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Abstract

The paper provides a nonlinear stability analysis for a class of stochastic Runge-Kutta methods, applied to
problems generating mean-square contractive solutions. In particular, we show how this property is inherited
along the solutions generated by the stochastic perturbation of an algebraically stable deterministic Runge-
Kutta method. The effectiveness of the results is also confirmed by selected numerical experiments.
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1. Introduction

We consider a nonlinear system of stochastic differential equations (SDEs) of Itô type, assuming the
form dX(t) = f (X(t))dt + g(X(t))dW(t), t ∈ [0,T ],

X(0) = X0,
(1.1)

where f , g : Rd → Rd. Let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ] and W : [0,T ]×
Ω → R be a standard (Ft)t∈[0,T ]-Brownian motion with continuous sample paths on (Ω,F ,P). Theoretical
results on the existence and uniqueness to solutions of (1.1) are discussed, for instance, in the monograph
[21].

Here we focus our attention on providing a nonlinear stability analysis to a general class of stochastic
Runge-Kutta methods (SRK) that, with reference to the discretized domain

Ih = {tn = nh, n = 0, 1, . . . ,N, N = T/h},

assume the following form
Xn = Xn−1 + h

s∑
i=1

bi f (X̂[n]
i ) + ∆Wn

s∑
i=1

qig(X̂[n]
i ), n = 1, ...,N

X̂[n]
i = Xn−1 + h

s∑
j=1

ai j f (X̂[n]
j ) + ∆Wn

s∑
j=1

γi jg(X̂[n]
i ), i = 1, ..., s.

(1.2)

Xn provides an approximation to X(tn), while the internal stage X̂[n]
i approximates X(tn + cih), i = 1, . . . , s

and the discretized Wiener increment ∆Wn is distributed as a gaussian random variable with zero mean and
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variance h. A usual representation for (1.2) consists in the following Butcher tableau

c A Γ

bT qT
=

c1 a11 a12 . . . a1s γ11 γ12 . . . γ1s

c2 a21 a22 . . . a2s γ21 γ22 . . . γ2s
...

...
...

...
...

...
...

...
...

cs as1 as2 . . . ass γs1 γs2 . . . γss

b1 b2 . . . bs q1 q2 . . . qs

. (1.3)

SRK methods (1.2) are then formulated as a stochastic perturbation to the well-known deterministic Runge-
Kutta (RK) methods 

xn = xn−1 + h
s∑

i=1

bi f (x̂[n]
i ),

x̂[n]
i = xn−1 + h

s∑
j=1

ai j f (x̂[n]
j ), i = 1, ..., s,

(1.4)

for the deterministic autonomous differential systemx′(t) = f (x(t)), t ∈ [0,T ],
x(0) = x0.

The analysis of strong and weak accuracy properties of SRK methods of various types has extensively
been addressed by the existing literature; see, for instance [1, 3, 4, 5, 6, 7, 8, 10, 11, 16, 22, 23, 24, 25]
and references therein. The family of SRK methods formulated as in (1.2) has been analyzed in depth in
the monograph [17] and references therein, where we can infer that the strong convergence of (1.2) follows
from the convergence of the underlying RK method (1.4), i.e., it occurs when

∑s
i=1 bi = 1, plus the additional

condition
∑s

i=1 qi = 1. The extension to the multi-dimensional case has been addressed in [25], where several
conditions guaranteeing its strong convergence have been considered.

In this paper, we address our investigation to the analysis of the nonlinear stability properties of SRK
methods (1.2), here intended as preservation of the mean-square monotonicity property characteristic of the
stochastic problems (1.1) described by the following result [19, 20].

