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Abstract

We analyze long-term properties of stochastic θ-methods for damped linear stochastic
oscillators. The presented a-priori analysis of the error in the correlation matrix allows
to infer the long-time behaviour of stochastic θ-methods and their capability to repro-
duce the same long-term features of the continuous dynamics. The theoretical analysis
is also supported by a selection of numerical experiments.
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1. Framework and scope

This paper is focused on the analysis of the long term properties of one-step dis-
cretizations of a damped linear stochastic oscillator, describing the motion of a particle
driven by deterministic and stochastic forcing terms. The Ito stochastic differential
equation modelling this physical problem, given in [6, 7], has the form

dZ(t) = QZ(t)dt + εqdW(t), t ∈ [0,T ], (1.1)

where

Z(t) =

[
X(t)
V(t)

]
is the vector collecting the position and velocity of the particle at time t. Q and q are
defined by

Q =

[
0 1
−g −η

]
, q =

[
0
1

]
,

being g the amplitude of the deterministic forcing term and η the value of the damping.
Moreover, the parameter ε in (1.1) provides the amplitude of the stochastic forcing
term, driven by the scalar Weiner process W(t).

The long-term properties of (1.1), as highlighted in [6, 7, 15, 18], can be inferred
through the analysis of the stationary density

Π∞(x, v) = N0 exp
(
−
η

ε2

(
gx2 + v2

))
. (1.2)
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revealing that, in the long-time, the motion described by (1.1) has a Gaussian dis-
tributed velocity, which is uncorrelated with the position of the particle. This feature
can be described in compact way through the correlation matrix

Σ =

 σ2
X µ

µ σ2
V

 =
ε2

2η

 g−1 0

0 1

 , (1.3)

where

σ2
X = lim

t→∞
E|X(t)|2, σ2

V = lim
t→∞

E|V(t)|2, µ = lim
t→∞

E|X(t)V(t)| = 0. (1.4)

The scope of this paper is the numerical preservation of the long-term features of
(1.1), by retaining the correlation matrix (1.3) along the numerical solutions generated
by the family of θ-methods. For a Ito stochastic differential equation

dY(t) = f (Y(t))dt + g(Y(t))dW(t), t ∈ [0,T ],

the θ(-Maruyama) method is given by

Yn+1 = Yn + (1 − θ)∆t f (Yn) + θ∆t f (Yn+1) + g(Yn)∆Wn, (1.5)

for θ ∈ [0, 1], where Yn is the approximate value for Y(tn) with reference to the dis-
cretized domain

I∆t = {tn = n∆T, n = 0, 1, . . . ,N, N = T/∆t}

and the discretized Wiener increment ∆Wn is a normal random variable with zero mean
and variance ∆t.

The linear stability properties of ϑ-methods have extensively been analyzed in the
literature (see, for instance, [2, 12, 21] and references therein) with respect to the test
problem

dY(t) = λY(t)dt + µY(t)dW(t), λ, µ ∈ C,

that is the stochastic perturbation of the deterministic Dahlquist test problem for the lin-
ear stability analysis of the numerical approximation to ordinary differential equations.
Here, we aim to analyze the properties of θ-methods when applied to (1.1), in order
to test their ability to reproduce the same long-term behaviour along the discretized
dynamics. Hence, this paper follows in the spirit of establishing a theory for stochastic
geometric numerical integration, along the lines drawn by several recent contributions,
such as [3, 4, 6, 7, 10, 17, 22]. For further approaches on the discretization of stochastic
oscillators, see [11, 16, 23, 27, 28, 29] and references therein.

The manuscript is organized as follows: Section 2 provides the long-term analysis
of θ-methods applied to (1.1), while the role of the stochasticity (i.e. the role of the
amplitude of ε in the numerical integration of (1.1)) is analyzed in Section 3. Second-
moment preservation along the numerical dynamics given by (1.5) is studied in Section
4. The numerical evidence confirming the theoretical results on a selection of test
problems is given in Section 5 and some concluding remarks are object of Section 6.
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2. Long-term analysis

