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Abstract The paper provides a comparison between two relevant classes
of numerical discretizations for stiff and nonstiff problems. Such a compar-
ison regards linearly implicit Jacobian-dependent Runge-Kutta methods and
fully implicit Runge-Kutta methods based on Gauss-Legendre nodes, both
A-stable. We show that Jacobian-dependent discretizations are more efficient
than Jacobian-free fully implicit methods, as visible in the numerical evidence.
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1 Introduction

The wide literature on the numerical solution for nonlinear differential prob-
lems

{
y′(t) = f(t, y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rd,
(1.1)

where the vector field f is smooth enough to guarantee the well-posedness of
the problem, is rich of general purpose methods, as well as on adapted methods,
specially tuned to the problem under investigation. The numerical integration
of (1.1) is important not only for itself but also for the time integration of
spatially discretized time-dependent partial differential equations [8,18,21,30,
31,33,38,48–50] and, therefore, an adaptation of the numerical schemes to the
problems may be particularly favourable for an efficient computation of the
solutions. A relevant example of adaptation has been provided by the literature
on the so-called exponentially fitted methods [9,16,19,20,22,27,28,34,45,39,
43,46,47], whose coefficients are dependent on parameters which characterize
the problem, such as the frequency oscillation for oscillatory solutions.

Clearly, this level of adaptation is feasible if a good approximation of the
parameters is known in advance. If this is not the case, a competitive level
of adaption is made possible by Jacobian-dependent discretizations, which
are characterized by coefficients containing a correction term that depends
on the Jacobian of the vector field f of (1.1). This correction contains the
contribution to the error arising from the internal stages of the scheme and
its presence creates a benefit in terms of stability and accuracy properties in
comparison with the Jacobian-free case [26,35,40–42]. Focusing on the class
of explicit Runge-Kutta methods, Ixaru found examples of A-stable Jacobian-
dependent formulae in [40–42]. Actually, the computation of the coefficients
requires the inversion of a matrix depending on the Jacobian at each step,
making the resulting methods linearly implicit. Other examples of stabilized
explicit methods are given in [1,3,44] and references therein.

It is the purpose of this paper to focus on Jacobian-dependent discretiza-
tions relying on Runge-Kutta schemes, by providing a fair comparison with the
analogous Jacobian-free versions. We will show that such methods are more ef-
ficient than fully implicit methods, as for implicit methods Newton iterations
may require more matrix inversions to achieve a prescribed tolerance. The
comparison is performed between two A-stable classes of methods: the clas-
sical Gaussian Runge-Kutta methods versus the linearly implicit Jacobian-
dependent Runge-Kutta methods developed in [42] and briefly reviewed in
Section 2. Section 3 provides the numerical evidence originated on a selection
of test problems, while some conclusions are given in Section 4.
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2 Jacobian-dependent discretizations

Consider a two-stage explicit Runge-Kutta method for a scalar problem (1.1)

yn+1 = yn + h (b1f(tn, Y1) + b2f(tn + c2h, Y2)) ,

with
Y1 = yn

Y2 = yn + ha21f(tn, Y1),

and a21 = c2 for stage consistency. While for the Jacobian-free version of this
method, b1 and b2 are constant coefficients, in the Jacobian-dependent version
they assume the form

b1 = 1− 1

c2 (2− c2M2)
, b2 = 1− b1, (2.2)

with
M2 = hfy(tn + c2h, Y2). (2.3)

The scheme has second order for any c2 6= 2/3, while for c2 = 2/3 it achieves
order p = 3. We observe that, for c2 = 1, above linearly implicit method is
A-stable. When M2 = 0, the scheme is fully explicit, so it is never A-stable
and (2.2) is the well-known condition of order 2 for a two-stage Runge-Kutta
method [2].

