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Abstract Adapted numerical schemes for the integration of differential equa-
tions generating periodic wavefronts have reported benefits in terms of accu-
racy and stability. This work is focused on differential equations modelling
chemical phenomena which are characterized by an oscillatory dynamics. The
adaptation is carried out through the exponential fitting technique, which is
specially suitable to follow the a-priori known qualitative behavior of the solu-
tion. In particular, we have merged this strategy with the information coming
from existing theoretical studies and especially the observation of time series.
Numerical tests will be provided to show the effectiveness of this problem-
oriented approach.
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1 Introduction

This treatise is devoted to the integration of systems of differential equations
modelling oscillatory chemical phenomena. In particular, it shows the benefits
of merging time series of experimental data and theoretical studies about the
problem into an adapted numerical scheme.
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In case of problems having oscillating solutions, standard numerical methods
could require a very small stepsize in order to accurately follow the prescribed
oscillations. Indeed, they are constructed in order to be exact (within round-off
error) on polynomials up to a certain degree. When some information about
the qualitative behaviour of the exact solution are a-priori available, it may
be more convenient to employ adapted methods which are developed in or-
der to be exact on functions other than polynomials, following the well-known
technique of exponential fitting [4,5,8,11,11,12,19,20,24]. These basis func-
tions are supposed to belong to a finite-dimensional space, the so-called fitting
space, and are selected according to the prescribed character of the exact so-
lution. Consequently, the coefficients of the resulting numerical scheme are no
longer constant, as in the classic case, but rely on a parameter characterising
the exact solution, whose value is clearly unknown. Hence, the major issues
arising from the exponential fitting are the choice of a suitable fitting space
and the estimate of the parameter.
In this work, extending the ideas presented in [9], we take on these two chal-
lenges by exploiting the existing theoretical studies about the problem and ob-
serving the time series of experimental data. Since both these approaches show
that the considered problem has an oscillatory dynamics, it may be worthwhile
using a trigonometrical fitting space. The whole behaviour observed in time
series also suggests a modification of this fitting space, based on a combination
of trigonometric and logarithmic functions. In both cases, the basis functions
depend on a parameter, characterising the exact solution, which needs to be
approximated. When the time series of experimental data are available, we can
estimate this parameter by employing the frequency of observed oscillations.
We can also approximate the parameter by using the inverse of the period,
when its analytic expression is known. In both strategies, we avoid expensive
procedures involving non-linear systems employed, for instance, in [6,7].
As an experimental case study, we consider the Belousov-Zhabotinsky (BZ)
reaction, a prototypical oscillatory chemical system whose kinetics is basi-
cally described by the well-known Oregonator model proposed by Field, Körös
and Noyes [13,22,36]. This model is a system of first-order ordinary differen-
tial equations which we integrate by employing the above-mentioned adapted
strategy. In particular, we take into account information coming from the
theoretical studies presented in [35,36] and the observation of time series of
experimental data related to the experiment carried out in [26] on an unstirred
BZ system.
In summary, we present the key features of the Belousov-Zhabotinsky reaction
in Section 2 and we describe the adapted numerical scheme used to integrate
the Oregonator in Section 3. Section 4 reports some numerical tests and Sec-
tion 5 is devoted to the conclusions.
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2 The Belousov Zhabotinsky reaction

The Belousov-Zhabotinsky reaction, shortly indicated as BZ reaction [2,15,
37–39], is an outstanding example of self-organizing chemical system, widely
studied in different scientific disciplines. BZ reaction is, in fact, one of the sim-
plest closed macroscopic system that can be maintained far from equilibrium
by an internal source of free energy homogeneously distributed in space. Since
it is outside of thermodynamic equilibrium, BZ can exhibit several dynamical
regimes: periodic, aperiodic and chaotic oscillations [21,25], autocatalysis and
bistability [31], Turing structures and pattern formation [3,27]. Most of the
recent research concerning BZ reaction is devoted to stimuli-responsive smart
materials [14,29,30] and the simulation of complex biological communication
[32–34]. In this work, we focus on cases where a BZ system displays periodic
oscillations and we aim to reproduce them along the numerical solution.
In the BZ reaction, an organic substrate (generally malonic acid) is oxidised by
bromate ions in an acidic medium. The process is catalysed by one-electron
metal ion oxidants with standard reduction potentials of 1 − 1.5V, for in-
stance metal ions complexes such as ferroin, cerium sulphate, and so on (see
[22,36] and references therein). Under proper conditions, the system displays
self-sustained temporal oscillations in the concentrations of the intermediates,
which can be observed through a colour change of the solution (more evident
in case of ferroin as catalyst). Fields, Körös and Noyes found that these oscil-
lations derive from the competition between two processes: firstly, the metal
ion is mainly in its reduced state and the bromide ions ([Br−]) have an high
concentration (Process I, inhibitory step); then the bromide ion is consumed
up to a certain critical value and the metal ion is converted to the oxidised
state (Process II, autocatalytic step); finally, the metal ion reacts to produce
bromide ions and reverts to its reduced state again. From a dynamical point
of view, the linear stability analysis of the kinetic model reveals that oscilla-
tions occur through an Hopf instability stemming from the nonlinear chemical
mechanism (autocatalysis + inhibition). Although the whole chemical kinetics
involves several reactions, the fundamental mechanistic features are captured
in the FKN model proposed by Field, Körös and Noyes in [16] and used here
in the following simplified formulation [17,28]:

A+ Y
k1−→ X + P,

X + Y
k2−→ 2P,

A+X
k3−→ 2X + 2Z,

2X
k4−→ A+ P,

B + Z
k5−→ 1

2
f Y,

where the rate constants k1, . . . , k5 are known, f is a stoichiometric factor
representing the number of bromides produced when metal ions are reduced,
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and the key chemical elements are:

X = HBrO2 (bromous acid),
Y = Br− (bromide ion),

Z = Me(n+1)+ (metal ion in oxidized state),
P = HOBr (hypobromous acid),
A = BrO3

− (bromate ion),
B (organic substrate).

Concentrations of the reactant and product species P , A and B are in general
much higher than those of the dynamical intermediate species X, Y and Z,
so they are assumed to be constant on the time scale of a few oscillations.
Applying the law of mass action, the FKN model leads to the following system
of kinetic equations [22,28,36]:

dx∗

dt∗
= k1 a y

∗ − k2 x∗y∗ + k3 a x
∗ − 2k4(x∗)2, (2.1a)

dy∗

dt∗
= −k1 a y∗ − k2 x∗y∗ +

f

2
k5 b z

∗, (2.1b)

dz∗

dt∗
= 2k3 a x

∗ − k5 b z∗. (2.1c)

This system of first-order differential equations is known as Oregonator and
involves the concentrations of the aforementioned chemical elements, which we
indicate through letters in lower case henceforth. The oscillatory behaviour of
the exact solution strongly relies on the values of the parameters in (2.1),
especially k5 and f . Indeed, oscillations arise only if 0.5 < f < 2.414 and
k5 6= 0. In case of k5 = 0, the bromide ion (Br−) concentration decays to zero
according to the equation (2.1b), so the system cannot oscillate. On the other
side, for f < 0.5 and f > 2.414 the reaction is in a stable steady state, being
Process II or Process I dominant, respectively. However, for f > 2.414 (but not
too much larger) the system is excitable and, when it is spatially distributed,
can generate waves of oxidation, whereas when f < 0.5 (but not too much
smaller) the steady state is excitable and can propagate waves of reduction
(see [36] and references therein).
In case of 0.5 < f < 2.414 and k5 6= 0, it has been proved that the amplitude
A and the period T of the oscillations can be estimated as follows [36]:

A ≈

[
Me(n+1)+

]
max[

Me(n+1)+
]
min

=
1

4q (3 + 2
√

2)
, (2.2a)

T ≈ 1

k5b

(
ln

1

4q (3 + 2
√

2− f)
+

2f − 1

1− f
ln

2f − 1

2f
+

1

1− f
ln 2

)
. (2.2b)
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Let us consider the Oregonator (2.1) in its dimensionless form [28]:

ε
dx

dt
= q y − x y + x (1− x), (2.3a)

ε′
dy

dt
= −q y − x y + f z, (2.3b)

dz

dt
= x− z, (2.3c)

where

x =
2k4
k3a

x∗, y =
k2
k3a

y∗, z =
k4k5b

(k3a)2
z∗, t = t∗k5b,

ε =
k5b

k3a
, ε′ =

2k4k5b

k2k3a
, q =

2k1k4
k2k3

,

(2.4)

or, in a more compact form,

dr

dt
= F (r; q, f, ε, ε′), (2.5)

where r = [x, y, z]T and F (r; q, f, ε, ε′) =

 1
ε (q y − x y + x (1− x))

1
ε′ (−q y − x y + f z)

x− z

.

In the following Section, we present an adapted integration of this system of
ordinary differential equations.

3 Adapted numerical integration of Oregonator

The goal of this section is integrating system (2.5) in a certain interval [t0, T ],
provided with the initial condition

r(t0) = r0 , (3.6)

in a region of the plane k5− f where the solution is known to oscillate. There-
fore, we discretize the interval [t0, T ] by employing N points

tn = t0 + nk, n = 0, . . . , N − 1,

where k is the stepsize. The general expression of a s-stage Runge-Kutta
method applied to the system (2.5) to step from tn to tn+1 is

