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Notation

max{c>x | Ax ≤ b, xj ∈ {0, 1} ∀j ∈ In}

A ∈ Qm×n, c ∈ Qn
+, b ∈ Qm, In = {1, . . . , n}

- F set of feasible solutions

- x̄ ∈ F be the incumbent solution

- z̄ = c>x̄ incumbent value

subproblem a:

- F a
1 (F a

0 ) indices of variables fixed to one (to zero)

- Na = In \ (F a
0 ∪ F a

1 ) indices of free variables

- Fa set of the feasible solutions



Branching on a variable (dichotomy)

x∗ current fractional solution, x∗j fractional

xj ≤ bx∗jc ∨ xj ≥ dx∗je

I variable bounds yield fast reoptimization

I ”local” objective: improve LP bound at child subproblems

I strong branching [Applegate et al. 95]
I cheaper variants (e.g. restrict to variable subsets)

[Linderoth and Savelsbergh 99]
[Achterberg, Koch and Martin 04]
[Achterberg 07][Fischetti and Monaci 10]

I other estimation/bounding methods (e.g. pseudocosts,
[Bénichou et al 71])



Advanced methods

Well-known difficulties:

variable branching may produce unbalanced trees

choices at the top of the enumeration tree are crucial

many ideas to do better:

I lookahead branching

[Glankwamdee and Linderoth 11]

I branching on general disjunctions

[Owen and Mehrotra 01][Karamanov and Cornuéjols 05]

[Cornuejols, Liberti and Nannicini 09]

I methods based on logical information

[Achterberg 07] [Karzan, Nemhauser and Savelsbergh 09]



Branching on a variable set

Choose an index set S ⊆ Na as well as an ordering of its
elements (i1, . . . , i|S|).

Partition Fa into |S|+ 1 subproblems:

xi1 = 1 ∨
(xi2 = 1 ∧ xi1 = 0) ∨
...

(xi|S| = 1 ∧ xi1 = 0 ∧ . . . ∧ xi|S|−1
= 0) ∨∑

i∈S
xi = 0

|S| = 1 yields branching on variable



What’s different?
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x∈{0,1}7
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What’s different?

Let S = (3, 2, 4) the set of branching variables at the first two
levels. Let’s branch on set S:
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n-ary tree
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Any (true) progress by now?

pruned by
branch type # eval. subproblems infeasibility optimality bound
variable 109 34 21 0
set 87 36 23 0

subproblem evaluation: solving LP vs. computing a branching set
(several LPs, or estimation method...): overall workload
comparable

I n-ary branching cannot be reproduced by a sequence of
binary branchings unless we branch on integer variables!

I earlier detection of feasible solutions and infeasible
subproblems

I new option: look at global objectives and exploit additional
information!



The lesson of CO problems

In many 0− 1 MIPs the down branch xj = 0 is weaker than
the up branch xj = 1.

(!) branching on a variable set naturally exploits this fact, except
that in the rightmost subproblem (

∑
i∈S xi = 0)

I Balas and Yu (Stable Set problem, ’86): exploit z̄ to compute
S such that the rightmost subproblem needs not be generated
(our starting point)

I Bienstock and Zuckerberg characterized S with strong
properties for the Set Covering problem

I Our idea: design branching method for 0− 1 MIPs combining
LP information with the knowledge of feasible solutions



Improving solution cover

- Given some value z ∈ <, denote Fa(z) = {x ∈ Fa : cTx > z}
the set of z-improving solutions at subproblem a

- index i ∈ In is said to cover a solution x̂ ∈ F if x̂i = 1

- index set S covers a set of solutions X if every solution in X
is covered by at least one index in S.

Definition
A z-improving solution cover (z-ISC) at subproblem a is an index
set Sa(z) = {i1, . . . , i|Sa(z)|} ⊆ Na covering Fa(z).

fixed free
Fa
0 Fa

1 Na

0 1 1 0 0 0
Fa(z) 0 1 0 1 0 1

0 1 0 0 1 1
0 1 1 1 1 0

z-ISC * * *



Branching on a z-ISC

Suppose a solution x ∈ F is known with value z = cTx. If
S = Sa(z) is a z-ISC, the rightmost subproblem is dominated:

xi1 = 1∨. . .∨(xi|S| = 1∧xi1 = 0∧. . . ∧xi|S|−1
= 0) ∨

∑
i∈S xi = 0

Minimal z-ISCs show a very strong property:

Theorem
If S is a minimal z-ISC, then each term of the disjunction is
satisfied by at least one improving solution x̃ ∈ Fa(z)



Characterization of ISCs

Theorem
A nonempty index set S ⊆ Na is a z-ISC at a if and only if

max
x∈{0,1}n

{c>x | x ∈ Fa, xi = 0 for all i ∈ S} ≤ z.

Corollary

Let x̃ ∈ Fa, z̃ = cT x̃, and F0(x̃) = {i ∈ Na : x̃ = 0} be the set of
free variables fixed to zero at x̃. Then, F0(x̃) is a z̃-ISC at a.