Let us now focus on the corresponding version for systems of differential
equations (1.1). We observe that, in this case, M2 in (2.3) is a matrix and, as
a consequence, also the weights B1 and B2 of the corresponding Runge-Kutta
method

yn+1 = yn + h (B1f(tn, Y1) +B2f(tn + c2h, Y2)) , (2.4)

become matrices. In the above expression

Y1 = yn

Y2 = yn + ha21f(tn, Y1),

with a21 = c2 for stage consistency. In the Jacobian-dependent version for
systems (1.1) the matrices B1 and B2 assume the form

B1 = I − 1

2c2

(
I − c2

2
M2

)−1
, B2 = I −B1,

where I stands for the identity matrix of order d. The matrix M2 is defined
by

M2 = hJ(tn + c2h, Y2),

where J is the Jacobian matrix of f . We observe that the Jacobian-free version
of the method follows by setting M2 equal to zero matrix and, therefore,

B1 = b1I, B2 = b2I,

where b1 and b2 are the scalar values given by (2.2).
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We now consider a three-stage explicit Runge-Kutta method for systems
of type (1.1)

yn+1 = yn + h (B1f(tn, Y1) +B2f(tn + c2h, Y2) +B3f(tn + c3h, Y3)) , (2.5)

with
Y1 = yn

Y2 = yn + ha21f(tn, Y1),

Y3 = yn + ha31f(tn, Y1) + ha32f(tn, Y2),

with a21 = c2 and a31 +a32 = c3 for stage consistency. While for the Jacobian-
free version of this method, the weights are constant coefficients, in the Jacobian-
dependent version they are matrices assuming the form

B1 = TQ−1,

B2 =
1

c22
B3

(
(1− c2 − c3(3c3 − 2c2))I + (−c23 + c2c3 + c22)M3

)
,

B3 = I −B1 −B2,

with
T = (3c2 − 2)I − c2(c2 − 1)M2,

Q = c3

(
6(c2 − c3)I + c2(3c3 − 2c2)M2 + c3(2c3 − 3c2)M3

+ c3c2(c2 − c3)M3M2

)
,

and
M2 = hJ(tn + c2h, Y2), M3 = hJ(tn + c3h, Y3).

Such a linearly implicit method is A-stable for c2 = 1/2 and c3 = 1.

Remark 1 Jacobian-dependent methods allow to combine linear implicitness
and A-stability but, on the other hand, they have the drawback of matrix
inversions. However, as observed by Ixaru in [42], the required stepsize re-
strictions to guarantee the invertibility of the involved matrices is not severe.
For instance, the A-stable two-stage method (2.4), with c1 = 0 and c2 = 1,
requires h|λ| < 1011, where λ is the spectral radius of the Jacobian. Moreover,
for the A-stable three-stage method (2.5), with c1 = 0, c2 = 1/2 and c3 = 1,
the restriction is h|λ| < 106. More details regarding the computation of these
stepsize restrictions can be found in [42].

3 Numerical illustration

We now present the results of the comparison on selected problems among the
following methods:

– RK2, two-stage fully implicit Runge-Kutta method based on Gaussian col-
location points, of order 4 [37];
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– Ix2(c2), two-stage linearly implicit Jacobian-dependent method (2.4), with
c1 = 0. We consider Ix2(2/3) having order 3 and Ix2(1) of order 2 and
A-stable;

– Ix3, three-stage linearly implicit Jacobian-dependent Runge-Kutta method
(2.5), with nodes c1 = 0, c2 = 1/2 and c3 = 1, of order 4 and A-stable.

Such a comparison aims to show the advantages of Jacobian-dependent
discretizations with respect to the analog Jacobian-free version, with the same
order or the same number of stages. The provided experiments, carried out in
a fixed stepsize environment, are given for selected stiff and nonstiff problems
[36,37]. In the remainder of the section, nval is the overall number of function
evaluations, cd is the achieved number of correct digits at the endpoint T of
the integration interval.

We first consider the following Euler problem

y′1(t) = −2y2(t)y3(t),

y′2(t) =
5

4
y1(t)y3(t),

y′3(t) = −1

2
y1(t)y2(t),

(3.6)

with t ∈ [0, 10] and initial value y0 = [1 0 0.9]ᵀ. As visible from Tables
1 and 2, all the implemented methods converge with their expected orders,
without exhibiting any order reduction, since Euler problem (3.6) is nonstiff.
A detailed analysis of order reduction for one-step methods can be found in
[37]. The estimated orders are computed by the usual formula

p(h) =
cd(h)− cd(2h)

log10 2
.