Theorem 1.1. For a given nonlinear SDE (1.1), let us assume the following properties for the drift f and
the diffusion g, by denoting with | · | the Euclidean norm in Rd and with E the mathetmatical expectation
operator:

(i) f (0) = g(0) = 0;
(ii) f satisfies a one-sided Lipschitz condition, i.e. there exists µ ∈ R such that

< x − y, f (x) − f (y) >≤ µ |x − y|2 , ∀x, y ∈ Rd; (1.5)

(iii) g is a globally Lipschitz function, i.e. there exists L > 0 such that

|g(x) − g(y)|2 ≤ L |x − y|2 ∀x, y ∈ Rd (1.6)

Then, any two solutions X(t) and Y(t) of (1.1), with E |X0|
2 < ∞ and E |Y0|

2 < ∞, satisfy

E |X(t) − Y(t)|2 ≤ E |X0 − Y0|
2 eαt, (1.7)

where α = 2µ + L.
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We observe that, when the diffusion g is identically zero, Theorem 1.1 allows the recovery of the classical
result on the contractive behaviour for the corresponding deterministic problem [18]. In this setting, the
corresponding discretization of (1.1) lead to the notion of G-stability, introduced by G. Dahlquist in [12].

With reference to (1.7), if α < 0, we have

E|X(t) − Y(t)|2 ≤ E|X(s) − Y(s)|2, (1.8)

if s ≤ t, that is, the mean-square deviation of any two exact solutions of (1.1) decays as time increases.
Therefore, the following definition is given.

Definition 1.1. If (1.8) holds for any two solutions of (1.1), problem (1.1) is said to generate mean-square
contractive solutions.

This issue would provide, for instance, classes of SRK methods (1.2) which may numerically inherit the
stability properties of nonlinear test problems, such as those in [2, 9, 13].

In our investigation, we are interested in preserving the mean-square contractivity along the dynamics
generated by SRK methods (1.2). Specifically, we propose to achieve this property from the stochastic
perturbation of a deterministic algebraically stable RK method (1.4), plus some additional conditions on the
coefficients of (1.2). It is worthwhile recalling that a RK method depending on the Butcher tableau (1.3) is
algebraically stable if the matrix M = BA + ATB − bbT is symmetric positive semi-definite and bi ≥ 0, for
any i = 1, ..., s, with B = diag(b).

The paper is organized as follows: Section 2 describes the main result of the paper, leading to the analog
of (1.8), when the exact solution is replaced by the numerical one computed by (1.2); the result also reveals
the presence of a spurious term, analyzed in Section 3. In Section 4, we discuss the generalization of our
results to the case of stochastic differential equations driven by a multi-dimensional Wiener process. Some
numerical experiments confirming the theoretical analysis are presented in Section 5 and concluding remarks
are given in Section 6.

2. Main result

In this section, we prove the main result of our investigation, i.e., we give conditions on the coefficients of
the SRK method (1.2) to obtain mean-square contractivity over the numerical solutions to (1.1). We observe
that the proof of the following result follows the philosophy of the proof of Theorem IV.12.4, in [18] and
provides, to some extent, its stochastic extension.

Theorem 2.1. Let us consider a stochastic differential system (1.1) satisfying the hypothesis (i)–(iii) of The-
orem 1.1. We consider the (c, A,Γ, b, q)-SRK method (1.2), arising from the stochastic perturbation of an
algebraically-stable deterministic Runge-Kutta method (1.4). Moreover, we denote by N the matrix

N = QΓ + ΓTQ − qqT, (2.1)

where Q = diag(q). If N is a symmetric positive semi-definite matrix and

BΓ + ATQ = bqT, (2.2)

with B = diag(b), then, any two numerical solutions Xn and Yn to (1.1) computed by (1.2) with initial values
X0 and Y0, respectively, with E|X0|

2 < ∞ and E|Y0|
2 < ∞, satisfy the following inequality

E|Xn − Yn|
2 ≤ E|Xn−1 − Yn−1|

2 + φn(h), (2.3)
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where

φn(h) = 2
s∑

i=1

qiE
(
∆Wn

〈
X̂[n]

i − Ŷ [n]
i , g

(
X̂[n]

i

)
− g

(
Ŷ [n]

i

)〉 )
, (2.4)

n = 1, 2, ...,N.

