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1 Introduction

Collocation is a widely applied and powerful technique in the construction
of numerical methods for ODEs and VIEs. As it is well known, a collocation
method is based on the idea of approximating the exact solution of a given
functional equation with a suitable approximant belonging to a chosen
finite dimensional space, usually a piecewise algebraic polynomial, which
exactly satisfies the equation on a certain subset of the integration interval
(i.e. the set of the so-called collocation points).

This technique, when applied to problems based on functional equa-
tions, allows the derivation of methods having many desirable properties.
In fact, collocation methods provide an approximation over the entire inte-
gration interval to the solution of the equation. Moreover, the collocation
function can be expressed as a linear combination of functions ad hoc for
the problem we are integrating, in order to better reproduce the qualitative
behaviour of the solution.

The systematic study of collocation methods for initial value problems
in ODEs, VIEs, and Volterra integro-differential equations (VIDEs) has its
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origin, respectively, in the late ’60, the early ’70 and the early ’80s. The
idea of multistep collocation was first introduced by Lie and Norsett in [60],
and further extended and investigated by several authors [13,25,28–30,32–
35,37,43,59,63].

Multistep collocation methods depend on more parameters than clas-
sical ones, without any significant increase in the computational cost, by
regarding them as special case of multistep Runge-Kutta methods: there-
fore, there are much more degrees of freedom to be spent in order to obtain
strong stability properties and an higher order and stage order of conver-
gence. As a direct consequence the effective order of multistep collocation
methods is generally higher with respect to one stage collocation meth-
ods with the same number of stages. Moreover, as they generally have
high stage order, they do not suffer from the order reduction phenomenon
(see [12,46]), which occurs in the integration of stiff systems.

The purpose of this paper is to present a review of recently introduced
families of collocation and modified collocation methods for ODEs and
VIEs. In particular we aim to present the main results obtained in the con-
text of multistep collocation and almost collocation methods, i.e. methods
obtained by relaxing some collocation and/or interpolation conditions in
order to obtain desirable stability properties.

The paper is organized as follows: Section 2 reviews the main results
concerning classical one-step and multistep collocation methods for ODEs
and their recent extensions and modifications; Section 3 is dedicated to
collocation methods for second order initial value problems and also collo-
cation methods based on functional basis other than polynomials; in Sec-
tion 4 we consider the evolution of the collocation technique for Volterra
integral equations.

2 Collocation based methods for first order

ODEs

In this section we focus our attention on the hystorical background and
more recent results concerning the collocation technique, its modifications
and extensions for the derivation of highly stable continuous methods for
the numerical solution of initial value problems based on ordinary differen-
tial equations {

y′(x) = f(x, y(x)), x ∈ [x0, X],
y(x0) = y0 ∈ Rd,

(2.1)

with f : [x0, X]×Rd → Rd. It is assumed that the function f is sufficiently
smooth, in such a way that the problem (2.1) is well-posed.
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2.1 Classical one-step collocation methods

Let us suppose that the integration interval [x0, X] is discretized in an
uniform grid {xh : x0 < x1 < ... < xN = X}. Classical collocation meth-
ods (see [7, 11, 12, 44, 45, 57, 80]) are determined by means of a continuous
approximant, generally an algebraic polynomial P (x), satisfying some op-
portune conditions: in order to advance from xn to xn+1, the polynomial
P (x) interpolates the numerical solution in xn, and exactly satisfies the
ODE (2.1) - i.e. co-locates - in the set of points {xn + cih, i = 1, 2, . . .m},
where c1, c2, . . . , cm are m real numbers (named collocation nodes), that is

{
P (xn) = yn,

P ′(xn + cih) = f(xn + cih, P (xn + cih)), i = 1, 2, ...,m.
(2.2)

The solution in xn+1 can then be computed from the function evaluation

yn+1 = P (xn+1). (2.3)

The classical framework in which collocation methods must be placed
is certainly constituted by implicit Runge-Kutta methods (IRK). In fact,
Guillou and Soule in [43] and Wright in [80] independently proved that one
step collocation methods form a subset of implicit Runge-Kutta methods

yn+1 = yn + h

m∑

i=1

bif(xn + cih, Yi) (2.4)

Yi = yn + h

m∑

j=1

aijf(xn + cjh, Yj), i = 1, 2, ...,m, (2.5)

where

aij =
∫ ci

0

Lj(s)ds, bj =
∫ 1

0

Lj(s)ds, i, j = 1, 2, ...,m (2.6)

and Lj(s), j = 1, ...,m, are fundamental Lagrange polynomials. The maxi-
mum attainable order of such methods is at most 2m, and it is obtained by
using Gaussian collocation points [45, 57]. Anyway, unfortunately, the or-
der 2m is gained only at the mesh points: the uniform order of convergence
over the entire integration interval is only m. As a consequence, they suffer
from order reduction showing effective order equal to m (see [11,12,45,46]).

Butcher (see [11] and references therein) gave an interesting character-
ization of collocation methods in terms of easy algebraic conditions, and
analogous results are also reported in [45, 57]. This characterization , to-
gether with many other several results regarding the main properties of
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collocation methods, comes out as natural consequence of an interesting
interpretation of collocation methods in terms of quadrature formulae. In
fact, if f(x, y(x)) = f(x), equations (2.4)-(2.5) can be respectively inter-
preted as quadrature formulae for

∫ xn+h

xn
f(x)dx and

∫ xn+cih

xn
f(x)dx, for

i=1,2,...,m. We next consider the following linear systems

A(q) :
m∑

j=1

aijc
k−1
j =

cki
k
, k = 1, 2, ..., q, i = 1, 2, ...,m, (2.7)

B(p) :
m∑

i=1

bic
k−1
i =

1
k
, k = 1, 2, ..., p. (2.8)

Next, the following result holds (see [44,57]):

Theorem 2.1 If the condition B(p) holds for some p ≥ m, then the col-
location method (2.2) has order p.

As a consequence, a collocation method has the same order of the under-
lying quadrature formula (see [44], p. 28). Finally, the following result
characterizing classical collocation methods arises (see [11,44,45,57]).

Theorem 2.2 An implicit m-stage Runge-Kutta method, satisfying B(m)
and having distinct collocation abscissae, is a collocation method if and only
if conditions A(m) holds.

The most used collocation methods are those based on the zeros of some
orthogonal polynomials, that is Gauss, Radau, Lobatto [11, 12, 45, 46, 57],
having respectively order of convergence 2m, 2m − 1, 2m − 2, where m is
the number of collocation points (or the number of stages, regarding the
collocation method as an implicit Runge-Kutta). Concerning their sta-
bility properties, it is known that Runge-Kutta methods based on Gaus-
sian collocation points are A-stable, while the ones based on Radau IIA
points are L-stable and, moreover, they are also both algebraically stable
(see [12, 46, 51] and references therein contained); Runge-Kutta methods
based on Lobatto IIIA collocation points, instead, are A-stable but they
are not algebraically stable (see [11,44,45,57]).