Figure 1 shows the corresponding work precision diagram and reveals that, for
low accuracy, both Ix2 and Ix3 are competitive with the RK2 method. Clearly,
for high accuracy demandings, the higher order methods perform better and,
in particular, Ix3 is more efficient than the Jacobian-free RK2 method. Clearly,
the implicit method results to be more expensive, since the involved Newton
iterations may require more matrix inversions to achieve a prescribed tolerance.
On the contrary, a linearly implicit scheme requires only one matrix inversion
per step.

We next consider the Brusselator model{
y′1(t) = 1 + y1(t)2y2(t)− 4y1(t),

y′2(t) = 3y1(t)− y1(t)2y2(t),
(3.7)

with t ∈ [0, 20] and initial value y0 = [1.5 3]ᵀ. Tables 3 and 4 and Figure 2 re-
veal that, for any level of accuracy, Ix3 is more efficient than the RK2 method.
Moreover, Ix2(2/3) remains competitive up to 6 correct digits. We observe that
both Jacobian-dependent methods, with h = 1/2, are not applicable, since the
stepsize does not fulfill the requirements of Remark 1.



6 D. Conte, R. D’Ambrosio, G. Pagano, B. Paternoster

1 2 3 4 5 6 7 8 9 10 11
1.5

2

2.5

3

3.5

4

4.5

cd

lo
g

1
0
(n

v
a
l)

 

 

RK2

Ix2

Ix3

Fig. 1 Work precision diagram related to Euler problem (3.6). The method Ix2 is Ix2(2/3).
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Fig. 2 Work precision diagram related to Brusselator problem (3.7). The method Ix2 is
Ix2(2/3).
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h RK2 Ix2(2/3) Ix3
1/2 2.5910e-03 3.8651e-02 9.0258e-04
1/4 1.6755e-04 4.7054e-03 5.7404e-05
1/8 1.0565e-05 5.7968e-04 3.8272e-06
1/16 6.6180e-07 7.1946e-05 2.5170e-07
1/32 4.1386e-08 8.9621e-06 1.6205e-08
1/64 2.5869e-09 1.1184e-06 1.0290e-09
1/128 1.6156e-10 1.3968e-07 6.4954e-11
1/256 9.9786e-12 1.7452e-08 4.2064e-12

Table 1 Absolute errors at the endpoint T on Euler problem (3.6), in correspondence of
several values of the stepsize h.

h RK2 Ix2(2/3) Ix3
1/4 3.9509 3.0381 3.9748
1/8 3.9872 3.0210 3.9068
1/16 3.9968 3.0103 3.9265
1/32 3.9992 3.0050 3.9572
1/64 3.9999 3.0025 3.9771
1/128 4.0010 3.0012 3.9857
1/256 4.0171 3.0006 3.9488

Table 2 Estimated order p(h) on Euler problem (3.6).

h RK2 Ix2(2/3) Ix3
1/2 2.3356e-02 - -
1/4 7.7100e-04 1.5112e-02 2.4211e-03
1/8 3.9150e-05 1.5267e-03 2.1457e-04
1/16 2.6447e-06 1.3159e-04 1.6592e-05
1/32 1.6703e-07 1.2853e-05 1.1989e-06
1/64 1.0885e-08 1.3902e-06 8.0831e-08
1/128 1.1044e-09 1.6097e-07 5.6483e-09
1/256 4.9279e-10 1.9703e-08 7.8217e-10

Table 3 Absolute errors at the endpoint T on Brusselator problem (3.7), in correspondence
of several values of the stepsize h.

h RK2 Ix2(2/3) Ix3
1/4 4.9209 - -
1/8 4.2997 3.3073 3.4961
1/16 3.8878 3.5363 3.6929
1/32 3.9849 3.3558 3.7907
1/64 3.9397 3.2088 3.8906
1/128 3.3010 3.1104 3.8390
1/256 1.1642 3.0302 3.7341

Table 4 Estimated order p(h) on Brusselator problem (3.7).