Proof: We define
Zn = Xn − Yn, ∆ f [n]

i = f
(
X̂[n]

i

)
− f

(
Ŷ [n]

i

)
,

Ẑ[n]
i = X̂[n]

i − Ŷ [n]
i , ∆g[n]

i = g
(
X̂[n]

i

)
− g

(
Ŷ [n]

i

)
,

for i = 1, ..., s. This notation yields
Zn = Zn−1 + h

s∑
i=1

bi∆ f [n]
i + ∆Wn

s∑
i=1

qi∆g[n]
i ,

Ẑ[n]
i = Zn−1 + h

s∑
j=1

ai j∆ f [n]
j + ∆Wn

s∑
j=1

γi j∆g[n]
j , i = 1, ..., s.

(2.5)

Squaring side by side the first relation in (2.5), applying the algebraic stability of (1.4) and hypothesis (ii) of
Theorem 1.1 lead to

|Zn|
2 ≤ |Zn−1|

2 + ∆W2
n

s∑
i, j=1

qiq j

〈
∆g[n]

i ,∆g[n]
j

〉
+ 2∆Wn

s∑
i=1

qi

〈
Zn−1,∆g[n]

i

〉
+ 2h∆Wn

s∑
i, j=1

(biq j − biγi j)
〈
∆ f [n]

i ,∆g[n]
j

〉
.

Applying the second relation in (2.5), we obtain

|Zn|
2 ≤ |Zn−1|

2 − ∆W2
n

s∑
i, j=1

(qiγi j + q jγ ji − qiq j)
〈
∆g[n]

i ,∆g[n]
j

〉
+ 2∆Wn

s∑
i=1

qi

〈
Ẑ[n]

i ,∆g[n]
i

〉
+ 2h∆Wn

s∑
i, j=1

(biq j − biγi j − qiai j)
〈
∆ f [n]

i ,∆g[n]
j

〉
.

Since N is a symmetric positive definite matrix, according to [18], the term

∆W2
n

s∑
i, j=1

(qiγi j + q jγ ji − qiq j)
〈
∆g[n]

i ,∆g[n]
j

〉
is positive. Then, also taking into account assumption (2.2), we obtain

|Zn|
2 ≤ |Zn−1|

2 + 2∆Wn

s∑
i=1

qi

〈
Ẑ[n]

i ,∆g[n]
i

〉
. (2.6)

The application, side-by-side, of the expectation operator gives the result.

�
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3. Analysis of the spurious term

According to Theorem 2.1, in the numerical solution of stochastic problems generating mean-square con-
tractive solutions via SRK methods (1.2), inequality (1.8) characterizing the continuous problem is translated
into (2.3) for the discretized one. Then, the spurious term φn(h) defined in (2.4) may eventually corrupt the
numerical preservation of the mean-square contractivity.

The first result of this section shows that the spurious term φn(h) is small for sufficiently small values of
the stepsize.

Theorem 3.1. Under condition (iii) of Theorem (1.1), we have

lim
h→0

max
n
φn(h) = 0. (3.7)

Proof: For any n = 1, 2, ...,N, applying the Hölder inequality yields

|φn(h)| ≤ 2E|∆Wn|

s∑
i=1

qi

∥∥∥∥〈Ẑ[n]
i ,∆g[n]

i

〉∥∥∥∥
∞

=

√
2h
π

s∑
i=1

qi inf
A∈F ,P(A)=1

max
ω∈Ω

∣∣∣∣〈Ẑ[n]
i (ω),∆g[n]

i (ω)
〉∣∣∣∣ ,

where P denote the probability measure and

∆g[n]
i (ω) = g

(
X̂[n]

i (ω)
)
− g

(
Ŷ [n]

i (ω)
)
.

The Lipschitz continuity of g and Cauchy-Schwarz inequality lead to

|φn(h)| ≤

√
2hL
π

s∑
i=1

qi inf
A∈F ,P(A)=1

max
ω∈Ω

∣∣∣∣X̂[n]
i (ω) − Ŷ [n]

i (ω)
∣∣∣∣2 .