Any feasible solution to subproblem a yields a ”nice” (set)
branching disjunction



Interdiction branching problem (IBP)

Look now at the incumbent value z̄. A smallest z̄-ISC can be
computed by a (binary-binary) bilevel program.

Define binary ”deactivation” variables:
yi = 1 if index i is in the cover and yi = 0 otherwise.

zIBP = min
y∈{0,1}|Na|

∑
i∈Na

yi∑
i∈Na

cixi ≤ z̄ −
∑
i∈Fa

1

ci obj bound

x ∈ arg max
x∈Fa

c>x

xi + yi ≤ 1, i ∈ Na interdiction const.



Interdiction branching: general scheme

Input: Subproblem a = (F a
1 , F

a
0 ), incumbent value z̄.

Output: A set of child subproblems

Step 1. Solve IBP → Sa(z̄)
Step 2. if zIBP = 0 (⇒ Fa(z̄) = ∅), then prune a. STOP

else choose an ordering (i1, . . . , i|Sa(z̄)|) of Sa(z̄)

branch on (i1, . . . , i|Sa(z̄)|)

Theorem
The number of subproblems generated by interdiction branching is
at most max(0, 2|F0(z̄)| − 1).

Solving IBP exactly is too demanding, but any relaxation of the
second-level problem still yields an z̄-ISC



Back to the LP relaxation

Theorem
A nonempty index set S ⊆ Na is a z̄-ISC at a if

max{c>x | x ∈ Fa
LP, xi = 0 for all i ∈ S} ≤ z̄

Relax lower-level integrality: still get a z̄-ISC (but loose minimality)

zIBLP = min
y∈{0,1}|Na|

∑
i∈Na

yi∑
i∈Na

cixi ≤ z̄ −
∑
i∈Fa

1

ci

x ∈ arg max
x∈Fa

LP

c>x

xi + yi ≤ 1, i ∈ Na



Algorithms for IBLP

I MIP (big-M)reformulation:

min
∑
i∈In

yi

b>u + 1>w ≤ z̄ −
∑
i∈Fa

1

ci

u>Ai + wi ≥ ci −Myi i ∈ Na

u,w ≥ 0, y ∈ {0, 1}n

I (straightforward) heuristic:

Initialize S := ∅
while (z̃ := {max c>x : x ∈ FLP , xj = 0, j ∈ S} > z̄)

if x̃ is integer then update incumbent - STOP
else find fractional x̃j with max reduced cost;
S := S ∪ {j}

Return S



On the role of LP relaxation

if LP bound ≤ z̄ we have zIBLP = 0 and the node is pruned

otherwise the LP information is still exploited:
I to choose the branching set
I to rank the branching variables: non-increasing pseudocosts

yield a more balanced tree, as less constrained children have
top variables fixed to 1

11 =x 01 =x 01 =x 0=x
01 =x1

12 =x

01 =x

11|| =
−S

x

02 =x

01 =x

M

1|| =
S
x

02 =x

01 =x

M

02 =x

01 =x

13 =x

01|| =
−S

x



Computational experience

Two CO problems: knapsack, stable set

in both cases weak LP relaxations

I MIP Solver: CPLEX12.2

CPX PARAM MIPSEARCH=CPX MIPSEARCH TRADITIONAL:
traditional branch-and-cut search
CPX PARAM THREADS=1: sequential mode

I Computer: 2.8 GHz Intel Quad Core - 24 GB RAM - Linux

I CPU time limit = 2 hours

I initial incumbent computed by Cplex at the root node



Experiment I: Hard knapsack problems

I Purposes:

- compare 0-1 branching to IB
- investigate the effect of LP strengthening

I test-bed: strongly correlated spanner instances (Pisinger 05)
I spanner set (v,m) of v items with weights in [1, R] and profits

pj = wj + R/10 normalized by m + 1.
I n items generated by picking k in (v,m) and setting

(d · pk, d · wk), d ∈ [1,m]

I subproblem evaluation:

- IBLP solved by HEU - CPX PARAM PRESLVND=-1: no node
presolve to avoid interference

- branching set ranking: nondecreasing item weights



Hard knapsack problems

m = 2 - 20 instances/row

Cplex cuts OFF Cplex cuts ON %∆(time/#sub)
n 0–1 IB 0–1 IB 0–1 IB

50 (20) 62.98 (20) 53.33 (20) 39.41 (20) 28.83 37.4 45.9
1,761,896.95 602,378.60 1,257,841.45 360,106.85 28.6 40.2

60 (19) 421.00 (19) 388.93 (19) 252.77 (19) 197.75 40.0 49.2
8,629,773.32 4,155,480.05 6,654,547.21 2,377,041.68 22.9 42.8

70 (15) 76.11 (17) 24.11 (16) 531.98 (17) 367.60 -599.0 -1424.7
1,974,794.93 229,331.47 16,104,171.69 4,321,404.50 -715.5 -1784.3

80 (13) 422.47 (14) 312.62 (13) 154.85 (14) 125.08 63.3 60.0
11,081,012.15 3,142,002.54 4,552,826.54 1,395,661.54 58.9 55.6

90 (9) 5.38 (9) 1.60 (9) 5.38 (9) 1.60 0.0 0.0
129,098.56 12,118.44 129,098.56 12,118.44 0.0 0.0

