Interdiction Branching

Stefano Smriglio

University of L'Aquila
stefano.smriglio@univaq.it

Andrea Lodi, Ted K. Ralphs, Fabrizio Rossi

ISMP, Berlin - August 2012

stefano.smriglio@univaq.it

Outline

> well-known: branching on a variable dichotomy

> generalization: branching on a variable set

» powerful branching sets: improving solution covers
» minimal covers and bilevel programming

» interdiction branching

» computational experience

Notation

max{c'z | Az <b, z; € {0,1} Vj € I"}

AeQ™"ceQl,beQmI"={1,...,n}

- F set of feasible solutions
- ¥ € F be the incumbent solution

TZ incumbent value

-zZ=c
subproblem a:

- Fy* (F§) indices of variables fixed to one (to zero)
- N =1"\ (F§ UFY{) indices of free variables

- JF° set of the feasible solutions

Branching on a variable (dichotomy)

x* current fractional solution, x; fractional

2 < @3] Vay > [a]]

» variable bounds yield fast reoptimization

> "local” objective: improve LP bound at child subproblems

» strong branching [Applegate et al. 95]

» cheaper variants (e.g. restrict to variable subsets)
[Linderoth and Savelsbergh 99]
[Achterberg, Koch and Martin 04]
[Achterberg 07][Fischetti and Monaci 10]

» other estimation/bounding methods (e.g. pseudocosts,
[Bénichou et al 71])

Advanced methods

Well-known difficulties:
variable branching may produce unbalanced trees

choices at the top of the enumeration tree are crucial

many ideas to do better:

> lookahead branching
[Glankwamdee and Linderoth 11]

» branching on general disjunctions
[Owen and Mehrotra 01][Karamanov and Cornuéjols 05]
[Cornuejols, Liberti and Nannicini 09]

» methods based on logical information
[Achterberg 07] [Karzan, Nemhauser and Savelsbergh 09]

Branching on a variable set

Choose an index set S C N as well as an ordering of its
elements (i1,...,ig)).
Partition F* into |S| + 1 subproblems:

Ty, =1V

(1'1'2 =1Ax; :0)\/

(xim =1Axy; =0A... /\xim_l :0)\/

1€S

|S| = 1 yields branching on variable

What's different?

max 1521 + 1529 4+ 1523 + 1524 4+ 1025 + 10z + 1027

x€{0,1}7

s.t. 9x1 + dx2 + dx3 + dx4 + 4y + dag + 4y < 12

P @ O ® O
36 35 34 325 infeasible

X3=1
(1,0.4,1,0,0,0,0)
%=1 X,= w1

(0.4,1,1,0,0,0,0) (04,101,000 ‘/

[] ,0,0)

xet N

o xel

%0 (0.4,01,1,0001 %=0

: o
(1,0,1,0,0.5,0,0)
i %0
20 ot

1 4
O\ @ x0 &
L St A g
) g ot O =0
[°4 -
0 o

LP=36 (1,1,0.4,0,0,0,0)
°
LB,got = 36, UB = 30 (incumbent - optimal)

What's different?

Let S = (3,2,4) the set of branching variables at the first two
levels. Let's branch on set S:

O LP noor= 36 (1,1,0.4,0,0,0,0) R e e
X;=1 T =
/@ 3 X3=0 /\ 36 35 34 325 infeasible
X,=1 %,=0 ./x,,—l =0
X;=1 \\xZ:O Xs]- \.
@ . o
/ 2 * X,=0
4 o o o @ @
{ \ \
o) o]
$=(3,24)
1 * % (v
xo=1 X;=0 X3=X,= 0 X3=X,=X,=0
01%* O 3 37Xy =Xy

e TN T

000 @

n-ary tree

S=(3,.2,4
P @ O ® O @) (.) LB = 36, UB = 30 (incumbent - optimal)
36 35 34 325 infeasible :
%71 %0 X5=0 Xy X =,=0
x,=1 %=1 -

(145145 (56)

) / .
' 0, o
Ay
/ <) (¢]
|
X0 X0 Xe=xXg=0
|
6,7 6,7) i
(6,7) o (¢ F 5
V. ,
(9] O / O/
© °

Any (true) progress by now?

pruned by
branch type # eval. subproblems infeasibility optimality bound
variable 109 34 21 0
set 87 36 23 0

subproblem evaluation: solving LP vs. computing a branching set
(several LPs, or estimation method...): overall workload
comparable

» n-ary branching cannot be reproduced by a sequence of
binary branchings unless we branch on integer variables!