According to [17] (see Equation (1.22), Chapter 7), SRK methods (1.2) are numerically-stable in the
quadratic mean-squared sense, i.e., there exists ε > 0 such that

E
∣∣∣∣X̂[n]

i − Ŷ [n]
i

∣∣∣∣2 ≤ ε,
for any i = 1, ..., s and for any n = 1, 2, ...,N. Since

E
∣∣∣∣X̂[n]

i − Ŷ [n]
i

∣∣∣∣2 =

∫
ω∈Ω

∣∣∣∣X̂[n]
i (ω) − Ŷ [n]

i (ω)
∣∣∣∣2 dP,

then for any n = 1, 2, ...,N,

P
(∣∣∣∣X̂[n]

i (ω) − Ŷ [n]
i (ω)

∣∣∣∣2 < ∞)
= 1, i = 1, .., s,

leading to the result.

�

The following theorem analyzes the long-term behavior of the function φn(h).
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Theorem 3.2. Under condition (iii) of Theorem (1.1), for any fixed h > 0, we have

lim
n→∞

φn(h) = 0. (3.8)

Proof: We denote

ξn = 2
s∑

i=1

qi

〈
X̂[n]

i − Ŷ [n]
i , g

(
X̂[n]

i

)
− g

(
Ŷ [n]

i

)〉
.

We consider an auxiliary random variable ξ̂n such that

ξ̂n = E
(
ξn|Ftn−1

)
and denote by ϕn and ϕ̂n the random variables

ϕn = ∆Wnξn, ϕ̂n = ∆Wnξ̂n.

Then,
E(∆Wnξ̂n) = E(∆Wn)E(̂ξn) = 0. (3.9)

Therefore, in agreement with (3.9), it is sufficient to show that

P
(

lim
n→∞

ϕn = ϕ̂n

)
= 1, (3.10)

where the limit in (3.10) is the pointwise limit. Indeed, if (3.10) holds, then ϕn and ϕ̂n, for n → ∞, must
have the same expectation and, because of (3.9), the result holds true.

Using the definition on conditional expectation, we have that∫
A
ξ̂n dP =

∫
A
ξn dP, (3.11)

for any A ∈ Ftn−1 . Then, (3.10) holds true; indeed, the sequence {Fti }i≥0 is a filtration and, as a consequence,
(3.11) holds true, for n→ ∞, for any A ⊂ Ω.

�

In summary, Theorem 3.2 shows us that the spurious term (2.4) vanishes on long time windows, so the
numerical method (1.2) reproduces the same long-time behavior as the exact solution.

4. Extension to multidimensional systems with multiple Wiener processes

In this section, we aim to generalize the aforementioned results to the case of SDEs driven by multi-
dimensional Wiener processes, according to the formulation of the methods given by [25]. Specifically, we
consider the problem

dX(t) = f (X(t))dt +

m∑
`=1

g`(X(t))dW`(t), (4.12)

where f , g` : Rd → Rd, ` = 1, ...,m. Let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ]
and W` : [0,T ] × Ω → R be a standard (Ft)t∈[0,T ]-Brownian motion with continuous sample paths on
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(Ω,F ,P), where ` = 1, ...,m. Theoretical results on the existence and uniqueness to solutions of (4.12)
are discussed, for instance, in the monograph [21]. A more compact notation for (4.12) is the following

dX(t) = f (X(t))dt + G(X(t))dW(t), (4.13)

where
G(X(t)) =

[
g1(X(t)), g2(X(t)), · · · , gm(X(t))

]
is a matrix of dimension d × m and W(t) is a m dimensional vector.

In correspondence to Bucher tableau (1.3), we consider the following s-stages SRK methods
Xn = Xn−1 + h

s∑
i=1

bi f (X̂[n]
i ) +

m∑
`=1

∆W`
n

s∑
i=1

qig`(X̂
[n]
i ), n = 1, ...,N,

X̂i
[n]

= Xn−1 + h
s∑

j=1

ai j f (X̂[n]
j ) +

m∑
`=1

∆W`
n

s∑
j=1

γi jg`(X̂
[n]
j ), i = 1, ..., s.

(4.14)

In the sequel, we state the theorems generalizing the results of Sections 2 and 3. Their proof straightfor-
wardly descend from the proofs given in the previous sections.