We finally consider the Van der Pol oscillator{
y′1(t) = y2(t),

εy′2(t) = (1− y1(t)2)y2(t)− y1(t),
(3.8)

with t ∈ [0, 2/3] and initial value y0 = [2 − 2/3]ᵀ. We consider the values
ε = 10−3, 10−5, 10−6, corresponding to nonstiff, mildly stiff and stiff prolems,
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h RK2 Ix2(1) Ix3
(T − t0)/24 1.2527e-03 3.8670e-03 -
(T − t0)/25 1.6858e-04 7.0246e-04 8.3320e-05
(T − t0)/26 1.4886e-05 1.7230e-04 6.7424e-06
(T − t0)/27 1.0415e-06 4.3261e-05 4.0699e-07
(T − t0)/28 6.7128e-08 1.0827e-05 2.3142e-08
(T − t0)/29 4.2308e-09 2.7075e-06 1.2956e-09
(T − t0)/210 2.6707e-10 6.7693e-07 7.5512e-11
(T − t0)/211 1.8817e-11 1.6923e-07 6.5652e-12

Table 5 Absolute errors at the endpoint T on the van der Pol problem (3.8) with ε = 10−3,
in correspondence of several values of the stepsize h.

h RK2 Ix2(1) Ix3
(T − t0)/25 2.8935 2.4607 -
(T − t0)/26 3.5014 2.0275 3.6273
(T − t0)/27 3.8372 1.9938 4.0502
(T − t0)/28 3.9556 1.9984 4.1364
(T − t0)/29 3.9879 1.9996 4.1588
(T − t0)/210 3.9856 1.9999 4.1008
(T − t0)/211 3.8271 2.0000 3.5238

Table 6 Estimated order p(h) on the van der Pol problem (3.8) with ε = 10−3.

respectively. The dashes appearing in the following tables are related to the
cases of non applicability of the Jacobian-dependent methods, according to
Remark 1.

Tables 5 and 6 show that all the implemented methods converge with their
expected orders, without exhibiting any order reduction, since the problem
is nonstiff. Similarly to the case of the Euler problem, Figure 3 shows the
corresponding work precision diagram and reveals that, for low accuracy, both
Ix2 and Ix3 are competitive with the RK2 method. Clearly, for high accuracy
demandings, the higher order methods perform better and, in particular, Ix3
is more efficient than the Jacobian-free RK2 method. Tables 7–10, referring
to the mildly stiff and stiff cases, show that only Ix2(1) converges with its
expected order, while the other two methods suffer from order reduction. The
corresponding work precision diagrams, reported in Figures 4 and 5, show
that Ix3 is always more efficient than the RK2 method, while Ix2(1) is more
competitive up to 7 correct digits for the mildly stiff case and up to 8 for the
stiff case.

4 Conclusions

We have focused our attention on advantages and drawbacks of Jacobian-
dependent discretizations introduced by Ixaru [42] versus Jacobian-free ones,
both based on Runge-Kutta methods. When the problem is stiff, the meth-
ods by Ixaru do not suffer from order reduction, while Runge-Kutta methods
exhibit lower effective order. The three-stage method by Ixaru outperforms
the Runge-Kutta method in terms of efficiency. In future developments of this
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Fig. 3 Work precision diagram related to the van der Pol problem (3.8) with ε = 10−3.
The method Ix2 is Ix2(1).

h RK2 Ix2(1) Ix3
(T − t0)/27 2.4021e-05 1.1597e-04 -
(T − t0)/28 3.6979e-06 1.1969e-05 -
(T − t0)/29 3.6951e-07 2.7125e-06 1.4935e-07
(T − t0)/210 2.7393e-08 6.7792e-07 1.2417e-08
(T − t0)/211 1.8002e-09 1.6948e-07 7.7927e-10
(T − t0)/212 1.1635e-10 4.2368e-08 4.9905e-11
(T − t0)/213 9.7311e-12 1.0590e-08 5.3797e-12
(T − t0)/214 3.0422e-12 2.6455e-09 2.7631e-12

