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Abstract. We introduce a family of multivalue almost collocation meth-
ods with diagonal coefficient matrix for the numerical solution of ordi-
nary differential equations. The choice of this type of coefficient matrix
permits a reduction of the computational cost and a parallel implemen-
tation. Collocation gives a continuous extension of the solution which is
useful for a variable step size implementation. We provide examples of
A-stable methods with two and three stages and order 3.
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1 Introduction
Consider the initial value problem:{

y′(t) = f(y(t)), t ∈ [t0, T ],
y(t0) = y0,

(1)

f : Rk → Rk. Multivalue methods are a large class of numerical methods used to
solve (1). Classical methods for the solution of ordinary differential equations,
such as Runge Kutta and linear multistep methods, are special cases of these
methods [?, ?, ?, ?, ?]. Multivalue methods have also been treated as geometric
numerical integrators in [?,?,?].
Multivalue methods are characterized by the abscissa vector c = [c1, c2, ..., cm]T

and four coefficient matrices A = [aij ], U = [uij ], B = [bij ] and V = [vij ],
where:

A ∈ Rm×m, U ∈ Rm×r, B ∈ Rr×m, V ∈ Rr×r.

On the uniform grid tn = t0+nh, n = 0, 1, ..., N,Nh = T − t0, the method takes
the form:

Y
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(2)



n = 0, ..., N, where m is the number of internal stages and r is the number of
external stages.
Multivalue methods are defined by a starting procedure Sh for the computa-
tion of the starting vector, a forward procedure Gh, which updates the vector
of the approximations at each step point and a finishing procedure Fh, which
permits to compute the corresponding numerical solution. These methods can
be extended using collocation in order to obtain a smooth solution. Collocation
is a technique which approximates the solution with continuous approximants
belonging to a finite dimensional space (usually algebraic polynomials). The ap-
proximation satisfies interpolation conditions at the grid points and satisfies the
differential equations on the collocation points [?, ?, ?, ?, ?, ?]. Those methods
are very effective because they permit to avoid the order reduction typical of
Runge Kutta methods, also in presence of stiffness. Stiff problems arise in many
relevant mathematical models [?,?,?], therefore they are object of wide attention
in the literature, see [?,?,?,?] and references therein.
Because of the implicitness of such methods, the computational cost of the in-
tegration process is strictly connected to the numerical solution of non linear
systems of external stages at each time step of dimension mk, where k is the
dimension of system (1) and m is the number of stages. We focus on the de-
velopment of methods with diagonal coefficient matrix A in (2), for which the
nonlinear system of mk equations reduces to m independent systems of dimen-
sion k, thus it is possible to reduce the computational effort and to parallelize
the method.
In order to build A-stable methods, it is not possible to impose all the colloca-
tion conditions and thus we consider almost collocation [?, ?]. Collocation and
almost collocation methods are widely used also for the solution of integral and
integro-differential equations [?,?,?]
The organization of this paper is as follows. In Sect. ?? we summarize multivalue
methods, describing their formulation and some results about order conditions.
In Sect. ?? we discuss the construction of almost collocation methods with diag-
onal coefficient matrix. In Sect. ?? we present some examples of methods with
two and three stages. In Sect. ?? numerical results are provided. Finally, in Sect.
?? some concluding remarks are given and plans for future research are outlined.

2 Multivalue Collocation Methods

Multivalue collocation methods described in [?] are of the form (2) where the
external stages have the Nordsieck form:

y[n] =
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y
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y
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r
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hy′(xn)
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hr−1yr−1(xn)
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and the piecewise collocation polynomial:

Pn(tn + θh) =

r∑
i=1

αi(θ)y
[n]
i + h

m∑
i=1

βi(θ)f(Pn(tn + cih)), θ ∈ [0, 1], (4)

provides a dense approximation to the solution of (1). We impose the following
interpolation conditions:

Pn(tn) = y
[n]
1 , P ′

n(tn) = y
[n]
2 , ... P (r−1)

n (tn) = y
[n]
r−1,

and collocation conditions

P ′
n(tn + cih) = f(Pn(tn + cih)), i = 1, 2, ..,m.

We can observe that the polynomial (??) has globally class Cr−1 while most
interpolants based on Runge-Kutta methods only have global C1 continuity [?,?].

So, the matrices of multivalue methods assume the following form:

A = [βj(ci)]i,j=1,...,m , U = [αj(ci)]i=1,...,m,j=1,...,r ,

B =
[
β
(i−1)
j (1)

]
i=1,...,m,j=1,...,r

, V =
[
α
(i−1)
j (1)

]
i,j=1,...,r

.

