RICERCA OPERATIVA Esercitazione 30 Maggio 2019

Un'industria tessile produce due tipi di tessuto t_1 e t_2 mediante l'intreccio di fili di tre colori, precisamente giallo (G), rosso (R) e blu (B). Il processo utilizza un telaio industriale disponibile per 10 ore al giorno. La lavorazione di t_1 richiede 2 minuti per metro di tessuto, mentre quella di t_2 richiede 4 minuti/metro. Il fornitore di fili può garantire giornalmente non più di 750, 1250, 1000 metri di filo giallo, rosso e blu rispettivamente. Per realizzare un metro di tessuto t_1 della larghezza prestabilita servono 20, 15, 24 metri di filo G, R, B rispettivamente. Diversamente, per il tessuto t_2 , tali quantità variano a seconda del livello di finitura del prodotto finale. I clienti richiedono esattamente 50 metri di tessuto t_2 al giorno ed il prezzo (in Euro) di vendita dipende dal livello di finitura di t_2 secondo la seguente espressione $prezzo = \frac{L}{200} + 6$ Euro/metro, dove L è la quantità totale di filo utilizzata in 1 metro di tessuto. Il tessuto t_1 è invece venduto a 4 Euro/metro.

Si chiede di:

- 1. formulare un modello di Programmazione Lienare per la massimizzazione dei ricavi assumendo che tutta la quantità giornaliera prodotta di t_1 e t_2 sia venduta. [specificare con chiarezza il significato delle variabili decisionali utilizzate]
- 2. calcolare un piano di produzione ottimo nell'ipotesi che il telaio sia disponibile per un numero qualsivoglia di ore al giorno
- 3. determinare (sempre nell'ipotesi del punto 2) se e come cambia il piano ottimo se si richiede che la quantità di filo rosso utilizzato giornalmente nella produzione di t_1 sia non inferiore alla medesima quantità impegata per t_2