Table 7 Absolute errors at the endpoint T on the van der Pol problem (3.8) with ε = 10−5,
in correspondence of several values of the stepsize h.

h RK2 Ix2(1) Ix3
(T − t0)/28 2.6995 3.2764 -
(T − t0)/29 3.3230 2.1416 -
(T − t0)/210 3.7537 2.0004 3.5883
(T − t0)/211 3.9276 2.0000 3.9940
(T − t0)/212 3.9516 2.0001 3.9649
(T − t0)/213 3.5798 2.0003 3.2136
(T − t0)/214 1.6775 2.0011 0.9612

Table 8 Estimated order p(h) on the van der Pol problem (3.8) with ε = 10−5.

h RK2 Ix2(1) Ix3
(T − t0)/27 3.0194e-05 4.2640e-02 -
(T − t0)/28 6.9312e-06 1.7456e-03 -
(T − t0)/29 1.3337e-06 4.2164e-06 -
(T − t0)/210 1.7743e-07 7.0058e-07 -
(T − t0)/211 1.5668e-08 1.6948e-07 5.8589e-09
(T − t0)/212 1.1000e-09 4.2367e-08 4.9426e-10
(T − t0)/213 7.3710e-11 1.0590e-08 3.3979e-11
(T − t0)/214 7.4523e-12 2.6451e-09 4.9178e-12

Table 9 Absolute errors at the endpoint T on the van der Pol problem (3.8) with ε = 10−6,
in correspondence of several values of the stepsize h.
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Fig. 4 Work precision diagram related to the van der Pol problem (3.8) with ε = 10−5.
The method Ix2 is Ix2(1).

h RK2 Ix2(1) Ix3
(T − t0)/28 2.1231 4.6104 -
(T − t0)/29 2.3777 8.6935 -
(T − t0)/210 2.9101 2.5894 -
(T − t0)/211 3.5014 2.0475 -
(T − t0)/212 3.8322 2.0001 3.5673
(T − t0)/213 3.8995 2.0003 3.8625
(T − t0)/214 3.3061 2.0012 2.7886

Table 10 Estimated order p(h) on the van der Pol problem (3.8) with ε = 10−6.

research we aim to provide alternative formulation of the Jacobian-dependent
discretizations that avoid the matrix inversion along the integration process,
but take advantage from the structure of the involved matrices, especially
when the ODE belongs to the discretization of PDEs in space. Moreover, it is
worth assessing the effectiveness of the approach also to other kind of opera-
tors, such as problems with memory [4–6,13,14] and stochastic problems [7,
10–12,17,29], and other families of methods, such as multivalue methods [15,
23–25,32]. In addition, we will consider the effectiveness of this approach on
the parallel solution of high dimensional problems [18], for which a CPU time
comparison is a further measure of efficiency.
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The method Ix2 is Ix2(1).

Ixaru for the precious discussions that inspired this research. The authors are
thankful to the anonymous referees for their gifted suggestions.

References

1. A. Abdulle, A.A. Medovikov, Second order Chebyshev methods based on orthogonal
polynomials, Numer. Math. 90(1), 1–18 (2001).

2. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Third Edition).
John Wiley & Sons, Chichester (2016).

3. P. Bocher, J.I. Montijano, L. Rández, M. Van Daele, Explicit Runge–Kutta Methods
for Stiff Problems with a Gap in Their Eigenvalue Spectrum, J. Sci. Comput. 77 (2),
1055–1083 (2018).

4. K. Burrage, A. Cardone, R. D’Ambrosio, B. Paternoster, Numerical solution of time
fractional diffusion systems, Appl. Numer. Math. 116, 82–94 (2017).

5. A. Cardone, D. Conte, B. Paternoster, Two-step collocation methods for fractional
differential equations, Discr. Cont. Dyn. Sys. B 23(7), 2709-2725 (2018).

6. A. Cardone, D. Conte, B. Paternoster, A family of multistep collocation methods for
volterra integro-differential equations, AIP Conf. Proc. 1168, 358–361 (2009).

