearity. Hence, it may be convdrtie use IMEX methods
because they implicitly integrate only the components tiead it (stif constituents)
and explicitly integrate the other ones, with benefits imigpf stability and ficiency.
Such a benefit, in the context of reactiorffdsion and advection-filusion problems,



has been highlighted, for instance, in [21, 31] and refezsitioerein.

In summary, we develop a problem-oriented numerical schiensegeneral reaction-
diffusion system, described in Section 2, while Sections 3 amdvde an error analy-
sis of the method and propose an estimate of the unknown péeesn Section 5 shows
numerical experiments confirming th&ectiveness of the approach; finally, Section 6
is devoted to concluding remarks.

2. Adapted numerical scheme

The numerical scheme we propose, extending the ideas in516, 11, 12], relies
on a finite diference spatial discretization of the problem, by means ddidapted
method of lines. Thus, as a first necessary step, we need ¢ifyspar numerical
domain: indeed, the state variableandvin (1.1) are defined in an unbounded domain,
but we numerically integrate the system (1.1) in its bounztathterpart

D:=[0, X] x[0, T], (2.2)

whereX is chosen large enough that any increase would only havégitggleffects on
the solution. Following the method of lines (see [17, 22, &3] references therein),
we spatially discretize the domain (2.2)

Dn={(%t):x=ihi=0,...,N-1 h=X/(N-1)},

whereh is the spatial stepsize. Then, the spatially discretizedion of (1.1) with
initial conditions

u(x, 0) = ya(x),  V(x, 0) = y(x), (2.3)
and suitable boundary conditions assumes the form

Uo(t) = 41(V), (2.4a)

Vo(t) = &2(1), (2.4b)

U'i(t) = dp Ap[ui(t), h] + fo(ui(t), vi(t)), 1=1,...,N-2, (2.4c)

Vi(t) = da An[vi(t), h] + f2(ui(t), vi(t)), i=1,....,N-2, (2.4d)

U'n-1(t) = ma(t), (2.4e)

Vn-1(t) = m2(t), (2.4f)

whereu;(t) = u(x, t) andvi(t) = v(x;, t) fori = 0,...,N-1, the functiong, />, n; and
n, are determined by the spatial discretization of boundanditions andA[¢;(t), h]
(with ¢i(t) = ui(t) or ¢;i(t) = vi(t)) is the n-point finite diference formula used to
approximate the spatial second derivatives. The systethi€also equipped by initial
conditions

u(0) = w1 (%), Vvi(0)=u2(x), i=0,...,N=-1 (2.5)

General purpose formulae for the numerical approximatibdesivatives are con-
structed in order to be exact (within rounét-error) on polynomials up to a certain
degree. However, the resulting methods could require a sl stepsize in order



to follow the prescribed oscillations of the solution in eas problems generating pe-
riodic wavefronts. For this reason, as in [10, 11], we appnate the second spatial
derivatives of functionsi andv in (1.1) by the adapted three-point finitefférence
formula

1
As[gi(®). N = 5 (20(2) piaa(t) + @1(2) 4i(1) + 82(2) ¢i-1(1) . (2.6)
wherez = ph, whose cofficients are calculated in order to achieve the exactness
(within round-dft error) on functions belonging to the fitting space
F = {1, sin(u X), cosfu X)}, 2.7)

with spatial frequency € R. We observe that this choice is motivated by the period-
icity of the exact solution, a-priori known. Thus, as showrj10], the expressions of
the codficientsag, a; anda, are

z

" 1-cosz

ao(2) = L a2, a@= (2.8)

2(1-cosz)
Such coéicients are no longer constant, as in general purpose foenhia depend
on the parametet. In generalz # 0 becausén # 0 and the frequency is not null in
case of periodic solutions. Moreover, whetends to 0, the variable cfigsients (2.8)
tend to the classic ones
ap=a=1 a=-2 (2.9)

Therefore, the trigonometrically fitted formula preserties second order of accuracy
of the corresponding classic one, as shown in [10].

