Interdiction Branching

Stefano Smriglio

University of L'Aquila stefano.smriglio@univaq.it

Andrea Lodi, Ted K. Ralphs, Fabrizio Rossi

ISMP, Berlin - August 2012

Outline

- well-known: branching on a variable dichotomy
- generalization: branching on a variable set
- powerful branching sets: improving solution covers
- minimal covers and bilevel programming
- interdiction branching
- computational experience

Notation

$$\max\{c^{\top}x \mid Ax \le b, \ x_j \in \{0,1\} \ \forall j \in I^n\}$$

$$A \in \mathbb{Q}^{m \times n}, c \in \mathbb{Q}^n, b \in \mathbb{Q}^m, I^n = \{1, \dots, n\}$$

- ${\mathcal F}$ set of feasible solutions
- $ar{x} \in \mathcal{F}$ be the *incumbent* solution
- $\bar{z} = c^\top \bar{x}$ incumbent value

subproblem a:

- F_1^a (F_0^a) indices of variables fixed to one (to zero)
- $N^a = I^n \setminus (F^a_0 \cup F^a_1)$ indices of free variables
- \mathcal{F}^a set of the feasible solutions

Branching on a variable (dichotomy)

 \mathbf{x}^* current fractional solution, x_i^* fractional

 $x_j \le \lfloor x_j^* \rfloor \lor x_j \ge \lceil x_j^* \rceil$

- variable bounds yield fast reoptimization
- "local" objective: improve LP bound at child subproblems
- strong branching [Applegate et al. 95]
- cheaper variants (e.g. restrict to variable subsets)

 [Linderoth and Savelsbergh 99]
 [Achterberg, Koch and Martin 04]
 [Achterberg 07][Fischetti and Monaci 10]
- other estimation/bounding methods (e.g. *pseudocosts*, [Bénichou et al 71])

Advanced methods

Well-known difficulties:

variable branching may produce unbalanced trees choices at the top of the enumeration tree are crucial

many ideas to do better:

lookahead branching

[Glankwamdee and Linderoth 11]

branching on general disjunctions

[Owen and Mehrotra 01][Karamanov and Cornuéjols 05] [Cornuejols, Liberti and Nannicini 09]

methods based on logical information

[Achterberg 07] [Karzan, Nemhauser and Savelsbergh 09]

Branching on a variable set

Choose an index set $S \subseteq N^a$ as well as an ordering of its elements $(i_1, \ldots, i_{|S|})$. Partition \mathcal{F}^a into |S| + 1 subproblems:

$$\begin{aligned} x_{i_1} &= 1 \lor \\ (x_{i_2} &= 1 \land x_{i_1} = 0) \lor \\ \vdots \\ (x_{i_{|S|}} &= 1 \land x_{i_1} = 0 \land \dots \land x_{i_{|S|-1}} = 0) \lor \\ \sum_{i \in S} x_i &= 0 \end{aligned}$$

|S| = 1 yields branching on variable

What's different?

What's different?

Let S=(3,2,4) the set of branching variables at the first two levels. Let's branch on set $S\colon$

n-ary tree

Any (true) progress by now?

		pruned by			
branch type	# eval. subproblems	infeasibility	optimality	bound	
variable	109	34	21	0	
set	87	36	23	0	

subproblem evaluation: solving LP vs. computing a branching set (several LPs, or estimation method...): overall workload comparable

- *n*-ary branching cannot be reproduced by a sequence of binary branchings *unless we branch on integer variables!*
- earlier detection of feasible solutions and infeasible subproblems
- new option: look at global objectives and exploit additional information!

The lesson of CO problems

In many 0 - 1 MIPs the down branch $x_j = 0$ is weaker than the up branch $x_j = 1$.

(!) branching on a variable set naturally exploits this fact, except that in the rightmost subproblem $(\sum_{i \in S} x_i = 0)$

- Balas and Yu (Stable Set problem, '86): exploit z
 to compute
 S such that the rightmost subproblem needs not be generated
 (our starting point)
- Bienstock and Zuckerberg characterized S with strong properties for the Set Covering problem
- Our idea: design branching method for 0-1 MIPs combining LP information with the knowledge of feasible solutions

Improving solution cover

- Given some value $z \in \Re$, denote $\mathcal{F}^a(z) = \{x \in \mathcal{F}^a : c^T x > z\}$ the set of z-improving solutions at subproblem a
- index $i \in I^n$ is said to cover a solution $\hat{x} \in \mathcal{F}$ if $\hat{x}_i = 1$
- index set S covers a set of solutions X if every solution in X is covered by at least one index in S.