7. A. Cardone, R. D’Ambrosio, B. Paternoster, A spectral method for stochastic fractional
differential equations, Appl. Numer. Math. 139, 115–119 (2019).

8. A. Cardone, R. D’Ambrosio, B. Paternoster, Exponentially fitted IMEX methods for
advection-diffusion problems, J. Comput. Appl. Math. 316, 100–108 (2017).

9. A. Cardone, R. D’Ambrosio, B. Paternoster, High order exponentially fitted methods
for Volterra integral equations with periodic solution, Appl. Numer. Math. 114C,18–29
(2017).

10. C. Chen, D. Cohen, R. D’Ambrosio, A. Lang, Drift-preserving numerical integrators for
stochastic Hamiltonian systems, Adv. Comput. Math. (2020).



12 D. Conte, R. D’Ambrosio, G. Pagano, B. Paternoster

11. V. Citro, R. D’Ambrosio, S. Di Giovacchino, A-stability preserving perturbation of
Runge-Kutta methods for stochastic differential equations, Appl. Math. Lett. 102,
106098 (2020).

12. V. Citro, R. D’Ambrosio, Long-term analysis of stochastic θ-methods for damped
stochastic oscillators, Appl. Numer. Math. 150, 18-26 (2020).

13. D. Conte, G. Califano, Optimal Schwarz Waveform Relaxation for fractional diffusion-
wave equations, Appl. Numer. Math. 127, 125-141 (2018).

14. D. Conte, G. Capobianco, B. Paternoster, Construction and implementation of two-step
continuous methods for Volterra Integral Equations, Appl. Numer. Math. 119, 239-247
(2017).

15. D. Conte, R. D’Ambrosio, Z. Jackiewicz, B. Paternoster, Numerical search for alge-
braically stable two-step almost collocation methods, J. Comput. Appl. Math. 239(1),
304–321 (2013).

16. D. Conte, R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted explicit two-step peer
methods, J. Numer. Math., doi: 10.1515/jnma-2017-0102 (2018).

17. D. Conte, R. D’Ambrosio, B. Paternoster, On the stability of ϑ-methods for stochastic
Volterra integral equations, Discr. Cont. Dyn. Sys. - Series B 23(7), 2695–2708 (2018).

18. D. Conte, R. D’Ambrosio, B. Paternoster, GPU acceleration of waveform relaxation
methods for large differential systems, Numer. Algor., 71(2), 293–310 (2016).

19. D. Conte, E. Esposito, L. Gr. Ixaru, B. Paternoster, Some new uses of the ηm(Z)
functions, Comput. Phys. Commun. 181, 128–137 (2010).

20. D. Conte, Ixaru, L.Gr., Paternoster, B., Santomauro, G., Exponentially-fitted Gauss-
Laguerre quadrature rule for integrals over an unbounded interval, J. Comput. Appl.
Math. 255, 725–736 (2014).

21. D. Conte, F. Mohammadi, L. Moradi, B. Paternoster, Exponentially fitted two-step peer
methods for oscillatory problems, submitted.

22. D. Conte, B. Paternoster, Modified Gauss-Laguerre Exponential Fitting Based Formu-
lae, J. Sci. Comput. 69 (1), 227-243 (2016).

23. R. D’Ambrosio, G. De Martino, B. Paternoster, Numerical integration of Hamiltonian
problems by G-symplectic methods, Adv. Comput. Math. 40(2), 553-575 (2014).

24. R. D’Ambrosio, G. De Martino, B. Paternoster, Order conditions of general Nyström
methods, Numer. Algor. 65(3) 579-595 (2014).

25. R. D’Ambrosio, E. Hairer, Long-term stability of multi-value methods for ordinary
differential equations, J. Sci. Comput. 60(3), 627-640 (2014).

26. R. D’Ambrosio, L. Gr. Ixaru, B. Paternoster, Construction of the EF-based Runge-
Kutta methods revisited, Comput. Phys. Commun. 182, 322–329 (2011).