2.2 Perturbed collocation

As remarked by Hairer and Wanner in [46], only some IRK methods are
of collocation type, i.e. Gauss, Radau IIA, and Lobatto IIIA methods. An
extension of the collocation idea, the so-called perturbed collocation is due
to Norsett and Wanner (see [65,66]), which applies to all IRK methods.
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We denote by Πm the linear space of polynomials of degree at most m
and consider the polynomial Nj ∈ Πm defined by

Nj(x) =
1
j!

m∑

i=0

(pij − δij)xi, j = 1, 2, ...,m,

where dij is the usual Kronecker delta. We next define the perturbation
operator Px0,h : Πm → Πm by

(Px0,hu)(x) = u(x) +
n∑

j=1

Nj

(
x− x0

h

)
u(j)(x0)hj .

Next, the following definition is given (see [65,66]).

Definition 2.1 Let c1, . . . , cm be given distinct collocation points. Then
the corresponding perturbed collocation method is defined by

u(x0) = y0, u ∈ Πm,

u′(x0 + cih) = f(x0 + cih, (Pu)(x0 + cih)), i = 1, 2, ...,m,
y1 = u(x0 + h).

As the authors remark in [66], if all Nj ’s are identically zero, then P is the
identical map and the definition coincides with classical collocation. In the
same paper the authors provide the equivalence result between the family of
perturbed collocation methods and Runge-Kutta methods (see [66]). The
interest of this results, as again is stated in [66], is that the properties
of collocation methods, especially in terms of order, linear and nonlinear
stability, can be derived in a reasonable short, natural and very elegant
way, while it is known that, in general, these properties are very difficult
to handle and investigate outside collocation.

2.3 Discontinuous collocation

In the literature, perturbed collocation has been considered as a modi-
fication of the classical collocation technique, in such a way that much
more Runge-Kutta methods could be regarded as perturbed collocation
based methods, rather than classically collocation based. There are other
possible extensions of the collocation idea, which apply to wider classes
of Runge-Kutta methods, such as the so-called discontinuous collocation
(see [44]).

Definition 2.2 Let c2, . . . , cm−1 be distinct real numbers (usually between
0 and 1), and let b1, bm be two arbitrary real numbers. The corresponding
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discontinuous method is then defined via a polynomial of degree m − 2
satisfying

u(x0) = y0 − hb1(u̇(x0) − f(x0, u(x0)),
u̇(x0 + cih) = f(x0 + cih, u(x0 + cih)), i = 2, . . . ,m− 1,

y1 = u(x1) − hbs(u̇(x1) − f(x1, u(x1)).

Discontinuous collocation methods fall inside a large class of implicit Runge-
Kutta methods, as stated by the following result (see [44]).

Theorem 2.3 The discontinuous collocation method given in Definition
2.2 is equivalent to an m-stage Runge-Kutta method with coefficients de-
termined by c1 = 0, cm = 1 and

ai1 = b1, aim = 0, i = 1, . . . ,m,

while the other coefficients result as solutions of the linear systems A(m−2)
and B(m − 2) defined in (2.7) and (2.8).

As a consequence of this result, if b1 = 0 and bm = 0, then the discontinuous
collocation method in Definition 2.2 is equivalent to the (m−2)-collocation
method based on c2, . . . , cm−1. An interesting example of implicit Runge-
Kutta method which is not collocation based but is of discontinuous collo-
cation type is the Lobatto IIIB method (see [11,44,45,57]), which plays an
important rule in the context of geometric numerical integration, together
with Lobatto IIIA method (see [44], p. 33). They are both nonsymplectic
methods (see Theorem 4.3 in [44]) but, considered as a pair, the resulting
method is symplectic. This is a nice example of methods which possess
very strong properties, but are difficult to investigate as discrete scheme
(they cannot be studied as collocation methods, because they are not both
collocation based); however, re-casted as discontinuous collocation based
methods, their analysis is reasonably simplified and very elegant [44].

2.4 Multistep collocation

The successive results which appeared in literature (see [23, 43, 46,59,60])
have been devoted to the construction of multistep collocation methods.
Guillou and Soulé introduced multistep collocation methods [43], by adding
interpolation conditions in the previous k step points, so that the colloca-
tion polynomial is defined by

{
P (xn−i) = yn−i i = 0, 1, ..., k− 1,
P ′(xn + cjh) = f(xn + cjh, P (xn + cjh)) j = 1, ...,m.

(2.9)
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The numerical solution is given, as usual,

yn+1 = P (xn+1). (2.10)

Hairer-Wanner [46] and Lie-Norsett [60] derived different strategies to
obtain multistep collocation methods. In [46] the Hermite problem with
incomplete data (2.9) is solved by means of the introduction of a generalized
Lagrange basis

{ϕi(s), ψj(s), i = 1, 2, . . . , k, j = 1, 2, . . . ,m}

and, correspondingly, the collocation polynomial is expressed as linear com-
bination of this set of functions, i.e.

P (xn + sh) =
k∑

i=1

ϕi(s)yn−k+i + h

s∑

i=1

ψi(s)P ′(xn + cih),

where s = x−xn

h
. Therefore, the problem (2.9) is transformed in the prob-

lem of deriving {ϕi, ψj, i = 1, 2, . . . , k, j = 1, 2, . . . ,m} in such a way that
the corresponding polynomial P (s) satisfies the conditions (2.9).

Lie-Norsett in [60] completely characterized multistep collocation meth-
ods, giving the expressions of the coefficients of collocation based multistep
Runge-Kutta methods in closed form, as stated by the following

Theorem 2.4 The multistep collocation method (2.9)-(2.10) is equivalent
to a multistep Runge-Kutta method

Yj =
k−1∑

i=0

ϕi(cj)yn+k−1−i

+ h

m∑

i=1

ψi(cj)f(xn+k−1 + cih, Yi), j = 1, ...,m,

yn+k =
k−1∑

i=0

ϕi(1)yn+k−1−i + h
m∑

i=1

ψi(1)f(xn+k−1 + cih, Yi),

where the expression of the polynomials ϕi(s), ψi(s) are provided in Lemma
1 of [60]. 2

Lie and Norsett in [60] also provided a complete study of the order
of the resulting methods, stating order conditions by means of the study
of variational matrices, and showing that the maximum attainable order
of a k-step m-stage collocation method is 2m + k − 1. They also proved

7



that there exist
(
m+k−1

k−1

)
nodes that allow superconvergence and, in analogy

with Runge-Kutta methods, they are named multistep Gaussian collocation
points. As Hairer-Wanner stated in [46], these methods are not stiffly
stable and, therefore, they are not suited for stiff problems: in order to
obtain better stability properties, they derived methods of highest order
2m + k − 2, imposing cm = 1 and deriving the other collocation abscissa
in a suited way to achieve this highest order and named the corresponding
methods of “Radau”-type, studied their stability properties, deriving also
many A-stable methods.