100 (11) 113.00 (11) 20.00 (11) 113.00 (11) 20.00 0.0 0.0
2,668,660.45 168,958.91 2,668,660.45 168,958.91 0.0 0.0

(# solved) av. CPU sec. (solved)
# av. subproblems (solved)



Hard knapsack problems

m = 3 - 20 instances/row

Cplex cuts OFF Cplex cuts ON %∆(time/#sub)
n 0–1 IB 0–1 IB 0–1 IB

50 (20) 461.72 (20) 400.03 (19) 118.65 (20) 77.49 74.3 80.6
18,136,555.70 6,064,691.55 3,705,276.47 971,255.95 79.6 84.0

60 (19) 379.79 (19) 169.37 (19) 403.16 (19) 159.47 -6.2 5.8
14,390,370.89 2,408,517.37 12,056,479.58 1,897,376.26 16.2 21.2

70 (17) 688.23 (17) 300.94 (17) 678.88 (17) 288.35 1.4 4.2
25,163,713.53 3,969,008.53 20,126,021.82 3,247,175.41 20.0 18.2

80 (17) 137.04 (18) 77.41 (17) 308.04 (18) 89.41 -124.8 -15.5
4,972,139.94 968,274.35 9,309,853.12 966,178.47 -87.2 0.2

90 (12) 0.36 (13) 0.53 (12) 0.30 (12) 0.30 16.7 43.4
5,770.17 3,737.83 1,131.08 676.33 80.4 81.9

100 (13) 2.79 (15) 2.64 (13) 3.95 (13) 1.64 -41.6 37.9
88,137.38 28,888.23 100,859.31 14,329.77 -14.4 50.4

(# solved) av. CPU sec. (solved)
# av. subproblems (solved)



Experiment II: Stable set

Unstructured SS problems represent difficult IP-s, hard to be
solved by IP algorithms; combinatorial algorithms (based on the
Balas-Yu branching rule) often performs better.

I Purposes:

- compare IB to 0-1 branching
- compare IB to state-of-the-art combinatorial algorithms
- investigate the effect of branching set ranking

I test-bed:

DIMACS challenge benachmark graphs
- formulation based on clique inequalities [Rossi, S. 01]

I subproblem evaluation:

- IBLP solved by Cplex MIP heuristic
- ranking by non-increasing vertex degree



DIMACS benchmark stable set problems

0-1 branching Interdiction Branching
Graph Time Sub Time/sub Time IBLP Sub Time/sub
name (sec) (#) (msec) (sec) (sec) (#) (msec)
brock200 1 1,551.96 370,372 4.19 1,028.37 547.91 57,603 9.81
brock200 2 81.50 11,769 6.92 63.20 21.41 3,441 9.69
brock200 3 213.70 33,142 6.45 130.35 55.03 5,973 12.22
brock200 4 475.79 104,572 4.55 308.49 136.27 19,150 8.79
C125.9 5.19 6,093 0.85 33.61 28.25 1,754 10.95
c-fat200-5 6.30 47 134.04 8.02 0.45 27 157.25
DSJC125.1 3.44 4,259 0.81 40.13 36.35 1,505 14.37
DSJC125.5 4.34 1,307 3.32 4.88 2.32 417 6.42
mann a9 0.01 5 2.00 0.02 0.01 3 6.67
mann a27 3.32 10,755 0.31 44.82 42.67 1,176 22.69
keller4 16.91 6,429 2.63 18.44 13.10 955 10.84
p hat300-1 56.05 5,198 10.78 43.25 14.00 2,674 8.52
p hat300-2 167.59 8,576 19.54 117.24 51.03 2,064 29.88
p hat300-3 22,449.20 1,104,172 20.33 6,307.62 2937.63 116,737 29.79
san200 0.7 2 4.42 822 5.38 4.00 1.85 176 12.46
san200 0.9 3 2.88 595 4.84 13.49 9.73 744 10.82
sanr200 0.7 1,067.42 203,077 5.26 626.92 307.15 36,429 9.43
sanr200 0.9 6,223.24 2,054,850 3.03 5,318.50 4,295.58 203,835 15.13



Further experimental findings

I vertex-deg vs. pseudocosts. Ranking |S| by non-increasing
pseudocosts slightly worsen the results but don’t change the
overall judgement

I robustness w.r.t. node selection. IB looks much less
sensitive to different node selection strategies. DFS performs
poorly with 0− 1 branching, while is competitive with IB

I IB vs. combinatorial algorithms. In some cases #
evaluated subproblems much smaller than [Mannino and
Sassano 96], [Sewell 96]. IB takes much longer CPU times.

I IB vs. specialized branch-and-cut algorithms Competitive
with [Rossi, S. 01], [Rebennack et al. 09] both in the number
of evaluated subproblems and CPU times.



Conclusions

Promising features of IB:

I Robust to weak LP relaxations

I Robust to different MIP strategies

I Flexible in choosing the branching disjunction

I Customizable by additional knowledge of the problem

Work in progress:

I Specialized algorithms for IBP, IBLP

I Experiments on the MIPLIB

I Improved implementation
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