Ri = rn + k

s∑
j=1

aij F (tn + cjk,Rj), i = 1, . . . , s, (3.7a)

rn+1 = rn + k

s∑
i=1

bi F (tn + cik,Ri). (3.7b)
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Let us assume that system (2.5) is autonomous, so we can simplify the right-
hand-side: F (tn + cjk,Rj) = F (Rj).
We aim to construct an adapted Runge-Kutta method in order to be exact
(within round-off error) on a set of linearly independent functions. This means
that each stage equation (3.7a) and the final step one (3.7b) have to integrate
exactly these functions. For this purpose, we recast the Runge-Kutta method
(3.7) following Albrecht’s approach [1], i.e. as a linear multistep formula on a
non-equidistant grid:

rn+ci = rn + k

s∑
j=1

aij F (rn+cj ), i = 1, . . . , s, (3.8a)

rn+1 = rn + k

s∑
i=1

bi F (rn+ci), (3.8b)

being (3.8a) the internal stages and (3.8b) the final one. In this way, it is easy
to define a linear difference operator for each stage

Li[A; k]φ(t) = φ(t+ cik)− φ(t)− k
s∑
j=1

aij φ
′(t+ cjk), i = 1, . . . , s, (3.9a)

L[b; k]φ(t) = φ(t+ k)− φ(t)− k
s∑
i=1

bi φ
′(t+ cik). (3.9b)

We observe that if φ(t) is a constant, the linear difference operator is null both
for internal and final stages:

Li[A; k]φ(t) = 0 = L[b; k]φ(t), (3.10)

so a RK method always integrates a constant in an exact way.
Classic Runge-Kutta methods are constructed in order to be exact (within
round-off error) on polynomials up a certain degree q. This is equivalent to
annihilating the difference operator (3.9) on the polynomial fitting space

F =
{

1, x, x2, . . . , xq
}
, (3.11)

i.e. solving the linear systems

cmi −m
s∑
j=1

aijc
m−1
j = 0, i = 1, . . . , s, m = 1, . . . ,M − 1,

1−m′
s∑
i=1

bic
m′−1
i = 0, m′ = 1, . . . ,M ′ − 1,

(3.12)



Adapted schemes for oscillating reactions 7

considering aij and bi as unknowns and ci as free parameters. For instance,
standard two-stage Runge-Kutta methods have the following coefficients

a11 =
2 c2 c1 − c21
2 (c2 − c1)

, a12 = − c21
2 (c2 − c1)

,

a21 =
c22

2 (c2 − c1)
, a22 =

c22 − 2 c2 c1
2 (c2 − c1)

,

b1 =
2c2 − 1

2 (c2 − c1)
, b2 =

1− 2c1
2 (c2 − c1)

,

(3.13)

and they have order 2 for arbitrary ci.
Following this approach, the coefficients of the required adapted Runge-Kutta
method are derived by annihilating the difference operator (3.9) on a suitable
fitting space, different from the polynomial one (3.11). As a consequence, they
are no longer constant, but depend on a parameter µ, which characterises the
basis functions of the fitting space. For the resulting scheme, it is possible to
derive order conditions as an extension of the standard order conditions for
a classic Runge-Kutta method. Indeed, we recall that a Runge-Kutta method
has order 2 if its coefficients verify the conditions

s∑
i=1

bi = 1,

s∑
i=1

bi ci =
1

2
, (3.14)

whereas it has order 3 if the further conditions are satisfied

s∑
i=1

bi c
2
i =

1

3
,

s∑
i,j=1

bi aij cj =
1

6
, (3.15)

and it has order 4 if the following conditions are also fulfilled

s∑
i=1

bi c
3
i =

1

4
,

s∑
i,j=1

bi ci aij cj =
1

8
,

s∑
i,j=1

bi aij c
2
j =

1

12
,

s∑
i,j,k=1

bi aij ajk ck =
1

24
.

(3.16)

Therefore, an adapted Runge-Kutta method has algebraic order 2 if

s∑
i=1

bi(z) = 1 +O(z2), (3.17a)

s∑
i=1

bi(z) ci =
1

2
+O(z2), (3.17b)
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whereas it has algebraic order 3 if the further conditions hold

s∑
i=1

bi(z) c
2
i =

1

3
+O(z2), (3.18a)

s∑
i,j=1

bi(z) aij(z) cj =
1

6
+O(z2), (3.18b)

and it has algebraic order 4 if its coefficients verify also the following conditions:

s∑
i=1

bi(z) c
3
i =

1

4
+O(z2), (3.19a)

s∑
i,j=1

bi(z) ci aij(z) cj =
1

8
+O(z2), (3.19b)

s∑
i,j=1

bi(z) aij(z) c
2
j =

1

12
+O(z2), (3.19c)

s∑
i,j,l=1

bi(z) aij(z) ajl(z) cl =
1

24
+O(z2), (3.19d)

where z = µk. The knot points ci are generally treated as free parameters and
the order of the adapted scheme depends on them.
For a generic adapted Runge-Kutta method, we can also define the adapted
order extending the definition of trigonometric order, given in [23], as follows:

Definition 1 An adapted Runge-Kutta method, constructed in order to be
exact (within round-off error) on functions belonged to the fitting space