2.5 Two-step collocation and almost collocation meth-
ods

In more recent times, our strenghts have been devoted to extend the mul-
tistep collocation technique to the class of two-step Runge-Kutta methods
(TSRK)




yn+1 = θyn−1 + θ̃yn + h

m∑

j=1

(
vjf(Y

[n−1]
j ) + wjf(Y

[n]
j )

)
,

Y
[n]

i = uiyn−1 + ũiyn + h

m∑

j=1

(
aijf(Y

[n−1]
j ) + bijf(Y

[n]
j )

)
,

(2.11)

introduced by Jackiewicz and Tracogna [53] and further investigated by sev-
eral authors (see [51] and references therein contained). Two-step Runge-
Kutta methods (2.11) differ from the multistep Runge-Kutta methods
above described, because they also depend on the stage derivatives at two
consecutive step points: as a consequence, “we gain extra degrees of free-
dom associated with a two-step scheme without the need for extra function
evaluations” (see [53]), because the function evaluations f(Y [n−1]

j ) are com-
pletely inherited from the previous step. Therefore, the computational cost
of these formulae only depends on the structure of the matrix B. Differ-
ent approaches to the construction of continuous TSRK methods outside
collocation are presented in [1], [3] and [54].

The continuous approximant




P (xn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn

+ h

m∑

j=1

(
χj(s)f(P (xn−1 + cjh)) + ψj(s)f(P (xn + cjh))

)
,

yn+1 = P (xn+1),

(2.12)

expressed as linear combination of the basis functions

{ϕ0(s), ϕ1(s), χj(s), ψj(s), j = 1, 2, . . . ,m},
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is an algebraic polynomial which is derived in order to satisfy some inter-
polation and collocation conditions, i.e.

P (xn−1) = yn−1, P (xn) = yn,
P ′(xn−1 + cih) = f(xn−1 + cih, P (xn−1 + cih)), i = 1, 2, ...,m,
P ′(xn + cih) = f(xn + cih, P (xn + cih)), i = 1, 2, ...,m.

(2.13)

As a first attempt, we have generalized in [33], [34] the techniques in-
troduced by Guillou-Soulé [43], Hairer–Wanner [46] and Lie–Norsett [60],
adapting and extending this technique to TSRK methods. Using the tech-
niques introduced in [60], we have derived in [34] the coefficients of (2.12)
in closed form: the corresponding results are reported in the following the-
orem (see [34]).

Theorem 2.5 The method (2.12) is equivalent to a TSRK method in the
form

Y
[n]
j = φ0(cj)yn−1 + φ1(cj)yn + h

m∑

i=1

[χj(ci)f(xn−1 + cih, Y
[n−1]
i )

+ ψj(ci)f(xn + cih, Y
[n]
i )], j = 1, . . . ,m,

yn+1 = φ0(1)yn−1 + φ1(1)yn + h

m∑

j=1

[χj(1)f(xn−1 + cjh, Y
[n−1]
j )

+ ψj(1)f(xn + cjh, Y
[n]
j )],

where

ψj(s) =
∫ s

0

lj(τ )dτ −
∫ 0

−1
lj(τ )dτ∫ 0

−1M (τ )dτ

∫ s

0

M (τ )dτ, j = 1, . . . ,m,

χj(s) =
∫ s

0

l̃j(τ )dτ −
∫ 0

−1
l̃j(τ )dτ

∫ 0

−1
M (τ )dτ

∫ s

0

M (τ )dτ, j = 1, . . . ,m,

φ0(s) = −
∫ s

0
M (τ )dτ

∫ 0

−1
M (τ )dτ

,

φ1(s) = 1 +

∫ s

0
M (τ )dτ

∫ 0

−1M (τ )dτ
.
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with

li(s) =
2m∏

j=1,j 6=i

s − dj

di − dj
, M (s) =

2m∏

j=1

(s − dj),
{
di = ci
dm+i = ci − 1,

i = 1, 2, ...,m,

l̃j(s) =
2m∏

i=1,i 6=j

s − ei

ej − ei
,

{
ei = ci − 1
em+i = ci, i = 1, 2, ...,m. 2

We proved in [34] that the resulting methods have uniform order 2m+1
but such an high order enforces these methods to have bounded stability
regions only. For this reason, in order to derive highly stable methods (i.e.
A-stable and L-stable), we have introduced in [24,25,37] the class of almost
collocation methods, which are obtained in such a way that only some of
the above interpolation and collocation conditions are satisfied. Relaxing
the above conditions, we obtain more degrees of freedom, which have been
used in order to derive many A-stable and L-stable methods of order m+r,
r = 0, 1, ..., m. Therefore the highest attainable order is 2m which, in prin-
ciple, can seem a loss in comparison with standard Runge-Kutta methods.
As a matter of fact, this is not true: in fact, Runge-Kutta-Gauss methods
have order 2m in the grid points, while the stage order is equal to m, there-
fore they suffer from order reduction in the integration of stiff problems
(see [11, 12, 46]), i.e. the effective order of convergence in presence of stiff-
ness is only m. Our methods, instead, do not suffer from order reduction,
i.e. the effective order of convergence in the integration of stiff problems
is 2m, because they have high stage order. In [37] we have studied the
existence of such methods, derived continuous order conditions, provided
characterization results and studied their stability properties. A complete
analysis of m-stage two-step continuous methods, with m = 1, 2, 3, 4, has
been provided in [38], while the analysis of the implementation issues for
two-step collocation methods has been provided in [39]. The construction
of algebraically stable two-step collocation methods is object of a current
research project.

3 Collocation methods for second order ODEs

of special type

We now concentrate our attention on the hystorical evolution of the
collocation technique for the numerical solution of initial value problems
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based on second order ordinary differential equations with periodic and
oscillating solution





y′(x) = f(x, y(x)), x ∈ [x0, X],
y′(x0) = y′0 ∈ Rd,
y(x0) = y0,

(3.1)

where f : [x0, X] × Rd → Rd is assumed to be a is sufficiently smooth
function, in order to ensure the existence and the uniqueness of the solution.

3.1 Direct and indirect collocation methods

In the context of collocation methods for second order equations, two pos-
sibilities have been taken into account in the literature, i.e. methods based
on indirect or direct collocation [77]. Indirect collocation methods are gen-
erated by applying a collocation based Runge-Kutta method to the first
order representation of (3.1), which has doubled dimension. If

c A

bT

is the Butcher array of a collocation Runge-Kutta method, the tableau of
the corresponding indirect collocation method is

c A2

AT b
bT

which results in a Runge-Kutta-Nyström method [45]. The theory of in-
direct collocation methods completely parallels the well–known theory of
collocation methods for first order equations (see [77]) and, therefore, the
properties of a collocation method are totally inherited by the correspond-
ing indirect collocation method. Thus, the maximum attainable order is
2m, where m is the number of stages, and it is achieved by Gauss-type
methods, which are also A-stable, while L-stability is achieved by Radau
IIA-type methods, of order 2m− 1.