Definition

A z-improving solution cover (z-ISC) at subproblem a is an index set $S^{a}(z) = \{i_1, \ldots, i_{|S^{a}(z)|}\} \subseteq N^{a}$ covering $\mathcal{F}^{a}(z)$.

	fixed		free			
	F_0^a	F_1^a	N^{a}			
	0	1	1	0	0	0
$\mathcal{F}^a(z)$	0	1	0	1	0	1
	0	1	0	0	1	1
	0	1	1	1	1	0
z-ISC			*		*	*

Branching on a z-ISC

Suppose a solution $x \in \mathcal{F}$ is known with value $z = c^T x$. If $S = S^a(z)$ is a z-ISC, the rightmost subproblem is dominated:

$$x_{i_1} = 1 \lor \ldots \lor (x_{i_{|S|}} = 1 \land x_{i_1} = 0 \land \ldots \land x_{i_{|S|-1}} = 0) \lor \sum_{i \in S} x_i = 0$$

Minimal *z*-ISCs show a very strong property:

Theorem

If S is a minimal z-ISC, then each term of the disjunction is satisfied by at least one improving solution $\tilde{x} \in \mathcal{F}^a(z)$

Characterization of ISCs

Theorem

A nonempty index set $S \subseteq N^a$ is a *z*-ISC at a if and only if

$$\max_{x \in \{0,1\}^n} \{ c^\top x \mid x \in \mathcal{F}^a, x_i = 0 \text{ for all } i \in S \} \le z.$$

Corollary

Let $\tilde{x} \in \mathcal{F}^a$, $\tilde{z} = c^T \tilde{x}$, and $F_0(\tilde{x}) = \{i \in N^a : \tilde{x} = 0\}$ be the set of free variables fixed to zero at \tilde{x} . Then, $F_0(\tilde{x})$ is a \tilde{z} -ISC at a.

Any feasible solution to subproblem a yields a "nice" (set) branching disjunction

Interdiction branching problem (IBP)

Look now at the incumbent value \bar{z} . A smallest \bar{z} -ISC can be computed by a (binary-binary) bilevel program.

Define binary "deactivation" variables: $y_i = 1$ if index i is in the cover and $y_i = 0$ otherwise.

$$\begin{split} z_{IBP} &= \min_{\mathbf{y} \in \{0,1\}^{|N^a|}} \sum_{i \in N^a} y_i \\ &\sum_{i \in N^a} c_i x_i \leq \bar{z} - \sum_{i \in F_1^a} c_i \qquad \text{obj bound} \\ &x \in \arg\max_{\mathbf{x} \in \mathcal{F}^\mathbf{a}} c^\top x \\ &x_i + y_i \leq 1, \ i \in N^a \qquad \text{interdiction const.} \end{split}$$

Interdiction branching: general scheme

Input:	Subproblem $a = (F_1^a, F_0^a)$, incumbent value \bar{z} .
Output:	A set of child subproblems
Step 1.	Solve IBP $\rightarrow S^a(\bar{z})$
Step 2.	if $z_{IBP} = 0 \ (\Rightarrow \mathcal{F}^a(\bar{z}) = \emptyset)$, then prune a . STOP
	else choose an ordering $(i_1,\ldots,i_{ S^a(\bar{z}) })$ of $S^a(\bar{z})$
	branch on $(i_1,\ldots,i_{ S^a(ar{z}) })$

Theorem

The number of subproblems generated by interdiction branching is at most $\max(0, 2|\mathcal{F}^0(\bar{z})| - 1)$.

Solving IBP exactly is too demanding, but any relaxation of the second-level problem still yields an $\bar{z}\text{-}\mathsf{ISC}$

Back to the LP relaxation

Theorem A nonempty index set $S \subseteq N^a$ is a \overline{z} -ISC at a if $\max\{c^{\top}x \mid x \in \mathcal{F}^{\mathbf{a}}_{\mathbf{LP}}, x_i = 0 \text{ for all } i \in S\} \leq \overline{z}$