With regards to the time integration, we recast the systedtjZ2.4d) in a more com-
pact form:

U’(t) = di A@QU (1) + F1(U (1), V(D).

V() = dy AGV(D) + Fo(U(D), V(D). (240
with
uy(t) ] [ fr(ua(), va(t))
uz(t) f1(u2(t), va(t))
u() = : . Fi(t) = : ,
[ un—2(t) | [ f1(un—2(t), vin-2(1)) |
vi(t) ] [ f2(ua (D), va(t)
vo(t) fa(ux(t), v2(t)
V() = : . Fat) = : ,
[ Vn-2(t) | | f2(un-2(t), vin-2(t)) |
[ a1 @12
) 1 -2 1
- _ Y4 . .
7(2) - 2(1_ COSZ), A(Z) - h2 t. c. ’
1 -2 1
AN-2N-3  aN-2,N-2



where the first and the last row @{(z) are obtained by the spatial discretization of
boundary conditions.

The terms in (2.10) exhibit a fierent nature: indeed, the one coming from the
diffusion term is typically sff, while that arising from the reaction component is as-
sumed to be relatively nonfiti As highlighted in Section 1, it may be convenient to
use IMEX methods because they implicitly integrate onlff stmponents and explic-
itly integrate the others (see [1, 2, 3, 4, 31] and refereticesein), with a benefit in
terms of dficiency in comparison with fully implicit methods, as well@s stability in
comparison with explicit methods.

Thus, we consider a uniform time grid bf points

tj=jk j=01,...,M-1,

in [0, T], with the time stegk, and we apply the linear first order IMEX-Euler method

[2]
¢t = ¢ + kG(pY) + kF(e)), (2.11)

whereG represents the flusion term and- the reaction one. Hence, the numerical
scheme for (2.10) is

Ut = Ul + kdy AIFTUIF 4 KRy (U, V),

VI =V kdy APV 4 K Fy(U, V), (212)
or, in a more compact form,
W = W 4 kAW 4 Kk F(WD), (2.13)
where 1
wz[ \Lj ] i | BA ai ] F :[ E; }

The matrixA depends on the parametewhich has to be approximated. The selection
strategy is object of the following sections.

3. Accuracy analysis

We now provide an accuracy analysis of the method (2.13ptéerasMEX-EF
in the remainder of the paper. In particular, Theorem 3.1nstthat the order of con-
sistency of the numerical scheme@®z%) + O(k). This result is coherent with the
expectations since the fitted finitefidirence formula employed to approximate spatial
derivatives has order 2 and dependszamd the IMEX-Euler method has order 1.

Theorem 3.1. The IMEX-EF method(2.13)is consistent with the probleifi.1) and
the order of consistency 8(z°) + O(k), where z= uh as in(2.8) with spatial grid
width h and k is the time stepsize.



Proof: The local truncation error at the { + 1)-grid point is

Li+ Xi7t'+ - Xht
Ph:lj< 1g] = (%, 1 1)k #(x, 1))

— 5 (0, 1), V%, 1)
Y@ ds

(3.14)
2 (#06s1.ta1) = 2006 tja1) + $(X-1.41))

whereg¢ = uor¢ =vand

d; =diandf, =1 if¢=u,
dy =dpandf, =f, ifg=wv

We compute the following Taylor series expansions in ordexgpropriately rewrite
the residual operator (3.14)

N d¢ K2 (6%
P(Xi, tjr1) = d(Xi, b)) + k(a)i,j o ( 52 )i’j +0(K%), (3.15a)
(%41, tjs1) = (X, tir1) + h ki M (o +0(h?) (3.15b)
¢ Xit+1, j+1 —¢ Xi, j+1 X el 2 \ox2 el s .