In the case of direct collocation methods, the collocation polynomial
is derived directly for the second order problem. Van der Houwen et al.
in [77] studied the order, stage order of direct collocation methods and also
provided their stability analysis, extending the results of Kramarz [56].
Concerning order and stage order, the following result holds (see [77]):

Theorem 3.1 Direct and indirect collocation methods with the same col-
location nodes have the same order. The stage order of direct collocation
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methods is one higher whenever

∫ 1

0

m∏

i=1

(s − ci)ds = 0. 2

Therefore, while indirect and direct collocation methods have the same
order, their stage order is different and, in particular, direct methods have
higher stage order. However, they are not competitive in terms of stability.
Van der Houwen et al. in [77] clearly state that “From a practical point
of view, direct collocation methods based on Gauss, Radau and Lobatto
collocation points are of limited value, because the rather small stability
or periodicity boundaries make them unsuitable for stiff problems. The
A-stable indirect analogues are clearly more suitable for integrating stiff
problems”.

Moreover, Coleman [18] proved that no P -stable one step symmetric
collocation methods exist. P -stability (see Lambert-Watson paper [58])
is a very relevant property for the numerical treatment of a second order
system whose theoretical solution is periodic with a moderate frequency
and a high frequency oscillation of small amplitude superimposed. This
phenomenon is known in literature as periodic stiffness [75], which can be
reasonably faced using P -stable methods, exactly as A-stable methods are
suitable for stiff problems. In other terms, P -stability ensures that the
choice of the stepsize is independent from the values of the frequencies, but
it only depends on the desired accuracy [22,70].

In [58], the authors proved that P -stable linear multistep methods

p∑

j=0

αjyn+j = h2
p∑

j=0

βjfn+j .

can achieve maximum order 2. In the context of Runge–Kutta–Nyström
methods

yn+1 = yn + hy′n + h2
m∑

i=1

b̄if(xn + cih, Yi),

y′n+1 = y′n + h

m∑

i=1

bif(xn + cih, Yi),

Yi = yn + cihy
′
n + h2

m∑

j=1

aijf(xn + cjh, Yj), i = 1, 2, ...,m,

many A-stable and P -stable methods exist, but the ones falling in the
subclass of collocation methods, whose coefficients (see [45]) are of the
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form

aij =
∫ ci

0

Lj(s)ds,

bi =
∫ 1

0

Li(s)ds,

b̄i =
∫ 1

0

(1 − s)Li(s)ds,

have only bounded stability intervals and are not P -stable [70].

3.2 Two-step Runge-Kutta-Nyström methods

We have observed in the previous paragraph that P -stability is a desirable
property that only few methods in the context of linear multistep methods
and Runge-Kutta-Nyström methods possess. In order to create a good
balance between high order and strong stability properties, further steps in
the literature have been devoted to the development of multistep Runge-
Kutta-Nystrom methods for second order problems. Much of this work
has been done by Paternoster (see [64, 70–74]). In particular, the author
proved that no P -stable methods can be found in the class of indirect
collocation TSRK methods, while it was possible to find P -stable methods
in the context of two-step Runge-Kutta-Nyström methods

Y
[n−1]

j = yn−1 + cjhy
′
n−1 + h2

m∑

k=1

ajkf(xn−1 + ckh, Y
[n−1]
k ), j = 1, 2, ...,m,

Y
[n]
j = yn + cjhy

′
n + h2

m∑

k=1

ajkf(xn + ckh, Y
[n]
k ), j = 1, 2, ...,m,

yn+1 = (1 − θ)yn + θyn−1 + h

m∑

j=1

(vjy
′
n−1 + wjy

′
n)

+ h2
m∑

j=1

v̄jf(xn−1 + cjh, Y
[n−1]
j ) + w̄jf(xn + cjh, Y

[n]
j ),

y′n+1 = (1 − θ)y′n + θy′n−1 + h

m∑

j=1

(vjf(xn−1 + cjh, Y
[n−1]
j )

+ wjf(xn + cjh, Y
[n]
j )),

which represent the extension to second order problems of the two-step
Runge-Kutta methods introduced in [52] for first order problems.
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3.3 Collocation based two-step hybrid methods

In the numerical integration of Second Order Inital Value Problems through
collocation, many possibilities can be taken into account: for example,
Runge–Kutta–Nyström methods provide an approximation to the solution
and its first derivative at each step point. However, as Henrici observed
in [47], “If one is not particularly interested in the values of the first deriva-
tives, it seems unnatural to introduce them artificially”. For this reason,
other types of methods have been taken into account in the literature, i.e.
methods which provide an approximation to the solution without comput-
ing any approximation to the first derivative: these formulae are denoted
in literature as hybrid methods. Coleman introduced in [20] the following
class of two-step hybrid methods for second order equations:

Y
[n]

i = uiyn−1 + (1 − ui)yn + h2
m∑

j=1

aijf(xn + cjh, Y
[n]
j ), (3.2)

i = 1, . . . ,m,

yn+1 = θyn−1 + (1 − θ)yn + h2
m∑

j=1

wjf(xn + cjh, Y
[n]
j ). (3.3)

This class of methods has been further investigated in [17, 36, 41, 78,
79]. In more recent times, we derived in [35] collocation based methods
belonging to the class of Coleman hybrid methods (3.2)-(3.3), extending the
technique introduced by Hairer and Wanner in [46] for first order problems.
The collocation polynomial takes the form

P (xn + sh) = ϕ1(s)yn−1 + ϕ2(s)yn + h2
m∑

j=1

χj(s)P ′′(xn + cjh), (3.4)

where s = x−xn

h
∈ [0, 1], and unknown basis functions

{ϕ1(s), ϕ2(s), χj(s), j = 1, 2, ..., m},

are derived imposing the following m + 2 conditions

P (xn−1) = yn−1, P (xn) = yn,

P ′′(xn + cjh) = f(xn + cjh, P (xn + cjh)), j = 1, . . . ,m.

After computing the basis functions as solutions of m+2 linear systems
(see [63]), the resulting class of methods takes the following form
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Y
[n]
i = ϕ1(ci)yn−1 + ϕ2(ci)yn + h2

m∑

j=1

χj(ci)P ′′(xn + cjh), (3.5)

yn+1 = ϕ1(1)yn−1 + ϕ2(1)yn + h2
m∑

j=1

χj(1)P ′′(xn + cjh). (3.6)

In [35] we have provided the study of stability and periodicity properties
and derived continuous order conditions for (3.6)-(3.5), which are object of
the following result.

Theorem 3.2
Assume that the function f is sufficiently smooth. The collocation method
associated to (3.4) has uniform order p if the following conditions are sat-
isfied:

1 − ϕ1(s) − ϕ2(s) = 0, s + ϕ1(s) = 0,

sk + (−1)k+1ϕ1(s) − k(k − 1)
m∑

j=1

χj(s)ck−2
j = 0.

k = 2, . . . , p, s ∈ [0, 1].