Relax lower-level integrality: still get a \bar{z} -ISC (but loose minimality)

$$z_{IBLP} = \min_{\mathbf{y} \in \{\mathbf{0}, \mathbf{1}\}^{|\mathbf{N}^{\mathbf{a}}|}} \sum_{i \in N^{a}} y_{i}$$
$$\sum_{i \in N^{a}} c_{i} x_{i} \leq \bar{z} - \sum_{i \in F_{1}^{a}} c_{i}$$
$$x \in \arg \max_{\mathbf{x} \in \mathcal{F}_{\mathbf{LP}}^{\mathbf{a}}} c^{\top} x$$
$$x_{i} + y_{i} \leq 1, \ i \in N^{a}$$

Algorithms for IBLP

MIP (big-M)reformulation:

$$\begin{split} \min \sum_{i \in I^n} y_i \\ b^\top u + \mathbf{1}^\top w &\leq \bar{z} - \sum_{i \in F_1^a} c_i \\ u^\top A_i + w_i &\geq c_i - M y_i \qquad i \in N^a \\ u, w &\geq 0, \quad y \in \{0, 1\}^n \end{split}$$

(straightforward) heuristic:

On the role of LP relaxation

if LP bound $\leq \bar{z}$ we have $z_{IBLP} = 0$ and the node is pruned

otherwise the LP information is still exploited:

- to choose the branching set
- to rank the branching variables: non-increasing pseudocosts yield a more balanced tree, as less constrained children have top variables fixed to 1

Computational experience

Two CO problems: **knapsack**, **stable set** in both cases weak LP relaxations

MIP Solver: CPLEX12.2

CPX_PARAM_MIPSEARCH=CPX_MIPSEARCH_TRADITIONAL: traditional branch-and-cut search CPX_PARAM_THREADS=1: sequential mode

- Computer: 2.8 GHz Intel Quad Core 24 GB RAM Linux
- CPU time limit = 2 hours
- initial incumbent computed by Cplex at the root node

Experiment I: Hard knapsack problems

- Purposes:
 - compare 0-1 branching to IB
 - investigate the effect of LP strengthening
- test-bed: strongly correlated spanner instances (Pisinger 05)
 - ▶ spanner set (v, m) of v items with weights in [1, R] and profits $p_j = w_j + R/10$ normalized by m + 1.
 - ▶ n items generated by picking k in (v, m) and setting $(d \cdot p_k, d \cdot w_k)$, $d \in [1, m]$
- subproblem evaluation:
 - IBLP solved by HEU CPX_PARAM_PRESLVND=-1: no node presolve to avoid interference
 - branching set ranking: nondecreasing item weights

Hard knapsack problems

m=2 - 20 instances/row

	Cplex cu	its OFF	Cplex cı	$\%\Delta(time/\#sub)$		
n	0-1	IB	0-1	IB	0-1	IB
50	(20) 62.98	(20) 53.33	(20) 39.41	(20) 28.83	37.4	45.9
	1,761,896.95	602,378.60	1,257,841.45	360,106.85	28.6	40.2
60	(19) 421.00	(19) 388.93	(19) 252.77	(19) 197.75	40.0	49.2
	8,629,773.32	4,155,480.05	6,654,547.21	2,377,041.68	22.9	42.8
70	(15) 76.11	(17) 24.11	(16) 531.98	(17) 367.60	-599.0	-1424.7
	1,974,794.93	229,331.47	16,104,171.69	4,321,404.50	-715.5	-1784.3
80	(13) 422.47	(14) 312.62	(13) 154.85	(14) 125.08	63.3	60.0
	11,081,012.15	3,142,002.54	4,552,826.54	1,395,661.54	58.9	55.6
90	(9) 5.38	(9) 1.60	(9) 5.38	(9) 1.60	0.0	0.0
	129,098.56	12,118.44	129,098.56	12,118.44	0.0	0.0
100	(11) 113.00	(11) 20.00	(11) 113.00	(11) 20.00	0.0	0.0
	2,668,660.45	168,958.91	2,668,660.45	168,958.91	0.0	0.0

(# solved)	av. CPU sec. (solved)
	# av. subproblems (solved)