0 h2 (52
i,j+1

—= == h® 1
9o axz)uﬂw( ) (3.150
o\ _(Pe) |2 (7 L

0% )i \0X); "|ot\ox ot

We next reformulate the equation (3.15a) as follows

$(%, tjr1) — d(%, 1) (3 k (0%¢ 2
k - (E)IJ ’ ( )i,j ol

K[ 8% (0%
+E[ (W)L,,—Jr()(ks)' (3.15d)

i

2\ a2
and we sum (3.15b) and (3.15c), taking into account (3.15d):

(3.16)

A(Xir1, Ljr1)—20(Xi, tjs1) + o(Xi—1, tj41) =

¢ d (0%
2[99 21,19 (99 212 4
h (6x2)i,,- +h%k at(aXZ)L +0(k?h?) + o(h™.

We now expand/(z) in power series, obtaining

z 7z
7(z)=1+1—2+m+0(26).



Hence, the local truncation error (3.14) becomes

PLIg] = ( ),-+ (?;f) +O() — f(U(X, ), (%, 1))

- % [1 + 2 O(z“)] [hZ (azaﬁ) hzk( o (gz"j))i’j +0(h*k%) + O(h*)

at
3 ol |-
—d, [ z O(z“)] [(%)U + k(ﬁ (%))Lj +O(K?) + O(hz)] .

Sinceg(x, t) is the exact solution of the problem (1.1), the followingiation is verified

(a_¢) _ d¢(62¢) ! = f(u(x, 1)), (X, 1})) = 0,

2,
= (6—¢) — fo(u(xi, ), v(%i, ;) — d¢,((3 ) _+0(k2)
ij

ot

and the local truncation error assumes the expression

pii1g] - [ ((ZZTZ)) . d¢( (‘;zf)) +0() + O(H?)
a2 (%), +0@)
RES +0(z4)H E (%)) +0() +0(h2)}
~ 0 +0).

O

Theorem 3.1 is fundamental to prove the convergence of theerioal scheme
(2.12), as shown in the following theorem:

Theorem 3.2. Suppose that the vector valued functio(AK-, t;)) is smooth enough
and satisfies the bound
IVEIl2 < Fmax

Then, the global error _ _
E]+l — W(',tj+1) _ WJ+1

fulfills the bound
j+1
|E=Y, < 2(1 + K Fina 17178

()
Rikll,

with RV = O(K) + O(2). In other terms, under the above hypothesis, MEX-EF
method(2 13)is convergent.



Proof. The discretization error in a fixed time grid point; is
ENFL = W(, tjyg) — W, (3.17)

whereW(, tj;1) is the exact solution ify.1. Consistency of the method (see Theorem
3.1) implies that
W te) = WE ) + KA WG ) + K FOWE 1) +REEY,  (3.18)

whereRUH = 0(k) + 0(2).
Hence, the discretization error (3.17) becomes

Ei+l = W(, 1)) + K AW, tj,1) + K F(W(, tj)) + Rfﬂﬁl)—
- W — kAW -k F(W!) (319)
= Bl + kA BN+ K[FOW( 1)) - FOWD] + RS,

Since (I- kA)~t is non-singular, the discretization errortjn; is
EFt = (1 k) (B + k(FW(-. 1)) - F(W)) + RU:Y) (3.20)
which leads to the following relation

€74, < flo — ke, (€], + k [Fewe 1) - Fowh, + )R

'2). (3.21)
SinceF is smooth enough for hypothesis, we can apply the mean Viahogem:
[FWC. 1) = FOWD), = IVF Il [WC 1) = W, = IV F I [[E, -
Moreover, the assumptidfVF||, < Fnaxleads to
[[FOWC 1) = FOWD, < Frnax|[E'[], - (3.22)
In order to bound|(I - kA)~2||,, we observe that
(I-kA) ™ =Q(I-kAYQ,

whereQ is an orthogonal matrix and, is a diagonal matrix having the eigenvalues of
A on the diagonal. We next recall tH&®|l, = 1 = ||Q"||, and the eigenvalues il

4@ [ k
A = 0 ﬁ(zz) smz(z(N’_rl))so, k=12...,N-2

so the following bound holds

(1= kA, = p((1 —kA)™) = ﬁﬂmax <1, (3.23)



whereAnay is the eigenvalue afd with the highest modulus. Therefore, the norm of
the discretization error is given by

£, = B, + Pt ) - FowD, +

’2'