Theorem 4.1. Let us consider a stochastic differential system (4.12) satisfying the hypothesis (i)–(iii) of
Theorem 1.1. We consider the (c, A,Γ, b, q)-SRK method (4.14), arising from the stochastic perturbation of
an algebraically-stable deterministic Runge-Kutta method (1.4). If

QΓ + ΓTQ = qqT, (4.15)

where Q = diag(q) and
BΓ + ATQ = bqT, (4.16)

with B = diag(b), then, any two numerical solutions Xn and Yn to (4.12) computed by (4.14) with initial
values X0 and Y0, respectively, with E|X0|

2 < ∞ and E|Y0|
2 < ∞, satisfy the following inequality

E|Xn − Yn|
2 ≤ E|Xn−1 − Yn−1|

2 + ψn(h),

where

ψn(h) = 2
s∑

i=1

qi

m∑
j=1

E
[
∆W j

n

〈
X̂i

[n]
− Ŷi

[n]
, g j

(
X̂i

[n]
)
− g j

(
Ŷi

[n]
)〉]

, (4.17)

n = 1, 2, ...,N.

We note that condition (4.15) is more restrictive than (2.1), since it should imply the matrix N to be null.
Indeed, in case of multi-dimensional Wiener process, cross products between the m brownian increments
appear and a restriction (4.15) of (2.1) is needed to make them null. In addition, we can rewrite the term in
(4.17) as

ψn(h) =

m∑
j=1

φ
j
n(h), (4.18)

where for any j = 1, ..,m, the term φ
j
n(h) are defined as in (2.4). The expression (4.18) allows us to obtain

direct generalization to the results given in Section 3.
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Theorem 4.2. Under condition (iii) of Theorem 1.1, we have

lim
h→0

max
n
ψn(h) = 0.

Theorem 4.3. Under condition (iii) of Theorem 1.1, for any fixed h > 0, we have

lim
n→∞

ψn(h) = 0.

5. Numerical experiments

In this section, we confirm the given theoretical analysis through the numerical evidence arising from
the application of SRK methods (1.2) to nonlinear problems generating mean-square contractive solutions,
according to Definition 1.1 and we show a comparison with respect to some well-known methods, whose
nonlinear stability analysis has already been performed in [13]. The expected values computed in the re-
mainder rely on the numerical solutions over 1000 paths.

Problem 1. We consider the SDE (1.1) with

f (X(t)) = −4X(t) − X(t)3, g(X(t)) = X(t) (5.19)

for t ∈ [0, 100] and initial values X0 = 1 and Y0 = 0, used as test example in [19]. For this problem, the
constants appearing in conditions (ii) and (iii) of Theorem 1.1 are given by L = 1 and µ = −4, so α = −7.
So, according to Definition 1.1, the problem generates mean-square contractive solutions.

We consider the following numerical discretizations to (5.19).

• The stochastic perturbation of the deterministic implicit midpoint method, whose Butcher tableau
(1.3) is given by

1 1
2

1
2

1 1
. (5.20)

• The stochastic perturbation of the two-stage Gaussian Runge-Kutta method, whose Butcher tableau
(1.3) is given by

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
4

1
4 −

√
3

6

1
2 −

√
3

6
1
4 +

√
3

6
1
4

1
4 +

√
3

6
1
4

1
2

1
2

1
2

1
2

(5.21)

• The well-known Euler-Maruyama method, that is,

Xn+1 = Xn + h f (Xn) + g(Xn)∆Wn. (5.22)

• The stochastic trapezoidal method, that is,

Xn+1 = Xn +
1
2

h ( f (Xn) + f (Xn+1)) + g(Xn)∆Wn. (5.23)
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Figure 1: Numerical results arising applying the SRK methods (5.20)-(5.21) and methods (5.22)-(5.23) to Problem 1, with h = 100/26.
Blue line: mean-square deviation over 1000 paths for method (5.20); circles: pattern of φn(h) for method (5.20); Violet line: mean-
square deviation over 1000 paths for method (5.21); red line: mean-square deviation over 1000 paths for method (5.23); black line:
mean-square deviation over 1000 paths for method (5.22).