27. R. D’Ambrosio, M. Moccaldi, B. Paternoster, F. Rossi, Adapted numerical modelling
of the Belousov-Zhabotinsky reaction, J. Math. Chem. 56(10), 2867–2897 (2018).

28. R. D’Ambrosio, M. Moccaldi, B. Paternoster, Parameter estimation in IMEX-
trigonometrically fitted methods for the numerical solution of reaction-diffusion prob-
lems, Comp. Phys. Commun. 226, 55–66 (2018).

29. R. D’Ambrosio, M. Moccaldi, B. Paternoster, Numerical preservation of long-term dy-
namics by stochastic two-step methods, Discr. Cont. Dyn. Sys. - Series B 23(7), 2763–
2773 (2018).

30. R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted numerical methods for advection-
reaction-diffusion problems generating periodic wavefronts, Comput. Appl. Math. 74(5),
1029–1042 (2017).

31. R. D’Ambrosio, B. Paternoster, Numerical solution of reaction-diffusion systems of λ−ω
type by trigonometrically fitted methods, J. Comput. Appl. Math. 294(C), 436–445
(2016).

32. R. D’Ambrosio, B. Paternoster, A general framework for numerical methods solving
second order differential problems. Math. Comput. Simul. 110(1), 113-124 (2015).

33. R. D’Ambrosio, B. Paternoster, Numerical solution of a diffusion problem by exponen-
tially fitted finite difference methods, SpringerPlus 3(1), 425–431 (2014).

34. R. D’Ambrosio, B. Paternoster, Exponentially fitted singly diagonally implicit Runge-
Kutta methods, J. Comput. Appl. Math. 263, 277-287 (2014).

35. R. D’Ambrosio, B. Paternoster, G. Santomauro, Revised exponentially fitted Runge-
Kutta-Nyström methods, Appl. Math. Lett. 30, 56–60 (2014).



Jacobian-dependent vs Jacobian-free discretizations 13

36. E. Hairer, S. Nørsett and G. Wanner, Solving ordinary differential equations I, Non-stiff
problems, Springer, Berlin (1987).

37. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II - Stiff and Differential
- Algebraic Problems, Springer-Verlag, Berlin (2002).

38. E. Isaacson, H.B. Keller, Analysis of Numerical Methods, Dover Publications (1994).
39. L. Gr. Ixaru, Exponential and trigonometrical fittings: user-friendly expressions for the

coefficients, Numer. Algorithms, doi: 10.1007/s11075-018-0642-8 (2018).
40. L. Gr. Ixaru, Runge-Kutta methods with equation dependent coefficients, Lecture Notes

in Computer Science 8236, 327–336 (2013).
41. L. Gr. Ixaru, Runge-Kutta methods of special form, J. Phys.: Conf. Series 413(1), Article

number 012033 (2013).
42. L. Gr. Ixaru, Runge-Kutta method with equation dependent coefficients, Comput. Phys.

Commun. 183(1), 63–69 (2012).
43. L. Gr. Ixaru, G. Vanden Berghe, Exponential Fitting, Kluwer, Boston-Dordrecht-

London (2004).
44. J. Mart́ın-Vaquero, B. Janssen, Second-order stabilized explicit Runge-Kutta methods

for stiff problems, Comput. Phys. Commun. 180 (10), 1802–1810 (2009).
45. J. Mart́ın-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto meth-

ods of low order, Numer. Algorithms 48(4), 327–346 (2008).
46. K. Ozawa, A Functional Fitting Runge-Kutta Method with Variable Coefficients, Japan

J. Ind. Appl. Math. 18 (1), 107–130 (2001).
47. B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated

to Liviu Ixaru on his 70-th anniversary, Comput. Phys. Commun. 183, 2499–2512 (2012).
48. W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential

Equations, Academic Press (1991).
49. W.E. Schiesser, G.W. Griffiths, A Compendium of Partial Differential Equation Models:

Method of Lines Analysis with Matlab, Cambridge University Press (2009).
50. G.D. Smith, Numerical solution of partial differential equations - Finite difference meth-

ods, Clarendon Press (1985).