F = {1, ψ1(mµ t), ψ2(mµ t), m = 1, . . . , q} ,

has adapted order q if the corresponding linear difference operator (3.9) fulfils
the following conditions for m = 1, . . . , q:

Li[A; k] 1 = 0, i = 1, . . . , s, (3.20a)

L[b; k] 1 = 0, (3.20b)

Li[A; k]ψ1(mµ t) = Li[A; k]ψ2(mµ t) = 0, i = 1, . . . , s, (3.20c)

L[b; k]ψ1(mµ t) = L[b; k]ψ2(mµ t) = 0. (3.20d)

This definition advances the definitions concerning linear multistep methods
presented in [18]. In this work, a functional L is said to have algebraic order
p if it is null on all algebraic polynomials of degreee less or equal than p. On
the other hand, L has trigonometric order p, for a fixed period T , if it is null
on all trigonometric polynomials of degree less or equal than p and period T .
We have already observed that a Runge-Kutta exactly integrates constants,
so conditions (3.20a) and (3.20b) always hold.
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3.1 Trigonometrically fitted Runge Kutta methods

Since we aim to solve the Oregonator (2.5) in a certain region of the k5–f
plane where the solution is known to oscillate, it may be convenient to employ
an adapted Runge-Kutta method which exactly integrates (within round-off
error) problems having trigonometric solutions. As described in Section 3, this
is equivalent to annihilating the difference operator (3.9) on the following basis
functions:

FT,q = {1, sin(mµ t), cos(mµ t), m = 1, . . . , q} . (3.21)

We recall that a RK method is said to have trigonometric order q (see [23] and
reference therein), related to the frequency µ, if the corresponding linear dif-
ference operator verifies conditions (3.20) on the trigonometrical fitting space
(3.21). In particular, conditions (3.20a) and (3.20b) always hold, whereas con-
ditions (3.20c) and (3.20d) can be written in terms of the coefficients of the
method, as follows:

s∑
j=1

aij sin(mcj z) =
1− cos(mci z)

mz
, i = 1, . . . , s,

s∑
j=1

aij cos(mcj z) =
sin(mci z)

mz
, i = 1, . . . , s,

s∑
i=1

bi sin(mci z) =
1− cos(mz)

mz
,

s∑
i=1

bi cos(mci z) =
sin(mz)

mz
,

(3.22)

where z = µk and m = 1, . . . , q. The knot points ci are generally treated as
free parameters and they must verify the conditions

ci 6= cj , ∀i 6= j and ci ∈ (0, 1) (3.23)

to guarantee the non-singularity of system (3.22), which has the coefficients
of the desired adapted Runge-Kutta method having trigonometric order q as
solutions.
For instance, solving system (3.22) with q = 1 and s = 2, we can construct
the following family of trigonometrically fitted 2-stage Runge-Kutta methods,



10 Raffaele D’Ambrosio et al.

as in [23]:

ai1(z) =
1

zD(z)
( sin(ciz) sin(c2z)− cos(c2z)(1− cos(ciz)) ) , i = 1, 2,

ai2(z) =
1

zD(z)
( − sin(ciz) sin(c1z) + cos(c1z)(1− cos(ciz)) ) , i = 1, 2,

b1(z) =
1

zD(z)
( sin(z) sin(c2z)− cos(c2z)(1− cos(z)) ) ,

b2(z) =
1

zD(z)
( − sin(z) sin(c1z) + cos(c1z)(1− cos(z)) ) ,

(3.24)

where

D(z) = cos(c1z) sin(c2z)− sin(c1z) cos(c2z).

When µ tends to 0, these coefficients tend to the classic ones (3.13), as ex-
pected. The adapted Runge-Kutta method (3.24) has trigonometric order 1.
Moreover, it has been shown in [23] that a 2–stage Runge-Kutta method of
trigonometric order 1 has always algebraic order 2 and it has order 3 if its
knot points verify the following condition

2− 3(c1 + c2) + 6 c1 c2 = 0, (3.25)

which does not necessarily guarantee order 4, as proved in the following theo-
rem.

Theorem 1 A trigonometrically-fitted Runge-Kutta method (3.24) of order 3
has algebraic order 4 if its knot points satisfy the following condition:

c1c2 =
1

6
. (3.26)

Proof: An adapted method has algebraic order 4 if its coefficients verify equa-
tions (3.19). Conditions (3.19a) and (3.19b) hold if

1− 4

2∑
i=1

bi ci = 1− 2(c21 + c22)− 2c1c2 + 4c1c2(c1 + c2) +O(z2) = O(z2),

1− 8

2∑
i,j=1

bi ci aij cj = 1− 2(c21 + c22)− 2c1c2 + 4c1c2(c1 + c2) +O(z2) = O(z2),

which are satisfied if the knot points fulfil the following condition:

1− 2(c21 + c22)− 2c1c2 + 4c1c2(c1 + c2) = 0. (3.27)
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Combining this last equation with condition (3.25), which is satisfied because
the method has order 3, we obtain the thesis (3.26). Conditions (3.19c) and
(3.19d) are verified whether

1− 12

2∑
i,j=1

bi aij c
2
j = 1 + 6c1c2(c1 + c2)− 3(c21 + c22) +O(z2) = O(z2),

1− 24

2∑
i,j,l=1

bi aij ajl cl = 1 + 6c1c2(c1 + c2)− 3(c21 + c22) +O(z2) = O(z2),

which lead to the following relation among the knot points

(c1 + c2)(6c1c2 − 3(c1 + c2) + 2)− 2(c1 + c2) + 6c1c2 + 1 = 0. (3.28)

This last equation is verified if conditions (3.25) and (3.26) hold.

�

Solving system (3.25)-(3.26), it is easy to show that the only fourth order 2-
stage Runge-Kutta method adapted on the trigonometric fitting space (3.21)
with q = 1 has Gauss’ knot points

c1 =
3−
√

3

6
, c2 =

3 +
√

3

6
. (3.29)

3.2 Logarithmically-trigonometrically fitted Runge-Kutta methods

The concentrations of the key chemical elements in the Oregonator can exhibit
oscillations which decay in time, as it is observed, for instance, in the time series
related to the experiment in [26]. This behaviour is more similar to the profile
of a function given by a linear combination of logarithmic and trigonometric
functions. Therefore, it may be worthwhile constructing an adapted Runge-
Kutta method in order to be exact (within round-off error) on an alternative
fitting space:

FLT,q = {1, cos(mµ t), log(1 +mµ t), m = 1, . . . , q} . (3.30)

Annihilating the difference operator (3.9) on these basis functions, as described
in Section 3, leads to the following system having coefficients aij and bi as
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unknowns:

s∑
j=1

aij
1 +mcj z

=
log(1 +mci z)

mz
, i = 1, . . . , s, (3.31a)

s∑
j=1

aij sin(mcj z) =
1− cos(mci z)

mz
, i = 1, . . . , s, (3.31b)

s∑
i=1

bi
1 +mci z

=
log(1 +mz)

mz
, (3.31c)

s∑
i=1

bi sin(mci z) =
1− cos(mz)

mz
, (3.31d)

where z = µk and m = 1, . . . , q. The knot points ci are generally treated as
free parameters and they must verify conditions (3.23) to guarantee the non–
singularity of the obtained system.
For example, solving system (3.31) with q = 1 and s = 2, we obtain the
following family of 2-stage adapted Runge-Kutta methods:

ai1(z) =
1

zG(z)

(
log(1 + ciz) sin(c2z)−

1− cos(ciz)

1 + c2z

)
, i = 1, 2, (3.32a)

ai2(z) =
1

zG(z)

(
1− cos(ciz)

1 + c1z
− log(1 + ciz) sin(c1z)

)
, i = 1, 2, (3.32b)

b1(z) =
1

zG(z)

(
log(1 + z) sin(c2z)−

1− cos(z)

1 + c2z

)
, (3.32c)

b2(z) =
1

zG(z)

(
1− cos(z)

1 + c1z
− log(1 + z) sin(c1z)

)
, (3.32d)

where

G(z) =
sin(c2z)

1 + c1z
− sin(c1z)

1 + c2z
.

Also in this case, for µ tending to 0, these coefficients tend to the classic
ones (3.13), as expected. The adapted order of the presented fitted method
is 1 and the algebraic order depends on the knot points ci. In particular, the
order conditions are the same of 2-stage trigonometrically fitted Runge-Kutta
method (3.24), as shown in the following theorem.

Theorem 2 An adapted Runge-Kutta method belonged to the family (3.32)
has always algebraic order 2, it has algebraic order 3 and 4 if conditions (3.25)
and (3.26) hold, respectively.
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Proof: The Runge-Kutta method (3.32) with z-dependent coefficients has al-
ways algebraic order 2 because conditions (3.17) hold:

2∑
i=1

bi = 1 +

(
c1c2 −

c1 + c2
2

+
1

3

)
z2 +O(z3),

1− 2

2∑
i=1

bi ci =
1

3

(
(c1 + c2)

(
c1c2 −

c1 + c2
2

)
+

1 + 2c1c2
4

)
z2 +O(z3).