Theorem 3.2 allows us to prove that every two–step collocation method
associated to (3.4), has order p = m on the whole integration interval, and
this is result is in keeping with [20].

3.4 Mixed collocation methods

The development of classical collocation methods (i.e. methods based on
algebraic polynomials), even if it is not the most suitable choice for second
order problems that do not possess solutions with polynomial behaviour,
is the first necessary step in order to construct collocation methods whose
collocation function is expressed as linear combination of different func-
tions, e.g. trigonometric polynomials, mixed or exponential basis (see, for
instance, [21,50]), which can better follow the qualitative behaviour of the
solution. It is indeed more realistic to choose basis functions which are not
polynomials.

Many authors have considered in literature different functional basis,
instead of the polynomial one, e.g. [8,19,22,36,40,42,50,55,67,69,71,73,76].
In particular we mention here the work by Coleman and Duxbury [21],
where the authors introduced mixed collocation methods applied to the
Runge-Kutta-Nyström scheme, where the collocation function is expressed
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as linear combination of trigonometric functions and powers, in order to
provide better approximations for oscillatory solutions. The methods are
derived in order to exactly integrate the armonic oscillator

y′′ = −k2y,

where k is a constant, a feature which is not achievable by algebraic poly-
nomial collocation. The term mixed interpolation appeared for the first
time in [40] to describe interpolation by a linear combination of a sine and
cosine of a given frequency, and powers of the relevant variable, and later
used by Brunner et al. in [8] in the context of Volterra integral equations.
The solution on the generic integration interval [xn, xn+1] is approximated
by the collocating function

u(xn + sh) = a cos θs + b sin θs +
m−1∑

i=0

Γis
i, (3.7)

which satisfies the following collocation and interpolation conditions

u(xn) = yn, u′(xn) = y′n,

u′′(xn + cjh) = f(xn + cjh, u(xn + cjh)), j = 1, . . . ,m.

Integrating (3.7) twice, we obtain the Runge-Kutta-Nystrom formulation
of the methods, i.e.

u′(xn + sh) = y′n + h

m∑

i=1

αi(s)fn+ci ,

u(xn + sh) = yn + shy′n + h2
m∑

i=1

βi(s)fn+ci ,

where
αi(s) =

∫ s

0

Li(τ )dτ, βi(s) =
∫ s

0

(s − τ )Li(τ )dτ.

Outside collocation, many authors derived methods having frequency de-
pendent parameters (see, for instance, [50,55,68,76] and references therein
contained). The linear stability analysis of these methods is carried out
in [22]. In [36] also a method with parameters depending on two frequency
is presented, and the modification in the stability analysis is performed,
leading to a three dimensional region.

4 Collocation methods for VIEs

Piecewise polynomial collocation methods for VIEs introduce a number of
aspects not present when solving ODEs. In this section we will present the
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main results in the context of collocation and almost collocation methods
for VIEs of the form

y(x) = g(x) +
∫ x

0

k(x, τ, y(τ ))dτ x ∈ I := [0, X], (4.1)

where k ∈ C(D × R), with D := {(x, τ ) : 0 ≤ τ ≤ x ≤ X}, and g ∈ C(I),
also underlying connections and differences with the case of ODEs.

4.1 Classical one–step collocation methods

Let us discretize the interval I by introducing a uniform mesh

Ih = {xn := nh, n = 0, ..., N, h ≥ 0, Nh = X} .

The equation (4.1) can be rewritten, by relating it to this mesh, as

y(x) = Fn(x) + Φn(x) x ∈ [xn, xn+1],

where Fn(x) := g(x) +
∫ xn

0

k(x, τ, y(τ ))dτ and Φn(x) :=
∫ x

xn

k(x, τ, y(τ ))dτ

represent respectively the lag term and the increment function. Let us fix
m collocation parameters 0 ≤ c1 < ... < cm ≤ 1 and denote by xnj =
xn + cjh the collocation points. The collocation polynomial, restricted to
the interval [xn, xn+1], is of the form:

un(xn + sh) =
m∑

j=1

Lj(s)Unj s ∈ [0, 1] n = 0, ..., N − 1 (4.2)

where Lj(s) is the j− th Lagrange fundamental polynomial with respect to
the collocation parameters and Unj := un(xnj). Exact collocation meth-
ods are obtained by imposing that the collocation polynomial (4.2) ex-
actly satisfies the VIE (4.1) in the collocation points xni and by computing
yn+1 = un(xn+1): 




Uni = Fni + Φni

yn+1 =
m∑

j=1
Lj(1)Unj

, (4.3)

where

Fni = g(xni) + h

n−1∑

ν=0

∫ 1

0

k(xni, xν + sh, uν(xν + sh))ds i = 1, ...,m (4.4)

Φni = h

∫ ci

0

k(xni, xn + sh, un(xn + sh))ds i = 1, ...,m. (4.5)
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Note that the first equation in (4.3) represents a system of m nonlinear
equations in the m unknowns Uni. We obtain an approximation u(x) of
the solution y(x) of the integral equation (4.1) in [0, X], by considering

u(x)|(xn,xn+1 ] = un(x) (4.6)

where un(x) given by (4.2).
We recall that, in contrast with what happens in the case of ODEs,

generally u(x) is not continuous in the mesh points, as

u(x) ∈ S
(−1)
m−1(Ih), (4.7)

where

S(d)
µ (Ih) =

{
v ∈ Cd(I) : v|(xn,xn+1 ] ∈ Πµ (0 ≤ n ≤ N − 1)

}
.

Here, Πµ denotes the space of (real) polynomials of degree not exceeding µ.
A complete analysis of collocation methods for linear and nonlinear Volterra
integral and integro–differential equations, with smooth and weakly singu-
lar kernels is given in [7]. In particular, as shown in [7, 10], the classical
one–step collocation methods for a second-kind VIE do no longer exhibit
O(h2m) superconvergence at the mesh points if collocation is at the Gauss
points, in fact they have uniform order m for any choice of the collocation
parameters and local superconvergence order in the mesh points of 2m− 2
(m Lobatto points or m−1 Gauss points with cm = 1) or 2m−1 (m Radau
II points). The optimal order is recovered only in the iterated collocation
solution.

We observe that, differently from the case of ODEs, the collocation
equations are in general not yet in a form amenable to numerical com-
putation, due to the presence of the memory term given by the Volterra
integral operator. Thus, another discretisation step, based on quadrature
formulas F̄ni ' Fni and Φ̄ni ' Φni for approximating the lag term (4.4)
and the increment function (4.5), is necessary to obtain the fully discretised
collocation scheme, thus leading to Discretized collocation methods. Such
methods preserve, under suitable hypothesis on the quadrature formulas,
the same order of the exact collocation methods [10].