We, now, summarize some important results regarding the order of the method
[?].
Theorem 1. A multivalue collocation method given by the approximation Pn(tn+
θh) in (??), θ ∈ [0, 1], is an approximation of uniform order p to the solution of
the well-posed problem (1) if and only if

α1(θ) = 1 (5)
θν

ν!
− αν+1(θ)−

m∑
i=1

cν−1
i

(ν − 1)!
βi(θ) = 0, ν = 1, ..., r − 1, (6)

θν

ν!
−

m∑
i=1

cν−1
i

(ν − 1)!
βi(θ) = 0, ν = r, ..., p. (7)

Corollary 1. The uniform order of convergence for a multivalue collocation
method (??) is m+ r − 1.
Theorem 2. An A-stable multivalue collocation method (??) fulfills the con-
straint r ≤ m+ 1.
Theorem 3. The order conditions in (??)-(??) are equivalent to:

αj(0) = δj1, α
(ν)
j (0) = δj,ν+1, j = 1, 2, ..., r, ν = 1, 2, ..., r − 1, (8)

βj(0) = β
(ν)
j (0) = 0, j = 1, 2, ...,m, ν = 1, 2, ..., r − 1, (9)

α′
j(ci) = 0, i = 1, 2, ..., r, j = 1, 2, ...,m, (10)

β′
j(ci) = δij , i, j = 1, 2, ...,m, (11)

being δij the usual Kronecker delta.



Proof. The conditions (??) follow immediately by substituting θ = 0 in (??) and
in its derivatives. The conditions (??) follow from (??)-(??) and (??), substitut-
ing θ = 0. To show (??), we differentiate (??) and replace θ = ci, i = 1, ...,m,
while (??) is derived by the differentiation of (??), putting θ = ci, i = 1, ...,m,
and (??).

3 Construction of Almost Collocation Multivalue
Methods with Diagonal Coefficient Matrix

The computational cost of the method (2) is strictly connected to the structure
of the matrix A. In order to reduce this cost, we want to construct a multivalue
method with a diagonal matrix A, so we have to determine the functional basis
{βj(θ), j = 1, ...,m} such that βj(ci) = 0 for i ̸= j. In this way, we can not
impose all the collocation conditions, but we have to relax some of them.
The following theorem holds.

Theorem 4. A multivalue collocation method (??) has a diagonal coefficient
matrix A and order p = r − 1 if

βj(θ) = ωj(θ)

m∏
k=1,k ̸=j

(θ − ck), j = 1, ...,m, (12)

where ωj(θ) is a polinomial of degree r −m+ 1:

ωj(θ) =

r−m+1∑
k=0

µ
(j)
k θk, (13)

and

α1(θ) = 1 (14)
θν

ν!
− αν+1(θ)−

m∑
i=1

cν−1
i

(ν − 1)!
ωi(θ)

m∏
k=1,k ̸=i

(θ − ck) = 0, ν = 1, ..., r − 1. (15)

Proof. We want A to be diagonal, so we have to impose that βj(ci) = 0 for
i ̸= j. If we subsitute ci in (??), we obtain:

βj(ci) = ωj(ci)

m∏
k=1,k ̸=j

(ci − ck) = 0, j = 1, ...,m, (16)

so (??) is proved. Moreover, (??)-(??) are obtained by replacing (??) in (??)-
(??).

We observe that βj(θ), j = 1, ...,m, are polynomial of degree r and conditions
(??)-(??) permit to compute the functions αi(θ), i = 1, ..., r, from βj(θ). In the
following we will fix r = m+ 1. The parameters µ

(j)
k are free parameters which



can be chosen in order to obtain A-stable methods. In searching for A-stable
formulae, we have to analyze the proprierties of the stability matrix:

M(z) = V + zB(I − zA)−1U, (17)

where I is the identity matrix in Rm×m. In particular, we are interested in the
computation of the roots of the stability function of the method:

p(ω, z) = det(ωI −M(z)). (18)

This roots have to be in the unit circle for all z ∈ C such that Re(z) ≤ 0. By the
maximul principle, that will happen if the denominator of p(ω, z) does not have
poles in the negative half plane C− and if the roots of the p(ω, iy)| are in the
unit circle for all y ∈ R. The last condition can be verified using the following
Schur criterion.

Criterion 5 Consider the polynomial [?]