Applying the θ-method (1.5) to (1.1) leads to

Zn+1 = R(θ,∆t)Zn + εr(θ,∆t)∆Wn, (2.1)

where

R(θ,∆t) =

(
I − θ∆tQ

)−1(
I + (1 − θ)∆tQ

)
, r(θ,∆t) =

(
I − θ∆tQ

)−1
q,

being I ∈ R2×2 the identity matrix.
In order to analyze the long-time features of the θ-method (1.5), we aim to a-priori

compute the numerical correlation matrix

Σ̃(θ,∆t) =

 σ̃2
X µ̃

µ̃ σ̃2
V

 , (2.2)

with
σ̃2

X = lim
tn→∞

E|Xn|
2, σ̃2

V = lim
tn→∞

E|Vn|
2, µ̃ = lim

tn→∞
E|XnVn|,

where Xn and Vn are the numerical solutions of (1.1) computed by (1.5). The following
results hold true.

Theorem 2.1. The numerical correlation matrix (2.2) corresponding to the θ-method
(1.5) assumes the form

Σ̃(θ,∆t) =
ε2

βg

g(2θ − 1)2∆t2 + η(2θ − 1)∆t + 2 g(2θ − 1)∆t

g(2θ − 1)∆t 2g

 , (2.3)

with
β = g2(2θ − 1)3∆t3 + 3ηg(2θ − 1)2∆t2 + 2(η2 + 2g)(2θ − 1)∆t + 4η.

Proof: According to [6], Σ̃(θ,∆t) satisfies to the following matrix equation

Σ̃(θ,∆t) = R(θ,∆t)Σ̃(θ,∆t)R(θ,∆t)T + ε2r(θ,∆t)r(θ,∆t)T∆t. (2.4)

Solving last equation with respect to Σ̃ leads to the thesis.

�

This result leads to the following straightforward corollary highlighting two rele-
vant long-term properties of θ-methods.

Corollary 2.1. For the θ-method (1.5), we have that

lim
∆t→0

Σ̃(θ,∆t) = Σ, (2.5)

for any value of θ ∈ [0, 1]. Moreover, the θ-method (1.5) with θ = 1/2, i.e. the
stochastic trapezoidal rule, exactly preserves the correlation matrix (1.3).
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Another relevant property, also highlighted in [6, 7, 15], is the behaviour of the nu-
merical discretization with respect to η. The following result, again straightforwardly
arising from Theorem 2.1, shows that the preservation through one-step methods (1.5)
is valid also for severely damped oscillators.

Corollary 2.2. For the θ-method (1.5), we have that

lim
η→∞

Σ̃(θ,∆t) = Σ, (2.6)

for any value of θ ∈ [0, 1], of the stepsize ∆t and of the parameters ε and g.

3. ε-expansion of the solution

It is worth highlighting the behaviour of θ-methods when ε grows, i.e. when the
stochastic term becomes more dominant in the right-hand side of (1.1). One can see,
through (2.3), that

lim
ε→∞

Σ̃(θ,∆t) , Σ.

In order to give an idea of the gap between Σ and Σ̃(θ,∆t), let us refer to Table 1,
reporting the value of ‖Σ − Σ̃(θ,∆t)‖∞, for fixed values of θ, ∆t, η, g and for varying ε.
We can observe that, the more ε grows, the more the deviation between Σ and Σ̃(θ,∆t)
becomes larger. In other terms, if the stochastic term becomes dominant, θ-methods
may not preserve Σ accurately, unless a small enough stepsize is chosen, according to
Corollary 2.1.

ε ‖Σ − Σ̃(3/4, 10−1)‖∞ ‖Σ − Σ̃(3/4, 10−2))‖∞ ‖Σ − Σ̃(3/4, 10−3))‖∞

0 0 0 0
0.1 4.73 · 10−4 4.97 · 10−5 5.00 · 10−6

0.5 1.18 · 10−2 1.24 · 10−3 1.25 · 10−4

1 4.73 · 10−2. 4.97 · 10−3 5.00 · 10−4

10 4.73 6.02 · 10+1 5.00 · 10−2

Table 1: Deviation between Σ and Σ̃(θ,∆t) for θ=3/4, η = g = 1 and various values of ∆t and ε.