We recursively apply this relation until the discretizatierror at first step appears, as
follows:

| | |2 (3.24)
< (14K Fa) [E], + R

[E™*Y, < @+ kFmna)? ||[EV, + (1 + K Frna)

0) (+1)
R+ R

.

j+1
e S (LK Fmad 7 [EO, + > (L4 K Finand 2[R,
s=1

2

Since||E?||, = 0, we obtain for eaclj

R(S)

j+1
||Ei+1||2 < Z(l +k Fmax)i+1—s ©
s=1

2 hk—0

4. Parameter selection

This section is devoted to introducing a selection strafegyhe estimation of the
parametey in (2.7), necessary for the computation of thefo@nts (2.8). This is a
crucial problem in applying exponentially fitted methodsg$18, 20] and references
therein), because their dbeients are no longer constant as it happens for traditional
methods based on algebraic polynomials, but depend on thesvaf unknown pa-
rameters. The problem of estimating the parameters hasHzsatied, up to now, by
minimizing or annihilating the principal term of the localihcation error associated to
the method (see [8, 9, 16, 18, 20] and references thereinkilvéo follow a similar
path, i.e. we estimate the valueoby minimizing the leading term of the local trunca-
tion error, whose expression in each grid point is proviaetthé proof of the Theorem
3.1, as follows:

e 18 d (9%
e (3 (5), (& (5] |00 o

o ’ (4.25)
-0, (W)i,; +O0(ZK) + 02,

where¢ = uor¢ =v,d, =d;if ¢ = uandd, = dy if ¢ = vandz = ph. Its
u-dependent leading term is

T+ () = —d, o |5 (4.26)

12h2 (62¢)
i.j



We recall that the exact solutian relies on the parameter because in a problem-
oriented approach it is assumed to belong to the space gbagrtee basis functions
(2.7). Since we want to minimize (4.26), we approximate {egtial second derivative
by the fitted finite diference formula (2.6) with cdiécients (2.8):

—ij+l /1222 (2¢|J - ¢ij+1 - ¢|J_1)

ToW=d 24(1- cos?) (4.27)

Therefore, we can calculate the optimal parameter in eawdr igrid point by min-
imizing the function (4.27). In order to perform such a mifdation we compute the
first derivative of (4.27) with respect o

dT It z (2¢iJ — Pl - ¢’ij_1) 1 (4(1- cosz) — zsinz)

du 6)=2b 24 (1- cosz)? ’ (4.26)

and annihilate it. Since
ds 2

PP >
24(1 - cos2)
andu # 0, we solve the nonlinear equation

(4(1 - cosz) — zsin2) (Zqﬁij - - ¢ij_1) - 0.

i+1
As also shown in Figure 1, the function
D(2 = 4(1- cosz) — zsinz
has roots ire = 0, +2r, +£8.55, . ... Therefore, we can select

_ 855
Hije1 = =0~

. . .. —i,j+1
as points of relative minimum for .

In order to improve this estimate by adding a correction temmassume that
af;
3 <1, (4.29)

whereq; | = 2¢ij - ¢j - ¢j such that the following relation holds

i+1 i-17
62¢ ﬁz 62¢
—| |ds ==>|-|=—] |d
ax2)i,j v12° (axZ)Lj

2 Q2.
B i

b T (4.30)

T @, )| = ‘— (

wheres = 8.55. Therefore, the leading term (4.26) of the local trurmratrror is
smaller in modulus when it is evaluated jinj., = %Q’i’j. Hence, we propose an
estimation of the optimal parameter relying on the addaigmid-dependent correction
aij .
term—-, l.e.
h

855
uoht = St (4.31)

10
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Figure 1: Plot oD(2) = 4(1-cosz) - zsinz, wherez = u h, u is the parameter which the basis functions (2.7)
depend on and is the spatial stepsize. The study of this function is nexmgs®r the parameter selection
presented in Section 4.