» earlier detection of feasible solutions and infeasible
subproblems

» new option: look at global objectives and exploit additional
information!

The lesson of CO problems

In many 0 — 1 MIPs the down branch x; = 0 is weaker than
the up branch z; = 1.

(1) branching on a variable set naturally exploits this fact, except
that in the rightmost subproblem (3, g 2; = 0)

» Balas and Yu (Stable Set problem, '86): exploit z to compute
S such that the rightmost subproblem needs not be generated
(our starting point)

> Bienstock and Zuckerberg characterized S with strong
properties for the Set Covering problem

» Our idea: design branching method for 0 — 1 MIPs combining
LP information with the knowledge of feasible solutions

Improving solution cover

- Given some value z € R, denote F%(z) = {z € F¢: clax > 2}
the set of z-improving solutions at subproblem a

- index ¢ € I"™ is said to cover a solution £ € F if ; =1

- index set S covers a set of solutions X if every solution in X
is covered by at least one index in S.

Definition
A z-improving solution cover (2-1SC) at subproblem a is an index
set S%(2) = {i1,...,4|50(z)|} S N* covering F%(z).

fixed free
Fg Fy Na
0 1 1 0 0 O
Fe(z) 0 1 0O 1 0 1
0 1 0 0 1 1
0 1 1 1 1 0
2-1SC * *x

Branching on a 2-ISC

Suppose a solution z € F is known with value z = ¢’ z. If
S = 5% z) is a 2-ISC, the rightmost subproblem is dominated:

Ty, =1V.. .\/(xiwl =1Ax;; = 0A... /\.%'ils‘_1 = 0) VEiES z; =0

Minimal 2-1SCs show a very strong property:

Theorem
If S is a minimal z-1SC, then each term of the disjunction is
satisfied by at least one improving solution & € F%(z) O

Characterization of ISCs

Theorem
A nonempty index set S C N® s a 2-ISC at a if and only if

max {c¢'z|xz€Fx; =0 forallicS}<z.
ze{0,1}m

Corollary
Let i € F*, z = c'%, and Fy(%) = {i € N®: & = 0} be the set of
free variables fixed to zero at . Then, Fy(Z) is a 2-ISC at a. [

Any feasible solution to subproblem a yields a "nice” (set)
branching disjunction

Interdiction branching problem (IBP)

Look now at the incumbent value Z. A smallest 2-ISC can be
computed by a (binary-binary) bilevel program.

Define binary "deactivation” variables:
y; = 1 if index @ is in the cover and y; = 0 otherwise.

ZIBP = z Yi

|Na|
yE{O 1} ieNa
E Gy < Z — E C obj bound
ieNe icFyo

T € arg max ¢z
xeFa

i+ <1,i€e N interdiction const.

Interdiction branching: general scheme

Input: Subproblem a = (F}, Fy'), incumbent value Z.
Output: A set of child subproblems

STEP 1. Solve IBP — S%(2)

STEP 2. if z;pp = 0 (= F%(2) = (), then prune a. STOP
else choose an ordering (i1, ... ,%|ga(z)) of S%(Z)
branch on (’il, RN 77:|S'a(2)|)

Theorem
The number of subproblems generated by interdiction branching is
at most max(0, 2|F°(z)| — 1).