Hard knapsack problems

m=3 - 20 instances/row

	Cplex cı	its OFF	Cplex c	$\%\Delta(time/\#sub)$		
n	0-1	IB	0-1	IB	0-1	IB
50	(20) 461.72	(20) 400.03	(19) 118.65	(20) 77.49	74.3	80.6
	18,136,555.70	6,064,691.55	3,705,276.47	971,255.95	79.6	84.0
60	(19) 379.79	(19) 169.37	(19) 403.16	(19) 159.47	-6.2	5.8
	14,390,370.89	2,408,517.37	12,056,479.58	1,897,376.26	16.2	21.2
70	(17) 688.23	(17) 300.94	(17) 678.88	(17) 288.35	1.4	4.2
	25,163,713.53	3,969,008.53	20,126,021.82	3,247,175.41	20.0	18.2
80	(17) 137.04	(18) 77.41	(17) 308.04	(18) 89.41	-124.8	-15.5
	4,972,139.94	968,274.35	9,309,853.12	966,178.47	-87.2	0.2
90	(12) 0.36	(13) 0.53	(12) 0.30	(12) 0.30	16.7	43.4
	5,770.17	3,737.83	1,131.08	676.33	80.4	81.9
100	(13) 2.79	(15) 2.64	(13) 3.95	(13) 1.64	-41.6	37.9
	88,137.38 28,888.23		100,859.31	14,329.77	-14.4	50.4

(# solved)	av. CPU sec. (solved)
	# av. subproblems (solved)

Experiment II: Stable set

Unstructured SS problems represent difficult IP-s, hard to be solved by IP algorithms; combinatorial algorithms (based on the Balas-Yu branching rule) often performs better.

Purposes:

- compare IB to 0-1 branching
- compare IB to state-of-the-art combinatorial algorithms
- investigate the effect of branching set ranking
- test-bed:

DIMACS challenge benachmark graphs

- formulation based on *clique inequalities* [Rossi, S. 01]
- subproblem evaluation:
 - IBLP solved by Cplex MIP heuristic
 - ranking by non-increasing vertex degree

DIMACS benchmark stable set problems

	0-1 branching			Interdiction Branching			
Graph	Time	Sub	Time/sub	Time	IBLP	Sub	Time/sub
name	(sec)	(#)	(msec)	(sec)	(sec)	(#)	(msec)
brock200_1	1,551.96	370,372	4.19	1,028.37	547.91	57,603	9.81
brock200_2	81.50	11,769	6.92	63.20	21.41	3,441	9.69
brock200_3	213.70	33,142	6.45	130.35	55.03	5,973	12.22
brock200_4	475.79	104,572	4.55	308.49	136.27	19,150	8.79
C125.9	5.19	6,093	0.85	33.61	28.25	1,754	10.95
c-fat200-5	6.30	47	134.04	8.02	0.45	27	157.25
DSJC125.1	3.44	4,259	0.81	40.13	36.35	1,505	14.37
DSJC125.5	4.34	1,307	3.32	4.88	2.32	417	6.42
mann_a9	0.01	5	2.00	0.02	0.01	3	6.67
mann_a27	3.32	10,755	0.31	44.82	42.67	1,176	22.69
keller4	16.91	6,429	2.63	18.44	13.10	955	10.84
p_hat300-1	56.05	5,198	10.78	43.25	14.00	2,674	8.52
p_hat300-2	167.59	8,576	19.54	117.24	51.03	2,064	29.88
p_hat300-3	22,449.20	1,104,172	20.33	6,307.62	2937.63	116,737	29.79
san200_0.7_2	4.42	822	5.38	4.00	1.85	176	12.46
$san200_0.9_3$	2.88	595	4.84	13.49	9.73	744	10.82
sanr200_0.7	1,067.42	203,077	5.26	626.92	307.15	36,429	9.43
sanr200_0.9	6,223.24	2,054,850	3.03	5,318.50	4,295.58	203,835	15.13

Further experimental findings

- vertex-deg vs. pseudocosts. Ranking |S| by non-increasing pseudocosts slightly worsen the results but don't change the overall judgement
- ▶ robustness w.r.t. node selection. IB looks much less sensitive to different node selection strategies. DFS performs poorly with 0 - 1 branching, while is competitive with IB
- IB vs. combinatorial algorithms. In some cases # evaluated subproblems much smaller than [Mannino and Sassano 96], [Sewell 96]. IB takes much longer CPU times.
- ▶ **IB vs. specialized branch-and-cut algorithms** Competitive with [Rossi, S. 01], [Rebennack et al. 09] both in the number of evaluated subproblems and CPU times.

Conclusions

Promising features of IB:

- Robust to weak LP relaxations
- Robust to different MIP strategies
- Flexible in choosing the branching disjunction
- Customizable by additional knowledge of the problem

Work in progress:

- Specialized algorithms for IBP, IBLP
- Experiments on the MIPLIB
- Improved implementation