It is important to highlight that the proposed estimatior8(4 only depends on values
already computed and does not require the further solutioroolinear equations or
minimization problems in applying the numerical schemet happens, for instance,
in [8, 9, 16]. Moreover, we remark that condition (4.29) does impose any further
strict restrictions on the stepsize. Therefore, the pteseparameter selection does
not increase a lot the computational cost. Moreover, thpgsed estimate is adapted
to the numerical scheme because it is obtained by minimitiagorresponding local
truncation error. Finally, although the frequency of theiltetions in the exact solution
is constant, the parameter is computed at each grid poitlesestimate is accurately
tuned to the problem (as also shown in Figure 2 and Figureng) aa extreme accu-
mulation of the global error is avoided.

5. Numerical experiments

We now show the numerical evidence arising from the intégmabf some test
reaction-dffusion systems by means of tHdEX-EF method (2.13). In each consid-
ered test, we prove that the term coming from thféudion exhibits an higher $fhess

11



than the component arising from the reaction, so an IMEXgirggon is worthwhile.
For this purpose, we compute thefistess ratio of the matris# arising from the dis-
cretization of the dtusion term, as follows:

o[ (N=2)
Re@) (2(N - 1))

e Si”2(2<Nﬂ— 1))’

Rat

(5.32)

where andJ are the eigenvalues of the matriksuch that
IRe()| > [Re(t)| > Re@)|, i=1,....N-2

On the other hand, we calculate theTsiess ratioR,; of the Jacobian matrix related to
the reaction term in order to study thefBtess of this component.

In the remainder of this section, we refer to the method (Qi@sented in this paper as
IMEX-EF. On the other side, we cdMEX-classic the scheme obtained by discretizing
in space the system of PDEs through the method of lines artcathidonal three-point
finite difference formula and then integrating in time the resultirgiesy of ODEs by
means of the IMEX Euler method (2.11). We remark that thesitabree-point finite
difference formula is constructed in order to be exact (withimedbdf error) on poly-
nomials up to a certain degree and itsfioéents are reported in Equation (2.9).

5.1. Linear test problem
We consider the following test reactionflision problem

u_
at a2 (5.33)
N _ v +v+1 |
ot ox2 '
with u,v : [0, 4] X [0, 1] — R, with initial conditions
u(x,0) = sinx, Vv(x,0)=cosx—1, (5.34)
and homogeneous Dirichlet boundary conditions
ul0,t)=0, v(0,t)=0, u(dnrt)=0, v(4rt)=0. (5.35)
The exact solution
u(x,t) =sinx, v(xt)=cosx-1 (5.36)

oscillates in space with a spatial frequency equal to 1, sagle of the trigonometrical
fitting space (2.7) is justified and the exact value for theapeateru is equal to the
spatial frequency, i.euexact = 1. Moreover, the sfiness ratio of the Jacobian matrix
related to the reaction term is equal to 1, whereas tftaass ratio (5.32) of the matrix
A arising from the discretization of theftlision term increases with the number of

12



Method h Rat Timing [9] Error

IMEX-EF n/5 1614 108 49.10°16
IMEX-classic | #/5 | 1614 5.4 3.3-102
IMEX-classic | /10 | 6478 85 8.2.1073

IMEX-classic | /20 | 2.6-1C° 173 20-10°3
IMEX-classic | n/40 | 1.0-10% 37.8 51-10%

Table 1: Comparison between thdEX-EF (2.13) joined with the exact value for the parametggact =

1 and the corresponding classic IMEX in terms of spent time arat éor the numerical integration of
system (5.33) provided with the initial conditions (5.34g&oundary conditions (5.35). The error has been
computed as dlierence with respect to the exact solution (5.36). In all tes@nted tests, the time stepsize is
k = 0.01 andRq+ is the stitness ratio (5.32) of the matriXt arising from the discretization of the Laplacian
operator.

grid pointsN, as it is shown in Table 1. Therefore, thefdsion term is much more
stiff than the reaction one and the adoption of an IMEX integratqustified.