Third-order conditions (3.18) are satisfied whether

1− 3

2∑
i=1

bic
2
i =

6c1c2 − 3(c1 + c2) + 2

2
+O(z2) = O(z2),

1− 6

2∑
i,j=1

bi aij cj =
6c1c2 − 3(c1 + c2) + 2

2
+O(z2) = O(z2),

i.e. if condition (3.25) holds, which gives the first part of the thesis.
Finally, let us assume that the considered adapted scheme has algebraic order
3. It has order 4 if its coefficients verify the further equations (3.19). Conditions
(3.19a) and (3.19b) are equivalent to

1− 4

2∑
i=1

bi ci = 1− 2(c21 + c22)− 2c1c2 + 4c1c2(c1 + c2) +O(z2) = O(z2),

1− 8

2∑
i,j=1

bi ci aij cj = 1− 2(c21 + c22)− 2c1c2 + 4c1c2(c1 + c2) +O(z2) = O(z2),

which are satisfied if the knot points fulfil the following condition:

1− 2(c21 + c22)− 2c1c2 + 4c1c2(c1 + c2) = 0. (3.33)

As in the proof of Theorem 1 for the trigonometric case, we observe that
condition (3.25) is satisfied because the method has order 3, so (3.33) becomes
(3.26). Conditions (3.19c) and (3.19d) can be recast in

1− 12

2∑
i,j=1

bi aij c
2
j = 1 + 6c1c2(c1 + c2)− 3(c21 + c22) +O(z2) = O(z2),

1− 24

2∑
i,j,l=1

bi aij ajl cl = 1 + 6c1c2(c1 + c2)− 3(c21 + c22) +O(z2) = O(z2),

and, as in the trigonometric case, are satisfied if

(c1 + c2)(6c1c2 − 3(c1 + c2) + 2) + 6c1c2 + 1− 2(c1 + c2) = 0.

This last equation is verified if (3.25) and (3.26) hold.

�

As in the trigonometric case, the only fourth order 2-stage Runge-Kutta method
adapted on the fitting space (3.30) with q = 1 has Gauss’ knot points (3.29).
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3.3 Parameter estimation

The coefficients of the adapted Runge-Kutta methods (3.24) and (3.32) pre-
sented in the previous paragraphs are no longer constant, as in the classic case,
but depend on the parameter µ, which has to be properly estimated. We first
can approximate it as the inverse of the period (2.2b) of the oscillations, as
follows [36]:

µt =
k5b (1− f)

ln 2 + (2f − 1) ln

(
2f − 1

2f

)
− (1− f) ln

(
4q (3 + 2

√
2− f)

) . (3.34)

When experimental data are available, it may be worthwhile estimating the
parameter µ through the frequency of the oscillations observed in time series.
For this purpose, we consider the experiment performed in [26] on an un-
stirred BZ system, where the organic substrate is the malonic acid (B = MA)

and the catalyst is the redox couple ferriin/ferroin (Fe(phen)
3+
3 /Fe(phen)

2+
3 ).

The related time series are recorded spectrophotometrically in [26] by follow-
ing the absorbance of ferroin and ferriin at wavelength equal to 510 nm and
630 nm, being the molar extinction coefficient equal to 1.1×104 mol−1dm3cm−1

and 620 mol−1dm3cm−1, respectively. In the experimental conditions and time
frame considered for the estimation of µ, the BZ reaction behaves as an open
well-stirred system, i.e. the reaction is only under kinetic control and the pool
chemical approximation (reactants’ concentration in stationary state) applies
[21]. We use these data to construct the corresponding time series related to
the concentration of ferriin, i.e. the catalyst in its oxidised state, which is the
third component of the solution in system (2.5). Such time series exhibits an
initial exponential decay trend which corresponds to the start of the reaction
and is followed by periodic oscillations (see Figure 1). Extracting the oscilla-
tion frequency as inverse of the period, we obtain the following estimate for
the parameter µ:

µe = 0.0625 Hz. (3.35)

Both the theoretical (3.34) and the experimental (3.35) approaches do not
highly increase the computational cost, as is the case in procedures involving
non-linear systems [6,7].

4 Numerical experiments

We now present some numerical tests arising from the integration of system
(2.5) in [0, 250] provided by the initial conditions

x(0) = 0.0013, y(0) = 0.2834, z(0) = 0.1984, (4.36)

and with the following values for the parameters

f = 1.00001, q = 3.52 · 10−5, ε = 0.3779, ε′ = 7.56 · 10−4, (4.37)
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Fig. 1: Time series of concentration of ferriin related to the experiment carried
out in [26] on an unstirred ferroin catalysed BZ system.

computed according to the real experimental conditions. We remark that the
concentrations in (4.36) are in their dimensionless form.
In the following, we indicate the trigonometrically fitted Runge-Kutta method
(3.24) as TRK and the logarithmically-trigonometrically fitted Runge-Kutta
method (3.32) as LTRK. We employ the knot points of implicit trapezoidal
rule and 2-stage Gauss method, which have the following expressions

ct = [0, 1], cg =

[
3−
√

3

6
,

3 +
√

3

6

]
, (4.38)