The connection between collocation and implicit Runge–Kutta methods
for VIEs (the so called VRK methods) is not immediate: a collocation
method for VIEs is equivalent to a VRK method if and only if cm = 1 (see
Theorem 5.2.2 in [10]). Some other continuous extensions of Runge–Kutta
methods for VIEs, which do not necessarily lead to collocation methods,
have been introduced in [5].

Many efforts have been made in the literature with the aim of obtaining
fast collocation and more general Runge–Kutta methods for the numerical
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solution of VIEs. It is known that the numerical treatment of VIEs is
very expensive from computational point of view because of presence of
the “lag-term”, which contains the entire history of the phenomenon. To
this cost, it has also to be added the one due to the “increment term”
which leads, for implicit methods (generally possessing the best stability
properties), to the resolution of a system of nonlinear equations at each
step of integration. In order to reduce the computational effort in the lag–
term computation, fast collocation and Runge–Kutta methods have been
constructed for convolution VIEs of Hammerstein type, see [14,27,61,62].

The stability analysis of collocation and Runge–Kutta methods for VIEs
can be found in [4, 10, 15, 31] and the related bibliography. In particular a
collocation method for VIEs is A–stable if the corresponding method for
ODEs is A–stable.

4.2 Multistep collocation

Multistep collocation and Runge–Kutta methods for VIEs, have been in-
troduced in order to bring down the computational cost related to the res-
olution of non-linear systems for the computation of the increment term.
As a matter of fact such methods, showing a dependence on stages and
steps in more consecutive grid points, permit to raise the order of conver-
gence of the classical methods, without inflating the computational cost or,
equivalently, having the same order at a lower computational cost.

A first analysis of multistep collocation methods for VIEs appeared
in [29,30], where the methods are obtained by introducing in the collocation
polynomial the dependence from r previous time steps; namely we seek for
a collocation polynomial, whose restriction to the interval [xn, xn+1] takes
the form

Pn(xn +sh) =
r−1∑

k=0

ϕk(s)yn−k +
m∑

j=1

ψj(s)Ynj, s ∈ [0, 1], n = 0, ..., N−1,

(4.8)
where

Ynj := Pn(xnj) (4.9)

and ϕk(s), ψj(s) are polynomials of degree m+r−1 to be determined by im-
posing the interpolation conditions at the points xn−k, that is un(xn−k) =
yn−k, and by satisfying (4.9). It is proved in [26,28] that, assuming ci 6= cj
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and c1 6= 0, the polynomials ϕk(s), ψj(s) have the form:

ϕk(s) =
m∏

i=1

s−ci

−k−ci
·

r−1∏
i=0
i6=k

s+i
−k+i

,

ψj(s) =
r−1∏
i=0

s+i
cj+i

·
m∏

i=1
i6=j

s−ci

cj−ci
.

(4.10)

The discretized multistep collocation method is then obtained by im-
posing the collocation conditions, i.e. that the collocation polynomial (4.8)
exactly satisfies the VIE (4.1) at the collocation points xni, and by com-
puting yn+1 = Pn(xn+1):





Yni = F̄ni + Φ̄ni

yn+1 =
r−1∑
k=0

ϕk(1)yn−k +
m∑

j=1

ψj(1)Ynj
. (4.11)

The lag–term and increment–term approximations

F̄ni = g(xni)+h
n−1∑

ν=0

µ1∑

l=0

blk(xni, xν+ξlh, Pν(xν+ξlh)) i = 1, ...,m (4.12)

Φ̄ni = h

µ0∑

l=0

wilk(xni, xn + dilh, Pn(xn + dilh)) i = 1, ...,m (4.13)

are obtained by using quadrature formulas of the form

(ξl, bl)
µ1
l=1, (dil, wil)

µ0
l=1, i = 1, ...,m, (4.14)

where the quadrature nodes ξl and dil satisfy 0 ≤ ξ1 < ... < ξµ1 ≤ 1 and
0 ≤ di1 < ... < diµ0 ≤ 1, µ0 and µ1 are positive integers and wil, bl are
suitable weights.

The discretized multistep collocation method (4.8)-(4.11) provides a
continuous approximationP (x) of the solution y(x) of the integral equation
(4.1) in [0, X], by considering

P (x)|(xn,xn+1 ] = Pn(x) (4.15)

where Pn(x) is given by (4.8). We note that usually the polynomial con-
structed in the collocation methods for VIEs doesn’t interpolate the nu-
merical solution in the previous step points, resulting a discontinuous ap-
proximation of the solution (4.7). In this multistep extension, the colloca-
tion polynomial is instead a continuous approximation to the solution, i.e.
u(x) ∈ S

(0)
m−1(Ih)
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The discretized multistep collocation method (4.8)-(4.11) can be re-
garded as a multistep Runge–Kutta method for VIEs:




Yni = F̄n(xni) + h
µ0∑
l=1

wilk

(
xn + eilh, xn + dilh,

r−1∑
k=0

γilkyn−k +
m∑

j=1
βiljYnj

)

yn+1 =
r−1∑
k=0

θkyn−k +
m∑

j=1

λjYnj

,

(4.16)
where

F̄n(x) = g(x) + h

n−1∑

ν=0

µ1∑

l=1

blk


x, xν + ξlh,

r−1∑

k=0

δlkyν−k +
m∑

j=1

ηljYν,j




(4.17)
and

eil = ci, γilk = ϕk(dil), βilj = ψj(dil),
θk = ϕk(1), λj = ψj(1),
δlk = ϕk(ξl), ηlj = ψj(ξl).

The reason of interest of the multistep collocation methods lies in the
fact that they increase the order of convergence of collocation methods
without increasing the computational cost, except for the cost due to the
starting procedure. As a matter of fact, in advancing from xn to xn+1, we
make use of the approximations yn−k, k = 0, ..., r− 1, which have already
been evaluated at the previous steps. This permits to increase the order,
by maintaining in (4.11) the same dimension m of the nonlinear system
(4.3).

The r–steps m–points collocation methods have uniform order m + r,
and order of local superconvergence 2m+r−1. The knowledge of the collo-
cation polynomial, which provides a continuous approximation of uniform
order of the solution, will allow a cheap variable stepsize implementation.
Indeed, when the stepsize changes, the new approximation values can be
computed by simply evaluating the collocation polynomial, without run-
ning into problems of order reduction, as a consequence of the uniform
order.

4.3 Two–step collocation and almost collocation meth-
ods

Unfortunately multistep methods of the form (4.8)-(4.11) do not lead to
a good balance between high order and strong stability properties, infact,
altough methods with unbounded stability regions exist, no A–stable meth-
ods have been found. Therefore in [30] a modification in the technique has
been introduced, thus obtaining two-step almost collocation methods, also
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for systems of VIEs, by relaxing some of the collocation conditions and
by introducing some previous stage values, in order to further increase
the order and to have free parameters in the method, to be used to get
A-stability.