Table 1 also shows that thH®EX-EF scheme is extremely more accurate than the
IMEX-classic. Moreover, the classic scheme does not achieve the sameegaf
IMEX-EF when it takes the same time (see Table 1Hef 7/10 andh = n/20). For
this reason, when the exact value for the parameter is alild appears clear that
IMEX-EF is much more convenient. However, the error drasticallydases if the
value of parameten is far from the exact valugexact = 1, as it is exhibited in Table

2. In particular, we observe that far = 0.2 IMEX-EF achieves a similar accuracy
with respect to the classic one, but dramatically increasire computational cost.
Therefore, the advantages of an adapted scheme are stiofiggnced by the value
of the parameten, so a proper strategy is required to estimate this paranveten it

is unknown. Table 2 shows thiM EX-EF combined with the estimate (4.31) proposed
in Section 4 is as accurate as the same scheme joined withxdioe \&lue, but it is
obviously more expensive because it requires the computafithe parameter at each
grid point. Finally, in Figure 2 we observe that the estirdgbaramater is generally
close to the exact valug: (= 1) and the fact that the estimate is point-wise avoids the
increase of the error in those cases when the parameterdiigrfal.

5.2. 2-w problems

Among reaction-dfusion problems, the so-call@dw systems represent one of the
most studied classes [14, 15, 19, 24, 25], especially far thgportant property of
generating periodic plane waves. In general, they haveoltening expression:

2
ou =d; ou + A(ru — w(r)v,
ot 0x? (5.37)
v v '
5 d, e + w(r)u+ A(r)v,

13



Method u | Timing[9 Error
IMEX-EF 1 407 49.1016
IMEX-EF 0.8 929 7.3-10%
IMEX-EF 0.2 926 20-10°3

IMEX-classic | — 173 2.0-10°°
IMEX-EF | opt 719 49.1016

Table 2: Accuracy andf&ciency of thelMEX-EF scheme (2.13) according to the value for the parameter
within the numerical integration of the system (5.33) eqaippvith initial conditions (5.34) and boundary
conditions (5.35). These results have been compared witloties obtained with the classic IMEX scheme,
the IMEX-EF scheme applied with the exact value for the parametggé = 1) and the MEX-EF scheme
joined with the estimated value for the parametéd.31). In this test, the time stepsizekis- 0.01 and the
spatial mesh width ik = 7/20.

with u,v : [0,00) X [0, T] — R, r = VU2 + V2, w(0) > 0, 2(0) > 0. The nonlinearity
visible in the reaction term is governed by the functia(ry andw(r) which are usually
chosen as in [24]:

AN =2-r°, wl)=wy—-rP, p>0, >0, wy>D0. (5.38)

We solve the system (5.37) equipped by the following inidiata decaying exponen-
tially in space on the semi-infinite domain, [9)

u(x, 0) = V(x, 0) = &1 exp(=&2x), (5.39)

and mixed boundary conditions

ou ov . .
a—X(O, t) = x 0,t) =0, xl_'moo u(x,t) = )(I_|)r110o v(x,t) = 0. (5.40)
As proved in [19], the exact solution of (1.1) can be parainetras

u(x,t) = Fcos@(P)t = VAF)X), Vv(xt) = Fsin@)t = VA(F)X), (5.41)

with f € R such thati(f) > 0. It depends on the parameterso it is actually not
computable. However, it is important to realize that it isaai@dic plane wave, so
it has constant shape and speed and oscillates both in spdde ime, so it can be
convenient to employ trigonometrically fitted formulae. iMover, the sffness ratio
(5.32) of the matrixA coming from the discretization of the Laplacian operatonisch
higher than the dfiness ratio of the Jacobian matrix related to the reactian:téor
instance, ih = 1 andk = 0.5, the stifness ratio of the diusive term is equal to 9118.2,
while that of the reactive part is equal to 12.9. These featorake the problem a good
candidate for the adoption of thRIEX-EF (2.13) adapted method.