ϕ(ω) = ckω
k + ck−1ω

k−1 + ...+ c1ω + c0, (19)

where ci are complex coefficent, ck ̸= 0 and c0 ̸= 0, ϕ(ω) is said to be a Schur
polynomial il all its roots ωi, i = 1, 2, ..., k are inside the unit circle. Define

ϕ̂(ω) = c̄0ω
k + c̄1ω

k−1 + ...+ c̄k−1ω + c̄k, (20)

where c̄i is the complex conjugate of ci. Define also the polynomial

ϕ1(ω) =
1

ω

(
ϕ̂(0)ϕ(ω)− ϕ(0)ϕ̂(ω)

)
(21)

of degree at most k − 1. The following theorem holds.

Theorem 6. (Schur). ϕ(ω) is a Schur polynomial if and only if∣∣∣ϕ̂(0)∣∣∣ > |ϕ(0)| (22)

and ϕ1(ω) is a Schur polynomial [?].

4 Examples of Methods

In this section we present examples of A-stable methods with two and three
stages.

4.1 Two-Stage Methods

According to Theorem ??, we fix βj(θ) as in (??) with m = 2 and r = 3, so
ωj(θ) are polynomial of degree 2 of the form:

ωj(θ) = µ
(j)
0 + µ

(j)
1 θ + µ

(j)
2 θ2, (23)



and the collocation polynomial is:

Pn(tn + ϑh) = y
[n]
1 + α2(ϑ)y

[n]
2 + α3(ϑ)y

[n]
3 + h (β1(ϑ)f(P (tn + c1h))+

β2(ϑ)f(P (tn + c2h))) .

We choose the values for the parameters µ
(j)
k in (??) by imposing the condi-

tion (??) for ν = r and by performing the Schur analysis of the characteristic
polynomial of the stability matrix corresponding to the Butcher tableau:

[
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]
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0 β2(c2)
1 α2(c1) α3(c1)
1 α2(c2) α3(c2)
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0 α′

2(1) α′
3(1)

0 α′′
2(1) α′′

3(1)

 (24)

We obtain
µ
(1)
0 = 0, µ

(1)
1 =

1

3(c1 − c2)
, µ

(1)
2 = 0,

µ
(2)
0 = 0, µ

(2)
1 = − c1

3(c1 − c2)c2
, µ

(2)
2 =

1

3c22
,

so

α2(ϑ) =
−ϑ3 + ϑ2(c1 + c2) + ϑ(2c22 − c1c2)

3c22
,

α3(ϑ) =
−2ϑ3 + ϑ2(2c1 + 3c2)− 2c1c2ϑ

6c2
,

β1(ϑ) =
ϑ(ϑ− c2)

3(c1 − c2)
, β2(ϑ) =

(ϑ2(c2 − c1) + c1c2ϑ)(c1 − ϑ)

3c22(c1 − c2)
.

(25)

This methods have order 3. Fig. ?? shows the region of A-stability in the (c1, c2)
plane obtained from the Schur analysis of the method (??)-(??).

Fig. 1. Region of A-stability in the (c1, c2) plane.



As an example, we chose c1 = 3 and c2 = 29/10, obtaining:

α2(ϑ) = ϑ

(
− 25

216
ϑ2 +

ϑ
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)
, α3(ϑ) = ϑ
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.

which is the continuous C2 extension of uniform order p = 3 of the A-stable
multivalue method:
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4.2 Three-Stage Multivalue Almost Collocation Method

Now we fix m = 3 and r = 4, so:

Pn(tn + ϑh) = y
[n]
1 + α2(ϑ)y

[n]
2 + α3(ϑ)y

[n]
3 + α4(ϑ)y

[n]
4 +

h (β1(ϑ)f(P (tn + c1h)) + β2(ϑ)f(P (tn + c2h)) + β3(ϑ)f(P (tn + c3h))) .

According to theroem ?? we obtain a method of order p = 3, by fixing βj(θ) as
in (??) and finding the parameters µ

(j)
k such that the method is A-stable, so we

perform Schur analysis of the characteristic polynomial of the stability matrix
corresponding to the Butcher tableau:
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We found:

α2(ϑ) =

(
−2ϑ4
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+

2ϑ

3
+
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c23
(c1 + c2 + c3)

)
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2ϑ
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)
(5c21 + 2c22 − 7c23),

α3(ϑ) =

(
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6c3
c2(c1c2 + c1c3 + c2c3), α4(θ) = 0,