The methods are defined by




P (xn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn +
m∑

j=1

χj(s)P (xn−1,j)

+
m∑

j=1

ψj(s)
(
F̄nj + Φ̄nj)

)
,

yn+1 = P (xn+1),

(4.18)

s ∈ (0, 1], n = 1, 2, . . . , N − 1.
If the polynomials ϕ0(s), ϕ1(s), χj(s) and ψj(s), j = 1, 2, ...,m satisfy

the interpolation conditions

ϕ0(0) = 0, ϕ1(0) = 1, χj(0) = 0, ψj(0) = 0,
ϕ0(−1) = 1, ϕ1(−1) = 0, χj(−1) = 0, ψj(−1) = 0,

and the collocation conditions

ϕ0(ci) = 0, ϕ1(ci) = 0, χj(ci) = 0, ψj(ci) = δij,
ϕ0(ci − 1) = 0, ϕ1(ci − 1) = 0, χj(ci − 1) = δij , ψj(ci − 1) = 0,

i = 1, 2, ...,m, then we obtain order p = 2m+ 1.
In our search for A-stable methods we will have been mainly concerned

with methods of order p = 2m − r, where r = 1 or r = 2 is the number of
relaxed conditions. Namely we for p = 2m + 1 − r, r = 1, 2, have chosen
ϕ0(s) as a polynomial of degree ≤ 2m+1−r, which satisfies the collocation
conditions

ϕ0(ci) = 0, i = 1, 2, . . .,m. (4.19)

This leads to the polynomial ϕ0(s) of the form

ϕ0(s) = (q0 + q1s + ...+ qm+1−rs
m+1−r)

m∏

i=1

(s − ci) , (4.20)

where q0, q1, ..., qm+1−r are free parameters. Moreover, for p = 2m− 1 we
have chosen ϕ1(s) as a polynomial of degree ≤ 2m − 1 which satisfies the
collocation conditions

ϕ1(ci) = 0, i = 1, 2, . . .,m. (4.21)

This leads to the polynomial ϕ1(s) of the form

ϕ1(s) = (p0 + p1s + ...+ pm−1s
m−1)

m∏

i=1

(s − ci) , (4.22)
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where p0, p1, ..., pm−1 are free parameters.
The methods have uniform order of convergence p = 2m − r, and are

therefore suitable for an efficient variable stepsize implementation. More-
over methods which are A-stable with respect to the basic test equation
and have unbounded stability regions with respect to the convolution test
equation have been provided.

4.4 Mixed collocation

In the case of VIEs with periodic highly oscillatory solutions, traditional
methods may be inefficient, as they may require the use of a small stepsize in
order to follow accurately the oscillations of high frequency. As in the case
of ODEs “ad hoc” numerical methods have been constructed, incorporating
the a priori knowledge of the behaviour of the solution, in order to use wider
stepsizes with respect to classical methods and simultaneously to simulate
with high accuracy the oscillations of the solution.

A first work on the numerical solution of VIEs with periodic solution
is [6], where numerical methods were constructed by means of mixed in-
terpolation. Recently, mixed collocation methods have been introduced
in [8,9] for VIEs and VIDEs. In particular in [8], mixed collocation meth-
ods have been introduced for linear convolution VIEs of the form

y(x) = g(x) +
∫ x

−∞
k(x− τ )y(τ )dτ, x ∈ [0, X], (4.23)

with
y(x) = ψ(x), x ∈ [−∞, 0],

where k ∈ L1(0,∞), g is a continuous periodic function and ψ is a given
bounded and continuous function. The collocation polynomial is taken in
the form

Pn(xn + sh) =
m∑

k=0

Bk(s)Yn,k

where the Bk(s) are combinations of trigonometric functions and algebraic
polynomials given in [8]. The numerical method is of the form

{
Yni = F̄ni + Φ̄ni

yn+1 =
∑m

k=0Bk(1)Yn,k
, (4.24)
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where the lag-term and increment term approximations are given by

F̄ni = g(xni) +
∫ 0

−∞
k(xni − τ )ψ(τ )dτ + h

n−1∑

ν=0

m∑

l=0

wl(1)k(xnj − xν,lPν(xν,l)

Φ̄ni = hci

m∑

l=0

wl(1)k(xni − xn − hcicl)

(
m∑

k=0

Bk(cicl)Yn,k

)

with
wl(s) =

∫ s

0

Bl(τ )dτ.

With some suitable choices for collocation parameters such methods accu-
rately integrates systems for which the period of oscillation of the solution
is known. In the paper [16] the authors introduce a family linear methods,
namely Direct Quadrature (DQ) methods, specially tuned on the specific
feature of the problem, based on the exponential fitting [49, 50], which is
extremely flexible when periodic functions are treated. Such formulae are
based on a three-term quadrature formula, that is of the same form as the
usual Simpson rule, but specially tuned on integrands of the form k(s)y(s)
where k and y are of type

k(x) = eαx, y(x) = a+ b cos(ωx) + c sin(ωx), (4.25)

where α, ω, a, b, c ∈ IR. The coefficients of the new quadrature rule depend
on the parameters of the integrand, i.e. α and ω. It has been shown as the
use of exponentially fitted based three-point quadrature rules produces a
definite improvement in the accuracy when compared with the results from
the classical Simpson rule, and that the magnitude of the gain depends on
how good is the knowledge of the true frequencies. The results also indicate
that, as a rule, if the input accuracy is up to 10 percent, then the accuracy
gain in the output is substantial.

5 Conclusions and future perspectives

In this paper we have described, at the best of our knowledge, some of the
collocation methods appeared in the literature for ODEs and VIEs. Some
interesting properties of collocation-based methods are, in our opinion, still
to be exploited. For instance, the knowledge of the collocation function
on the whole interval of integration might allow cheap and realiable error
estimators, to be used in a variable stepsize-variable order environment,
also for problems with delay. Therefore, although collocation technique is
an old idea in Numerical Analysis, we strongly believe that it will constitute
building blocks for the development of modern software for an efficient and
accurate integration of evolutionary problems.
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Anal. Numér. Ser. Rouge R-3 (1969), 17–44.

[44] Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Inte-
gration – Structure-Preserving Algorithms for Ordinary Differential
Equations, Springer Series in Computational Mathematics, Springer–
Verlag, Berlin, 2000.

[45] Hairer, E., Norsett, S. P., and Wanner, G., Solving Ordinary Differen-
tial Equations I – Nonstiff Problems, Springer Series in Computational
Mathematics 8, Springer–Verlag, Berlin, 2000.

[46] Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II
– Stiff and Differential–Algebraic Problems, Springer Series in Com-
putational Mathematics 14, Springer–Verlag, Berlin, 2002.

[47] Henrici, P., Discrete Variable Methods in Ordinary Differential Equa-
tions, John Wiley & Sons, 1962.

[48] Nguyen, Huu Cong, Note on the performance of direct and indi-
rect Runge–Kutta–Nyström methods, J. Comput. Appl. Math. 45, 3
(1993), 347–355.

28



[49] Ixaru, L.Gr., Operations on oscillatory functions, Comput. Phys.
Comm. 105 (1997), 1–19.