Following the ideas exposed in Section 2, we solve the proliiethe domain [0 X] x
[0, T] where X is large enough so that its further increases have negigiticts on
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Figure 2: Estimated parametefor both componenta (on the top) and (on the bottom) of the solution in
each grid point computed by the formula (4.31) according themipation strategy described in Section 4,
within the numerical integration of the system (5.33) eqegmith initial conditions (5.34) and boundary
conditions (5.35), and with = 7/20 andk = 0.01.

the solution. Thus, we reformulate the boundary conditemollows
ou ov
—(0,t) = —(0,1) = 42
50D =2 (0.9 =0, (5.422)

u(X,t) = v(X,t) = 0. (5.42b)
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We apply the method (2.13) with

2 2
Y| 1 2 1 AU - QV
A2 =Tz S ’ F:[QU+AV]’
1 -2
A(r) ] w(r)

A(r) w(r)

A(r) = . . Q@)= . ,
A(r) | w(r)

and the following values for the parameters
dl =1= dz, =1 wo= 2, p= 1.8, fl =01, fg =0.8. (5.43)

The rectangular domain ® = [0, 150]x [0, 60]. It is useful to note that the spatial in-
terval is large enough to justify the use of boundary cond#i(5.42) instead of (5.40).
For the application of method (2.13), we employ the paransstkection strategy dis-
cussed in Section 4, and compare this value with an additestanate that can be
desumed by the parametrization of the exact solution (5i4l)

2= el 4
Mj = U3 +V2, (5.45)

with ui; = u(x;, tj), vij = v(x, tj). Parameter estimation is performed in each grid point,
without heightening the computational cost of the solvealhat The reason why the
estimation is not performed just once, even if the solutias bonstant frequency, is
given by the fact that the numerical solution has not condtaguency, due to the
accumulation of error, thus it is reasonable to recompueafiproximated parameter
point by point.

We observe that, for the numerical solution, the followietation holds

where

2

% <1,
which makes applicable the estimation strategy present&edétion 4.
For simplicity, we denote byMEX-EF-PS the methodMEX-EF (2.13) combined to
the problem-suggested estimate (5.44) aEX-EF-Opt the IMEX-EF method (2.13)
joined with the estimate (4.31) computed as described itiGGed.
Figure 3 and Figure 4 exhibit the profiles of the solutions patad by the afore-
mentioned methoddNIEX-EF-Opt and IMEX-EF-PS, respectively): we observe that
they generate wavefronts moving along the domain with esrisipeed and shape.
This behaviour is coherent with the expectations cominghfprevious studies (see
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[24]) and the comparison with the solution obtained by thel&aroutinepdepe (see
Figure 5). We recall that the Matlab routipeepe is an automatic solver for the fol-
lowing class of PDEs:

06\ 06 _ 0 [ m 2 2
c(x,t,¢, &)ﬁ =X (9x(x f(x,t,qS, 6X))+s(x,t,¢, 6x)’

provided with proper initial and boundary conditions. Wenegk that problem (5.37)
belongs to this class, by assuming

c(x, t, ¢, ‘;—‘i) =[1,1]", f (x, t, ¢, 6—¢)

u ov]
OX ’

X’ dx
s(x, t, ¢, g—i) =[AN0u-w(r)Vv, w)u+ar)v]T, m=0.

The integration in space is carried out by employing finitedences depending on a
number of points automatically chosen on a mesh providedidyiser. The resulting
system of ODEs is then solved through the Matlab routidel 5s which selects both
timestep and solver automatically.

Figure 6 shows that the optimal estimate (4.31) follows treracter of the problem
much better than the problem-suggested estimate (5.421),ieloth give a reasonable
numerical solution. It is important to highlight that thetiesate (5.44) requires the
knowledge of at least a parametrization of the exact salutidnich is not always pos-
sible to be computed, while the estimate (4.31) does not heétker a-priori known
information on the solution of the problem. Therefore, thwnerical schem&MEX-
EF-Opt can be thought as preferable with respect to the schetax-EF-PS.

Finally, Figure 7 and Figure 8 highlight that thdEX-EF method is much more
stable than the corresponding classic one.