From [13], we know that the stability region of methods (5.22)-(5.23) is bounded. Therefore, it makes
sense to compare the behavior of these methods with the SRK methods (5.20)-(5.21) that satisfy the hypoth-
esis of Theorem 2.1. The patterns displayed in Figure 1 confirms the numerical preservation of mean-square
contractive character of Problem 1 for methods (5.20)-(5.21), the convergence to 0 of the function φn(h)
in (2.4), as n → ∞ for SRK method (5.20) and shows a comparison between SRK methods (5.20)-(5.21)
with methods (5.22)-(5.23). Moreover, Figure 2 shows that for smaller and smaller values of ∆t, the rate of
exponential decay visible in the experiments gets closer and closer to the exact one.

Problem 2. We consider the SDE (1.1) with

f (X(t)) = −5X(t), g(X(t)) = sin(X(t))

t ∈ [0, 100] and initial data X0 = 1 and Y0 = 0. The constants L and µ appearing in Theorem 1.1 are given
by L = 1 and µ = −5, so α = −9 and Problem 2 generates mean-square contractive solutions, according to
Definition (1.1).

We consider SRK method (5.21), methods (5.22)-(5.23) and an explicit SRK method arising from the
perturbation of explicit trapezoidal rule, whose Butcher tableau (1.3) is given by

0 0 0 0 0
1
2

1
2 0 1

2 0

0 1 0 1

(5.24)

Since method (5.24) is an explicit SRK method, it can not satisfy the hypothesis of Theorem 2.1. The
graph displayed in Figure 3 confirms the accurate numerical preservation of the mean-square contractive
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Figure 2: Numerical results arising applying the SRK method (5.20) to Problem 1, with h = 20/N, for several values of N. The figure
also reports the slope exp(−7t) associated to the mean-square contractive behaviour of the exact solution to Problem 1.

character of Problem 2 for method (5.21), the non-preservation of the mean-square contractive character
of Problem 2 for method (5.24) and shows a comparison with methods (5.22) and (5.23). In this case, for
method (5.21), the function φn(h) in (2.4) rapidly converges to 0 and, in the endpoint of the integration
interval, its value is −6.74 · 10−65.

Problem 3. We finally consider the nonlinear system of SDEs [13], with

f (X(t)) = −4

 sin(X1(t))

sin(X2(t))

 , G(X(t)) =
1
7


X1(t)

3
2

X2(t)

5
2

X1(t) −
1
2

X2(t)

 .
and initial data X0 = [1 1]T and Y0 = [0 0]T. For this problem the constants L and µ are estimated
as L = 0.148 and µ = −3.56, so α ≈ −7.5 and, as a consequence, the problem generates mean-square
contractive solutions according to Definition 1.1. The pattern in Figure 4 confirms the theoretical results
shown in Section 4.

6. Conclusions

In this paper, we have studied nonlinear stability properties of SRK methods (1.2) applied to nonlinear
problems (1.1) generating mean-square contractive solutions, according to Definition 1.1. In particular, the
methods under investigation are stochastic perturbations of algebraically stable deterministic RK methods,
according to Theorem 2.1. Our analysis has shown, both theoretically and experimentally, that it is possible
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Figure 3: Mean-square deviations over 1000 paths for the SRK methods (5.21)-(5.24) and methods (5.22)-(5.23) applied to Problem
2, with h = 100/26.Blue line: mean-square deviation over 1000 paths for method (5.21); black line: mean-square deviation over 1000
paths for method (5.23); violet line: mean-square deviation over 1000 paths for method (5.24); red line: mean-square deviation over
1000 paths for method (5.22)
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to inherit the contractive character of algebraically stable RK methods under suitable stochastic perturba-
tions, when applied to SDEs. A generalization to multi-dimensional Wiener process has been also discussed.

Further developments of this research will still be oriented in the direction of studying suitable stochas-
tic perturbations to numerical methods for deterministic ordinary differential equations, in order to directly
obtain corresponding stochastic methods with relevant accuracy, stability and, eventually, conservation prop-
erties [9, 13, 14, 15].
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