Solving IBP exactly is too demanding, but any relaxation of the
second-level problem still yields an z-ISC

Back to the LP relaxation

Theorem
A nonempty index set S C N% is a z-ISC at a if

max{c' x|z € Fip,z; =0 forallie S} <z

O

Relax lower-level integrality: still get a z-ISC (but loose minimality)

ZIBLP = miH‘Nal E Yi
§ cix; < Z— E ¢
ieNe ieFg

T € arg max ¢
xEFip

ity <1,ie N®

Algorithms for IBLP
» MIP (big-M)reformulation:

minZyi
ieln
blu+1Tw<z— Z ¢
i€Fg
w' A +w; > ¢ — My; 1€ N
u,w >0, ye{0,1}"

» (straightforward) heuristic:

Initialize S :=0
while (2 :={maxc'z:z € Frp,x; =0,j € S} > %)
if Z is integer then update incumbent - STOP
else find fractional ; with max reduced cost;
S:=SU{j}
Return S

T

On the role of LP relaxation

if LP bound < z we have z;grp = 0 and the node is pruned

otherwise the LP information is still exploited:
» to choose the branching set
» to rank the branching variables: non-increasing pseudocosts
yield a more balanced tree, as less constrained children have
top variables fixed to 1

x, =0

X, =

X1 =0

X = 1

Computational experience

Two CO problems: knapsack, stable set
in both cases weak LP relaxations

v

MIP Solver: CPLEX12.2

CPX_PARAM_MIPSEARCH=CPX_MIPSEARCH_TRADITIONAL:
traditional branch-and-cut search
CPX_PARAM_THREADS=1: sequential mode

Computer: 2.8 GHz Intel Quad Core - 24 GB RAM - Linux
CPU time limit = 2 hours

initial incumbent computed by Cplex at the root node

v

v

v

Experiment |: Hard knapsack problems

» Purposes:

- compare 0-1 branching to IB
- investigate the effect of LP strengthening

» test-bed: strongly correlated spanner instances (Pisinger 05)
» spanner set (v,m) of v items with weights in [1, R] and profits
p; = w; + R/10 normalized by m + 1.
» n items generated by picking & in (v,m) and setting
(d-pg,d-wy), de[l,m]

» subproblem evaluation:
- IBLP solved by HEU - CPX_PARAM_PRESLVND=-1: no node
presolve to avoid interference
- branching set ranking: nondecreasing item weights

Hard knapsack problems

m = 2 - 20 instances/row

Cplex cuts OFF Cplex cuts ON %A (time/#£sub)
n 0-1 1B 0-1 1B 0-1 1B
50 | (20) 6298 (20) 53.33 | (20) 39.41 (20) 28.83 37.4 45.9
1,761,896.95 602,378.60 1,257,841.45 360,106.85 28.6 40.2
60 | (19) 421.00 (19) 388.93 | (19) 252.77 (19) 197.75 | 40.0 492
8,629,773.32 4,155,480.05 6,654,547.21 2,377,041.68 22.9 42.8
70 | (15) 76.11 (17) 24.11 | (16) 531.98 (17) 367.60 | -599.0 -14247
1,974,794.93 229,331.47 | 16,104,171.69 4,321,404.50 | -715.5 -1784.3
80 | (13) 422.47 (14) 312.62 | (13) 15485 (14) 125.08 | 633 60.0
11,081,012.15 3,142,002.54 4,552,826.54 1,395,661.54 58.9 55.6
90 | (9) 538 (9) 1.60 | (9) 538 (9) 1.60 0.0 0.0
129,098.56 12,118.44 129,098.56 12,118.44 0.0 0.0
100 | (11) 113.00 (11) 20.00 | (11) 113.00 (i1) 20.00 0.0 0.0
2,668,660.45 168,958.91 2,668,660.45 168,958.91 0.0 0.0

(# solved) av. CPU sec. (solved)

av. subproblems (solved)

Hard knapsack problems

m = 3 - 20 instances/row

Cplex cuts OFF Cplex cuts ON %A (time/#£sub)
n 0-1 1B 0-1 1B 0-1 1B
50 | (20) 461.72 (20) 400.03 | (1) 118.65 (20) 77.49 | 743 80.6
18,136,555.70 6,064,691.55 3,705,276.47 971,255.95 79.6 84.0
60 | (19) 379.79 (19) 169.37 | (19) 403.16 (19) 159.47 | 6.2 58
14,390,370.89 2,408,517.37 | 12,056,479.58 1,897,376.26 16.2 21.2
70 | (17) 68823 (17) 30094 | (17) 678.88 (17) 288.35 14 42
25,163,713.53 3,969,008.53 | 20,126,021.82 3,247,175.41 20.0 18.2
80 | (17) 137.04 (18) 77.41 | (17) 308.04 (i18) 89.41 | -1248 -155
4,972,139.94 968,274.35 9,309,853.12 966,178.47 -87.2 0.2
90 | (12) 036 (13) 053 | (12) 030 (12) 030 167 434
5,770.17 3,737.83 1,131.08 676.33 80.4 81.9
100 | (13) 279 (15) 264 | (13) 395 (13) 164 | 416 37.9
88,137.38 28,888.23 100,859.31 14,329.77 -14.4 50.4