6. Conclusions

The work has focused on the numerical solution of reactidiusion system gen-
erating periodic wavefronts by means of a numerical schetieharelies on trigono-
metrically fitted finite dfferences for the space discretization and on an IMEX scheme
for the discretization in time. The adoption of trigononieltly fitted formulae is
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Figure 3: Numerical solutions af— w reaction-difusion system (5.37), with functionr) andw(r) chosen
as in (5.38), initial conditions (5.39) and boundary coiodi$ (5.42), computed by the new method (2.13)

with spatial stepsizh

0.01 and the estimate (4.31) for the paramatpresented

0.3 and time stepsize

in Section 4. The solutions (on the top) ands (on the bottom) are depicted as functions of spacd

successive times with a vertical separation proportional to the time intérva

suggested by the a-priori known oscillatory behaviour @f ¢éxact solution and may
guarantee a better balance between accuracy fiiwiercy with respect to classic
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Figure 4: Numerical solutions af— w reaction-difusion system (5.37), with functionr) andw(r) chosen
as in (5.38), initial conditions (5.39) and boundary coiodi$ (5.42), computed by the new method (2.13)

with spatial stepsizé

0.01 and the problem-suggested estimate (5.44) for the

0.3 and time stepsizk =

parametep. The solutionsu (on the top) ands (on the bottom) are depicted as functions of spae
methods. The used trigonometrically fitted finit¢feliences depend on the values
of unknown parameters related to the solution that have tadserately estimated.

successive times with a vertical separation proportional to the time intérva
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Figure 5: Numerical solution of — w reaction-dftusion system (5.37), with functiongr) andw(r) chosen
as in (5.38), initial conditions (5.39) and boundary coiadis (5.42) computed by the Matlab routipgepe
with spatial stepsizé = 0.3 and a tolerance equal to 6. The solutionsu (on the top) ands (on the
bottom) are depicted as functions of spac successive timdswith a vertical separation proportional to

the time interval.
sponding local truncation error. It is worth highlightirftat such an estimation of the

The proposed estimation strategy, presented in Section phrticularly tuned to the
numerical scheme, because it is based on minimizing theipghterm of the corre-
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Figure 6: Estimated parameter in each grid point computed fmtimerical integration of the system
(5.37) with functionsi(r) andw(r) chosen as in (5.38), equipped by initial conditions (588 boundary
conditions (5.42) and with = 1 andk = 0.5. Top figure: estimated parameter computed by the formula
(4.31) described in Section 4. The parameter related to tiiponentu is depicted on the top, whereas the
parameter related to the componeiig represented on the bottom. Bottom figure: estimated paraitiete
same for both components) computed by employing the problemestegjformula (5.44).

parameter does not require the employ of a minimizationguace or the solution of
nonlinear systems of equations at each step, as in [8, 9pbli6}ptally relies on the
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u(z,t)

150

%107

Figure 7: Numerical solutions af— w reaction-difusion system (5.37), with functionr) andw(r) chosen
as in (5.38), initial conditions (5.39) and boundary coiodis (5.42) computed b{MEX-classic method
with spatial grid widthh = 3 and time stepsizk = 1.5. The component is depicted on the top and the
component is represented on the bottom.

application of Equation (4.31), hence without a significaetement in the computa-
tional cost. Moreover, although the frequency of the oatidhs in the exact solution
is constant, the parameter is computed at each grid poioh that the estimate is
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u(z,t)

v(z,t)

Figure 8: Numerical solutions af— w reaction-difusion system (5.37), with functionr) andw(r) chosen

as in (5.38), initial conditions (5.39) and boundary coiedi$ (5.42) computed b\MEX-EF method with
spatial grid widthh = 3 and time stepsiZe= 1.5. The componentis depicted on the top and the component
vis represented on the bottom.

particularly adapted to the problem and a strong accunomaif the global error is
avoided. Numerical experiments have shown thieativeness of this approach, also
in comparison with traditional finite ffierence schemes. In particular, we mean that
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adapted schemes follow better the qualitative behaviotine@&olutions. Finally, we
remark that the choice of a proper fitting space is cruciakfuat all the benefits of
exponential fitting strategy. Therefore, further conttibos in this field will address
the open problem of creating a better match between the elodithe basis and the
estimate of the unknown parameters.
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