β1(ϑ) = ω1(ϑ)(ϑ− c2)(ϑ− c3), β2(ϑ) = ω2(ϑ)(ϑ− c1)(ϑ− c3),

β3(ϑ) = ω3(ϑ)(ϑ− c1)(ϑ− c2),

where

ω1(ϑ) =
ϑ(30(ϑ− c1)(c1c2 + c1c3 − c2c3 − c21) + 1)

3(c1 − c2)(c1 − c3)
,

ω2(ϑ) =
ϑ(12(ϑ− c2)(c1c2 − c1c3 + c2c3 − c22) + 1)

3(c2 − c1)(c2 − c3)
,

ω3(ϑ) =
ϑ((ϑ(30c21 + 12c22)− 30c21c3 − 12c22c3)(c1c3 − c1c2 + c2c3 − c23)− c23)

3c23(c1 − c3)(c3 − c2)
.

For those polynomials, we perform again Schur analysis fixing one value for time
of the abscissa coefficients. So Fig. ?? shows the regions of A-stability in the
(c2, c3) plane for c1 = 9/5, in the (c1, c3) plane for c2 = 8/5 and in the (c1, c2)
plane for c3 = 17/10, respectively.

As an example, we chose c1 = 9/5, c2 = 8/5 and c3 = 17/10, obtaining:
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which is the continuous C2 extension of uniform order p = 3 of the A-stable
general linear method:
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Fig. 2. Region of A-stability: (a) in the (c2, c3) plane for c1 = 9/5; (b) in the (c1, c3)
plane for c2 = 8/5; (c) in the (c1, c2) plane for c3 = 17/10.

5 Numerical Results

In this section we present numerical results for the methods introduced previ-
ously. In particular we denote with:

– GLM2: the method in Sect. ??
– GLM3: the method in Sect. ??
– RK2: the two stages Gaussian Runge-Kutta method:
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−
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+
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6

1

4

1

2

1

2

The methods GLM2 and GLM3 have uniform order p = 3, while RK2 has
order 4 and uniform order 2, therefore it suffers from order reduction when the
problem is stiff.
We consider the Prothero-Robinson problem:{

y′(t) = λ(y(t)− sin(t)) + cos(t), t ∈ [0, 10],
y(t0) = y0,

(26)

with Re(λ) < 0 which is stiff when λ ≪ 0.
Table ?? and ?? show the error in the final step point for different values of

the step size and the experimental order of methods GLM2, GLM3 and RK2,
respectively, for different values of λ in problem (??).

Table 1. Absolute errors (in the final step point) and effective orders of convergence
for problem (??) with λ = −103.

h GLM2 GLM3 RK2
Error p Error p Error p

1/10 4.9008 10−5 4.1930 10−6 1.77 10−4

1/20 3.0606 10−6 4.0011 2.6733 10−7 3.9713 1.32 10−5 3.75
1/40 1.9182 10−7 3.9960 1.7166 10−8 3.9610 7.82 10−7 4.08
1/80 1.2089 10−8 3.9880 1.1240 10−9 3.9328 4.78 10−8 4.03

Table 2. Absolute errors (in the final step point) and effective orders of convergence
for problem (??) with λ = −106.

h GLM2 GLM3 RK2
Error p Error p Error p

1/10 4.8836 10−5 4.1468 10−6 1.52 10−4

1/20 3.0403 10−6 4.0057 2.6123 10−7 3.9886 3.84 10−5 1.98
1/40 1.8934 10−7 4.0052 1.6450 10−8 3.9892 9.99 10−6 1.94
1/80 1.1849 10−8 3.9981 1.0133 10−9 4.0210 2.78 10−6 1.85



We can notice that the experimental order is consistent with the theoretical
one and, even in the case of stiffness, for GLM2 and GLM3 there is not order
reduction, which is evident in RK2.

6 Conclusions

In this paper multivalue collocation methods with diagonal coefficient matrix
have been presented. We prove that these methods have at least order p = r− 1
and we have constructed A-stable methods with two and three stages with order
p = 3. Thanks to the structure of the coefficient matrix, those methods can be
easily parallelized, so the computational effort can be reduced. In the future we
aim to construct such types of methods for different operators such as stochastic
differential equations [?, ?, ?], fractional differential equations [?, ?, ?, ?], partial
differential equations [?,?,?,?,?,?,?,?,?], Volterra integral equations [?,?,?,?,?],
second order problems [?, ?], oscillatory problems [?, ?, ?, ?, ?, ?], as well as to
the development of algebraically stable high order collocation based multivalue
methods [?,?].
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