respectively. For both methods, the first choice ensures only second order,
whereas Gauss knot points cg lead to 4-order adapted schemes, as shown in
Section 3. In the following, we adopt suffices TR- and GL- to indicate the kind
of knot points used (ct and cg, respectively). The resulting adapted numerical
methods are compared with their classic counterpart, i.e. the implicit trape-
zoidal rule and 2-stage Gauss-Legendre Runge-Kutta method, and also with
3-stage Gauss-Legendre, RadauIA and RadauIIA methods. The comparison is
carried out in terms of CPU time, function evaluations and relative error com-
puted in the final point with respect to a reference solution (obtained by the
Matlab routine ode15s with an accuracy equal to 10−13). Table 1 shows that
the adapted schemes are always more accurate than their classic counterpart
and both the presented estimates for the parameter do not increase a lot the
computational cost. Moreover, the adapted schemes are in general more ac-
curate also than 3-stage RadauIA and RadauIIA, which have algebraic order
5, and they are competitive with 3-stage Gauss-Legendre method, which has
order 6. However, employing high order schemes increases the number of func-
tion evaluations, so it may be worthwhile using the presented lower-order fitted
methods. Among the adapted schemes, the highest accuracy is achieved by us-
ing GL-TRK and GL-LTRK (fitted methods with Gauss’ knot points), which
have order 4, except for the case of GL-TRK with the theoretical estimate for
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the parameter (3.34). On the other hand, the theoretical estimate seems the
best choice when combined with the nodes of the implicit trapezoidal rule (in
TR-TRK and TR-LTRK). Therefore, it appears clear how challenging is the
problem of properly estimating the parameter. The quantitative comparison
has been performed by considering a reference solution and not the time series
because the model (2.3) is not perfectly suitable to describe the complex dy-
namics of BZ reaction. Therefore, the quantitative check is provided in order
to highlight the benefits in accuracy and efficiency gained in the numerical
integration of the considered model.

From a qualitative point of view, the adapted schemes follow much more
accurately the prescribed oscillations of the solution than their classic coun-
terpart, as shown in Figure 2 for methods with Gauss’ knot points. Indeed,
classic Gauss-Legendre method (see Figure 2(a)) provides a chaotic solution
assuming also negative values (not allowed for chemical concentrations). Also
in case of trigonometrically-fitted Gauss-Legendre method (GL-TRK) joined
with the theoretical estimate µt (3.34) for the parameter (see Figure 2(c)),
the numerical solution assumes some negative values but they are few and
smaller in modulus than the values observed in the numerical solution com-
puted by the classic Gauss-Legendre method (Figure 2(a)) and the periodic
behaviour is more accurately reproduced. After all, also Table 1 reports this
loss in accuracy for GL-TRK combined with the theoretical estimate µt for
the parameter. Among adapted schemes, the best matching with the reference
solution, depicted in Figure 3, is obtained by employing the logarithmically-
trigonometrically fitted Runge-Kutta method LTRK (3.32). We remark that
in these plots the concentrations of ferriin (z) and time (t) have been recast
according to the positions (2.4). However, the period of the numerical solution
represented in this Figure does not totally correspond to the period observed
in the experimental time series. The families of Runge-Kutta methods (3.24)
and (3.32) are actually constructed in order to be exact on functions belonged
to the fitting spaces (3.21) and (3.30). After all, we do not know the analytical
expression of the solution of system (2.3) and we infer it from the observation
of the time series. For this reason, the exact solution of the considered model
(2.3) may be not simply a linear combination of functions (3.21) and (3.30)
and also the Oregonator could be too simple to describe the complex dynam-
ics of the BZ system in contest. Nevertheless, this paper aims to show how
the observation of time series may allow to overcome the crucial issue of esti-
mating the parameter within exponential fitting technique without increasing
the computational burden. As a future work, we aim to complicate the model
to improve the matching with the time series. An initial investigation in this
perspective has been carried out in [10].

Finally, we estimate the order p of the presented fitted schemes (3.24) and
(3.32) employing the following relations

p = lim
k→0

p(k), p(k) ≈ log2

(
E(k)

E(k/2)

)
, (4.39)
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where E(k) and E(k/2) are the errors obtained with a stepsize k and k/2,
respectively. As reported in Table 2, the estimated orders p(k) of the presented
adapted methods (3.24) and (3.32) are 2 or 4, according to the choice of knot
points (nodes of the implicit trapezoidal rule or Gauss’ ones, respectively), as
expected.