(# solved) av. CPU sec. (solved)

av. subproblems (solved)

Experiment Il: Stable set

Unstructured SS problems represent difficult IP-s, hard to be
solved by IP algorithms; combinatorial algorithms (based on the
Balas-Yu branching rule) often performs better.

» Purposes:

- compare IB to 0-1 branching
- compare |IB to state-of-the-art combinatorial algorithms
- investigate the effect of branching set ranking

> test-bed:

DIMACS challenge benachmark graphs
- formulation based on clique inequalities [Rossi, S. 01]

> subproblem evaluation:

- IBLP solved by Cplex MIP heuristic
- ranking by non-increasing vertex degree

DIMACS benchmark stable set problems

0-1 branching

Interdiction Branching

Graph Time Sub Time/sub Time IBLP Sub Time/sub
name (sec) (#) (msec) (sec) (sec) (#) (msec)
brock200_1 1,551.96 370,372 4.19| 1,028.37 54791 57,603 9.81
brock200_2 81.50 11,769 6.92 63.20 21.41 3,441 9.69
brock200_3 213.70 33,142 6.45 130.35 55.03 5,973 12.22
brock200_4 475.79 104,572 4.55 308.49 136.27 19,150 8.79
C125.9 5.19 6,093 0.85 33.61 28.25 1,754 10.95
c-fat200-5 6.30 47 134.04 8.02 0.45 27 157.25
DSJC125.1 3.44 4,259 0.81 40.13 36.35 1,505 14.37
DSJC125.5 4.34 1,307 3.32 4.88 2.32 417 6.42
mann_a9 0.01 5 2.00 0.02 0.01 3 6.67
mann_a27 3.32 10,755 0.31 44.82 42.67 1,176 22.69
keller4 16.91 6,429 2.63 18.44 13.10 955 10.84
p-hat300-1 56.05 5,198 10.78 43.25 14.00 2,674 8.52
p-hat300-2 167.59 8,576 19.54 117.24 51.03 2,064 29.88
p-hat300-3 |22,449.20 1,104,172 20.33| 6,307.62 2937.63 116,737 29.79
san200.0.7_2 4.42 822 5.38 4.00 1.85 176 12.46
san200.0.9_3 2.88 595 4.84 13.49 9.73 744 10.82
sanr200.0.7 | 1,067.42 203,077 5.26 626.92 307.15 36,429 9.43
sanr200.0.9 | 6,223.24 2,054,850 3.03| 5,318.50 4,295.58 203,835 15.13

Further experimental findings

» vertex-deg vs. pseudocosts. Ranking |S| by non-increasing
pseudocosts slightly worsen the results but don’t change the
overall judgement

> robustness w.r.t. node selection. IB looks much less
sensitive to different node selection strategies. DFS performs
poorly with 0 — 1 branching, while is competitive with IB

» IB vs. combinatorial algorithms. In some cases #
evaluated subproblems much smaller than [Mannino and
Sassano 96], [Sewell 96]. IB takes much longer CPU times.

» IB vs. specialized branch-and-cut algorithms Competitive
with [Rossi, S. 01], [Rebennack et al. 09] both in the number
of evaluated subproblems and CPU times.

Conclusions

Promising features of IB:
> Robust to weak LP relaxations
» Robust to different MIP strategies
» Flexible in choosing the branching disjunction

» Customizable by additional knowledge of the problem

Work in progress:
» Specialized algorithms for IBP, IBLP
» Experiments on the MIPLIB

» Improved implementation

	Introduction
	Computational experience