We now aim to analyze which is the effect of this issue on the numerical solution
computed by (1.5). To this purpose, we perform an ε-expansion to the solution of
(1.1), i.e., we assume as ansatz that the exact solution can be represented as a power
series of ε and, as a consequence, the numerical solution computed by (1.5) can be
seen as a truncation of this expansion up to a certain power of ε. Such a technique is
quite common in deterministic numerics; we refer, for instance, to [19] and references
therein.

To perform the ε-expansion, we directly act on the matrix formulation (1.1) of the
problem and assuming, as ansatz, that

Z(t) =
∑
i≥0

Zi(t)ε i, (3.1)
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where the coefficients Zi(t) are vectors in R2. Replacing the ansatz in (1.1) leads to

d

∑
i≥0

Zi(t)ε i

 = Q
∑
i≥0

Zi(t)ε idt + εqdW(t).

It is now sufficient to isolate the terms up to the linear one, obtaining the stochastic
differential equations

dZ0(t) = QZ0(t)dt

and
dZ1(t) = QZ1(t)dt + εqdW(t),

in the unknowns Z0(t) and Z1(t). In particular, solving the second equation reveals
the presence in Z1(t) of ε

√
t, known in the literature as secular term. Clearly, a small

enough value of ε makes the secular term less dominant in the long-time; on the con-
trary, if the stochastic part is dominant in the right-hand side of (1.1), the secular term
becomes dominant and compromise the accurate preservation of Σ, unless a really small
value of ∆t is chosen.

To confirm our analysis, we solve numerically (1.1) by the stochastic θ-method, that
exactly preserves the correlation matrix (1.3), according to Corollary 2.1. As visible
from Table 2, the more ε grows, the more the method loses the excellent preservation
properties achieved for more moderate values of ε. This is not surprising, according to
the theoretical arguments given in this section. Clearly, in order to be more accurate
when ε is bigger, we need to balance the presence of the secular term with a smaller
stepsize, as also highlighted in the previous section.

ε
∣∣∣σ2

X − σ̃
2
X

∣∣∣ ∣∣∣σ2
V − σ̃

2
V

∣∣∣
10−6 1.78 · 10−14 1.83 · 10−15

10−5 2.94 · 10−12 2.32 · 10−12

10−4 7.00 · 10−11 4.92 · 10−11

10−3 4.74 · 10−09 1.64 · 10−08

10−2 1.34 · 10−06 6.08 · 10−07

10−1 5.07 · 10−05 2.40 · 10−04

1 1.13 · 10−02 3.99 · 10−02

Table 2: Deviations on the mean-squares of position and velocity for the stochastic θ-method applied to (1.1)
in [0,100], with η = g = 1, ∆t = 100/212 and for various values of ε.

4. Second-order moment preservation

We now aim to investigate the ability of θ-methods (1.5) to preserve the character
of the second-order moment E[X2

n + V2
n ]. As proved in [28] for a simplified version of

(1.1), the exact second-moment behaves as follows

E[X(t)2 + V(t)2] ≤ α + ε2t,

where α is a real constant. For the θ-method (2.1), the following result holds true.
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Theorem 4.1. The second moment associated to the numerical solution of (1.1) com-
puted by (2.1) satisfies the following estimate

E
[
X2

n + V2
n

]
≤ E

[
X2

0 + V2
0

]
+ ε2tn.

Proof: Let us perform a single step from tn−1 to tn via (2.1). This leads to the following
componentwise representation of the advancing law described by (2.1)

Xn = r11Xn−1 + r12Vn−1 + εr1∆Wn−1,

Vn = r21Xn−1 + r22Vn−1 + εr2∆Wn−1.

Squaring, summing and passing to the expectations leads to

E
[
X2

n + V2
n

]
=

(
r2

11 + r2
21

)
E

[
X2

n

]
+

(
r2

12 + r2
22

)
E

[
V2

n

]
+ ε2∆t

(
r2

1 + r2
2

)
.

Since
r2

11 + r2
21 = 1 + O(∆t2),

r2
12 + r2

22 = 1 − 2η∆t + O(∆t2),

r2
1 + r2

2 = 1 − 2ηθ∆t + O(∆t2),

we have
E

[
X2

n + V2
n

]
≤ E

[
X2

n−1 + V2
n−1

]
+ ε2∆t,

that, recursively applied, leads to

E
[
X2

n + V2
n

]
≤ E

[
X2

0 + V2
0

]
+ nε2∆t,

that gives the thesis.