Table 1: Comparison among the presented adapted schemes (3.24) and (3.32)
(combined with theoretical µt (3.34) and experimental µe (3.35) estimates for
the parameter and with different choices for the knot points), their classic
counterpart and some higher order classic Runge-Kutta methods in terms of
relative error (computed with respect to a reference solution obtained by the
Matlab solver ode15s with a tolerance of 10−13), CPU time and function eval-
uations (fe) within the the integration of system (2.5) with initial conditions
(4.36) and parameters chosen as in (4.37). The step size is k = 0.75.

p µ Error CPU time (s) fe

Trapezoidal Rule 2 − 1.21 · 10−1 17.60 2952

TR-TRK 2
µe 7.79 · 10−2 18.05 2958
µt 4.24 · 10−2 17.94 2962

TR-LTRK 2
µe 7.18 · 10−2 21.31 2960
µt 5.06 · 10−2 23.87 2964

2-stage Gauss-Legendre 4 − 9.96 · 10−1 16.74 2952

GL-TRK 4
µe 3.79 · 10−2 7.63 2958
µt 2.44 · 10−1 9.98 2962

GL-LTRK 4
µe 4.09 · 10−2 7.74 2960
µt 3.84 · 10−2 7.55 2964

3-stage RadauIA 5 − 2.55 · 10−1 11.06 4428

3-stage RadauIIA 5 − 2.21 · 10−1 14.66 4428

3-stage Gauss-Legendre 6 − 4.11 · 10−2 13.51 4428

5 Conclusions

In this treatise, we have presented adapted numerical schemes to integrate
systems of ordinary differential equations modelling oscillatory chemical reac-
tions. Since we aimed to accurately follow the prescribed oscillations of the
exact solution, we have developed these methods in order to be exact (within
round-off error) on trigonometric functions, following the exponential fitting
strategy. Moreover, since the concentrations of the chemical elements can ex-
hibit oscillations which decay in time, we have proposed an alternative version
of trigonometrically-fitted methods, which are exact (within round-off error)
on trigonometric and logarithmic functions. However, the exponential fitting
usually requires a further computational effort to estimate the parameter which
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Table 2: Estimated orders p(k) and errors of the presented adapted schemes
(3.24) and (3.32) (combined with theoretical µt (3.34) and experimental µe
(3.35) estimates for the parameter and with different choices for the knot
points) within the integration of system (2.5) provided with initial conditions
(4.36) and parameters chosen as in (4.37).

Knot points Fitted scheme µ k Error p(k)

Trapezoidal
Rule

TRK
µe

0.1 7.31 · 10−4 -
0.05 1.83 · 10−4 2.00

µt
0.1 7.62 · 10−4 -
0.05 1.90 · 10−4 2.00

LTRK
µe

0.1 6.67 · 10−4 -
0.05 1.66 · 10−4 2.00

µt
0.1 6.08 · 10−4 -
0.05 1.52 · 10−4 2.01

Gauss
TRK

µe
0.1 2.61 · 10−7 -
0.05 1.51 · 10−8 4.11

µt
0.1 2.60 · 10−7 -
0.05 1.51 · 10−8 4.10

LTRK
µe

0.1 2.63 · 10−7 -
0.05 1.49 · 10−8 4.14

µt
0.1 2.67 · 10−7 -
0.05 1.47 · 10−8 4.18

the basis functions rely on. For this reason, we have taken into account experi-
mental time series which can be reasonably modelled by the system we aim to
integrate and existing theoretical studies about the considered model. There-
fore, we have estimated the parameter with the frequency of the oscillations
observed in time series and the frequency approximated in [36], thus avoiding
an increase of computational burden. We have applied this problem-oriented
approach to adapt 2-stage Runge-Kutta methods and we have studied the cor-
responding order conditions. Numerical experiments exhibit the effectiveness
of this approach, which can be easily applied to every system of differential
equations modelling chemical oscillators and to every method used for its nu-
merical treatment. Indeed, for a general system, the presented strategy essen-
tially consists in merging the a-priori known information about the problem
in contest (coming from existing literature and experimental data) into the
numerical scheme chosen to integrate the corresponding model. Consequently,
it first prescribes to a-priori analyse the considered oscillator, especially ob-
serving the time series of experimental data, when they are available. Such
investigation, combined with the existing studies about the problem, can then
suggest the proper adaptation that has to be carried out on the numerical
scheme (for instance, a Runge-Kutta method) in order to improve accuracy
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and stability. The adaptation is performed by following the exponential fit-
ting strategy, which consists in developing formulae exact (within round-off
error) on functions other than polynomials and can be applied by annihilating
the linear difference operator related to the considered method on the ba-
sis functions chosen according to the a-priori knowledge about the problem.
Solving the resulting system allows to obtain the coefficients of the desired
adapted method. However, they depend on an unknown parameter, which can
be approximated by employing existing theoretical estimates of the oscillation
frequency or by extracting the frequency from the time series.
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(b) GL-TRK, µe
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(c) GL-TRK, µt
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(d) GL-LTRK, µe
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(e) GL-LTRK, µt

Fig. 2: Numerical solution of the Oregonator (2.5), provided with initial con-
ditions (4.36) and parameters (4.37), computed with a step size k = 0.75 by
the classic Gauss-Legendre schemes and its corresponding adapted methods
(3.24) and (3.32) combined with the experimental µe (3.35) and theoretical µt
(3.34) estimates for the parameter.
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Fig. 3: Reference solution of the Oregonator (2.5) with initial conditions (4.36)
and parameters (4.37) computed by the Matlab solver ode15s with a tolerance
equal to 10−13.