[50] Ixaru, L. Gr. and Vanden Berghe, G., Exponential Fitting, Kluwer
Academic Publishers, Dordrecht, (2004).

[51] Jackiewicz, Z., General Linear Methods for Ordinary Differential
Equations, in press on John Wiley & Sons.

[52] Jackiewicz, Z., Renaut, R., and Feldstein, A., Two-step Runge-Kutta
methods, SIAM J. Numer. Anal. 28, 4 (1991), 1165–1182.

[53] Jackiewicz, Z. and Tracogna, S., A general class of two-step Runge-
Kutta methods for ordinary differential equations, SIAM J. Numer.
Anal. 32 (1995), 1390–1427.

[54] Jackiewicz, Z. and Tracogna, S., Variable stepsize continuous two-
step Runge-Kutta methods for ordinary differential equations, Numer.
Algorithms 12 (1996), 347–368.

[55] Konguetsof, A.; Simos, T. E. An exponentially-fitted and
trigonometrically-fitted method for the numerical solution of periodic
initial-value problems. Numerical methods in physics, chemistry, and
engineering. Comput. Math. Appl. 45 (2003), no. 1-3, 547554.

[56] Kramarz, L., Stability of collocation methods for the numerical solu-
tion of y′′ = f(t, y), BIT 20, 2 (1980), 215–222.

[57] Lambert, J. D., Numerical methods for ordinary differential systems:
The initial value problem, John & Wiley, Chichester, 1991.

[58] Lambert, J. D. and Watson, I. A., Symmetric multistep methods for
Periodic Initial Value Problems, J. Inst. Maths. Applics. 18 (1976),
189–202.

[59] Lie, I., The stability function for multistep collocation methods, Nu-
mer. Math. 57, 8 (1990), 779–787.

[60] Lie, I. and Norsett, S. P., Superconvergence for Multistep Collocation,
Math. Comp. 52, 185 (1989), 65–79.

[61] Lopez-Fernandez, M., Lubich, C., and Schdle, A., Adaptive, fast, and
oblivious convolution in evolution equations with memory, SIAM J.
Sci. Comp. 30 (2008), 1015–1037.

[62] Lopez-Fernandez, M., Lubich, C., and Schdle, A., Fast and oblivious
convolution quadrature, SIAM J. Sci. Comp. 28 (2006), 421–438.

29



[63] Martucci, S. and Paternoster, B., Vandermonde-type matrices in two
step collocation methods for special second order Ordinary Differential
Equations, in Computational Science ICCS 2004, ed. by M.Bubak et
al.; Lecture Notes in Comput. Sci. 3039, Part IV, Springer Verlag,
2004, 418–425.

[64] Martucci, S. and Paternoster, B., General two step collocation meth-
ods for special second order Ordinary Differential Equations, Paper
Proceedings of the 17th IMACS World Congress Scientific Computa-
tion, Applied Mathematics and Simulation, Paris, July 11-15, 2005.

[65] Norsett, S. P., Collocation and perturbed collocation methods, in Nu-
merical analysis, Proc. 8th Biennial Conf., Univ. Dundee, Dundee,
1979), 119–132; Lecture Notes in Math. 773, Springer, Berlin, 1980.

[66] Norsett, S. P. and Wanner, G., Perturbed collocation and Runge Kutta
methods, Numer. Math. 38, 2 (1981), 193–208.

[67] Paternoster, B., Runge-Kutta(-Nyström) methods for ODEs with pe-
riodic solutions based on trigonometric polynomials, Appl. Numer.
Math. 28 (1998), 401-412.

[68] Paternoster, B., A phase–fitted collocation–based Runge–Kutta–
Nyström methods, Appl. Numer. Math. 35, 4 (2000), 339–355.

[69] Paternoster, B., General two-step Runge-Kutta methods based on al-
gebraic and trigonometric polynomials, Int. J. Appl. Math. 6, 4 (2001),
347–362.

[70] Paternoster, B., Two step Runge-Kutta-Nystrom methods for
y=f(x,y) and P-stability, in Computational Science ICCS 2002, ed. by
P.M.A.Sloot, C.J.K.Tan, J.J.Dongarra, A.G.Hoekstra; Lecture Notes
in Computer Science 2331, Part III, 459-466, Springer Verlag, Ams-
terdam, 2002.

[71] Paternoster, B., Two step Runge-Kutta-Nystrom methods for oscilla-
tory problems based on mixed polynomials, Computational Science–
ICCS 2003, ed. by P.M.A.Sloot, D.Abramson, A.V.Bogdanov,
J.J.Dongarra, A.Y.Zomaya, Y.E.Gorbachev; Lecture Notes in Com-
puter Science 2658, Part II, 131-138, Springer, Berlin Heidelberg,
(2003).

[72] Paternoster, B., Two step Runge-Kutta-Nystrom methods based on
algebraic polynomials, Rendiconti di Matematica e sue Applicazioni
23, Serie VII (2003), 277–288.

30



[73] Paternoster, B., Two step Runge-Kutta-Nystrom methods for oscil-
latory problems based on mixed polynomials, in Computational Sci-
ence – ICCS 2003 ed. by P.M.A.Sloot, D.Abramson, A.V.Bogdanov,
J.J.Dongarra, A.Y.Zomaya, Y.E.Gorbachev; Lecture Notes in Com-
puter Science 2658, Part II, 131–138, Springer, Berlin Heidelberg,
2003.

[74] B.Paternoster, A general family of two step Runge-Kutta-Nyström
methods for y′′ = f(x, y) based on algebraic polynomials, Computa-
tional Science – ICCS 2003 ed. by V.N.Alexandrov, G.D. van Albada,
P.M.A.Sloot, J.J.Dongarra; Lecture Notes in Computer Science 3994
Part IV, 700-.707, Springer Verlag, 2006.

[75] Petzold, L. R., Jay, L. O., and Yen, J., Numerical solution of highly
oscillatory ordinary differential equations, Acta Numer. 6 (1997),
437483.

[76] Simos, T. E., Dissipative trigonometrically-fitted methods for linear
second-order IVPs with oscillating solution, Appl. Math. Lett. 17, 5
(2004), 601–607.

[77] Van den Houwen, P. J., Sommeijer, B. P., and Nguyen, Huu Cong,
Stability of collocation-based Runge–Kutta–Nyström methods, BIT
31, 3 (1991), 469–481.

[78] Van de Vyver, H., Phase-fitted and amplification-fitted two-step hy-
brid methods for y′′ = f(x, y), J. Comput. Appl. Math. 209, 1 (2007),
33–53.

[79] Van de Vyver, H., A phase-fitted and amplification-fitted explicit two-
step hybrid method for second-order periodic initial value problems,
Internat. J. Modern Phys. C 17, 5 (2006), 663–675.

[80] Wright, K., Some relationships between implicit RungeKutta, collo-
cation and Lanczos τ -methods, and their stability properties, BIT 10
(1970), 217–227.

31