�

In other terms, the numerical second-order moment computed by the stochastic
θ-method (2.1) has the same character of the exact second moment, since it is upper-
bounded by a linear term in t and quadratic in ε.

5. Numerical experiments

In this section we present a selection of numerical tests arising from the application
of the θ-methods (1.5) to the linear oscillator (1.1), as well as on a suitable nonlinear
variant.

We apply the stochastic trapezoidal method to solve Equation (1.1) in [0, 100] with

Q =

[
0 1
−1 −1

]
,

initial value Z0 = [0 0]T and ∆t = 100/215. We choose various values for the amplitude
ε of the stochastic forcing term. As visible from Figures 1 to 3, coherently with the the-
oretical issues proved in the previous sections, the stochastic trapezoidal method shows
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Figure 1: Observed deviation between the numerical and theoretical values of σ2
X in (1.4) for the damped

oscillator (1.1) with η = g = 1 and various values of ε. The mean has been computed over 1000 trajectories.
The initial value is Z0 = [0 0]T and the chosen stepsize is ∆t = 100/215.
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Figure 2: Observed deviation between the numerical and theoretical values of σ2
V in (1.4) for the damped

oscillator (1.1) with η = g = 1 and various values of ε. The mean has been computed over 1000 trajectories.
The initial value is Z0 = [0 0]T and the chosen stepsize is ∆t = 100/215.
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Figure 3: Observed numerical values of µ in (1.4) for the damped oscillator (1.1) with η = g = 1 and various
values of ε. The mean has been computed over 1000 trajectories. The initial value is Z0 = [0 0]T and the
chosen stepsize is ∆t = 100/215.
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an excellent conservation behaviour for small values of ε. The accurate conservation
deteriorates when ε increases, as proved in Section 3. Clearly, a better conservation
would be possible for smaller values of ∆t, as shown in Table 1.

We now conclude by giving a glance to the nonlinear case

dX(t) = V(t)dt,

dV(t) = − (ηV(t) − f (X(t)) dt + εdW(t),
(5.1)

for t ∈ [0, 1000], where f (X) is associated to a nonlinear potentialP(X) through f (X) =

−P′(X). As highlighted in [6, 7, 15], the stationary density in the nonlinear case is given
by

Π∞(x, v) = N0 exp
(
−
η

ε2 (v2 + 2P(x))
)
, (5.2)

where the constant N0 can be computed by the condition∫ ∞

−∞

∫ ∞

−∞

Π∞(x, v)dxdv = 1.

As a test case, we consider the double-well potential

P(X) = −
1
2

X2 +
1
4

X4

and solve the corresponding problem (5.1) with Z0 = [0 0]T and η = 1, by means
of the stochastic θ-method with ∆t = 1000/26, for various values of ε. It is known
from [6] that, in the nonlinear case, the stationary density is no longer Gaussian, but
position and velocity still appear independent. Then, we aim to see if such a long-term
independency is preserved by the stochastic trapezoidal method also in this nonlinear
case.

As visible from Figure 4, the stochastic trapezoidal method is still able to catch the
independency of position and velocity in an accurate way. Similarly as in the linear
case, the smaller is ε, the more the observed value of the expectation is accurate.

6. Conclusions

The investigation has been devoted to the analysis of long-time features of stochas-
tic θ-methods (1.5), applied to a linear damped oscillator (1.1). The analysis has em-
phasized the role of the stepsize and of the amplitude ε of the diffusion term in the
preservation of the correlation matrix (1.3) along the numerical solutions. The numer-
ical evidence has confirmed the theoretical analysis. A glance to the nonlinear version
(5.1) of the oscillator has also been experimentally given. It seems that, to some extent,
the conclusions of the linear analysis here provided can be extended to the nonlinear
case; this issue will object of future contributions, in the spirit of inheriting properties
of nonlinear problems over their discretizations [1, 5, 9, 10, 13, 14].
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Figure 4: Observed numerical values of µ in (1.4) for the nonlinear damped oscillator (5.1) with η = 1 and
various values of ε. The mean has been computed over 1000 trajectories. The initial value is Z0 = [0 0]T

and the chosen stepsize is ∆t = 1000/26.
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