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versità di L’Aquila — via Vetoio I-67010 Coppito (AQ) (fabrizio.rossi@univaq.it).

Mara Servilio – Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano — piazza Leonardo Da Vinci, 32 20133 Milano, Italy (mara.servilio@polimi.it).

Stefano Smriglio – Dipartimento di Ingegneria e Scienze dellInformazione e Matematica, Uni-
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Abstract

We study the shift scheduling problem in a multi-shift, flexible call center where moving agents
between front end and back office is allowed to follow the actual demand. Differently from
previous approaches, the staffing levels, required to provide a service with desired quality, are
considered uncertain. This perspective naturally leads to a two-stage robust integer program
with right-hand-side uncertainty (R-IP-RSHU). Three different uncertainty sets are investigated,
also including correlations between consecutive time slots. In contrast to the general R-LP-
RSHU problem, we show that the associated LP relaxation is polynomially solvable. A branch-
and-cut algorithm based on a Benders type reformulation is also devised to solve the integer
problem and tested on real-world data from a large Italian call center. The algorithm turns
out to be effective and suitable to support relevant managers decisions. In fact, a high level of
protection is achieved with a limited additional cost.
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1. Introduction

Workforce management (WFM) is a complex process and represents a prominent issue in call
centers optimization. Its general goal is to find a satisfactory trade-off between the Level of
Service (LoS) provided to customers and personnel costs. LoS is mostly based on waiting times
and quality of the response, while personnel costs represent one major expense for call center
Companies. An insightful description of both these aspects can be found in [15]. WFM is tradi-
tionally split into a sequence of almost separate steps [3]: forecasting call volumes; determining
the staffing levels, defined as the number of agents required at each time period to guarantee the
desired LoS; translating them into agents work shifts (shift scheduling); assigning agents to such
shifts (rostering) and, finally, monitoring out-of-adherence situations at operational level and
reacting accordingly. In practice, the arrival rate of calls is quite difficult to estimate, resulting
in frequent overstaffing and understaffing situations [26, 29]. Overstaffing may lead to higher
costs [1] and even affect agents satisfaction, while understaffing typically lowers the LoS and
impacts on the revenues. To overcome these challenges, call centers throughout the industry are
exploring different flexibility models, ranging from recruiting temporary operators to delaying
less urgent calls [10]. We focus on a specific flexible setting, investigated in [17], that we also
encountered in several applied projects. In this setting managers react to front-end understaffing
by moving agents from back to front office, eventually accepting some delays in the back office
work (e.g., paperworks, e-mails and calls with callback). From now on, a call center implement-
ing such a practice is referred to as flexible call center.

WFM poses theoretical and algorithmic challenges in operations management as well. In fact,
several topics in this context are object of huge research, and we refer the reader to the insightful
surveys [10, 3] for a comprehensive view. According to the practical decomposition, analytic
queueing models or simulation models have been developed for computing staffing levels able
to guarantee the desired LoS, while integer programming algorithms have been used to deter-
mine optimal shift schedules able to cover such levels. However, most of the assumptions of
standard queueing models are often not valid in practice, especially in multi-queue/multi-skill
environments. For instance, the Stationary Independent Period by Period (SIPP) model assumes
the independence of the arrival processes at consecutive periods, whereas significant correlations
across time periods are well-known to occur in practice. These affect the quality of the computed
staffing levels, as documented in [11, 5]. A new stream of research has been recently started with
the purpose of overcoming the SIPP model and looking at more complex and realistic arrival
processes. This naturally leads to integrate staffing and shift scheduling decisions into suitable
mathematical programming formulations. For instance, in [5, 4], formulations are presented
to minimize staffing costs while preserving the LoS and sophisticated simulation-based cutting
plane methods are developed. Here, simulation is required to compute the LoS, which is not
analytically accessible. In [16, 9, 28] similar methodologies are applied to a staffing-scheduling
problem with a single global service level constraint. Unlike previous papers, in [28] a stochastic
programming formulation is introduced. The migration towards this kind of models is further
developed in recent papers. In [18], stochastic programming is combined with distributionally ro-
bust optimization for multi-period, multi-shift staffing problems under service level constraints,
with uncertain calls arrival rates and an intra-day seasonality. In [17], a stochastic programming
approach is compared to a robust optimization based method applied to the solution of a staffing
problem in a multi-period, single-shift, flexible call center. Finally, in [8] the authors present a
stochastic programming model in which the LoS is approximated by a linear program instead of
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using simulation. This improves computational tractability at the price of reducing the accuracy.

In this paper we study a two-stage robust optimization model for shift scheduling in a multi-
period, multi-shift, flexible call center. The distinguishing feature of this model is that the
staffing levels required to guarantee the desired LoS are uncertain, being affected by errors in
the call volume forecast and by point estimate approximations. This model introduces a new
perspective, as it disdains the description of the arrival process as well as the detailed modeling
of the LoS. In fact, it is complementary to any staffing method, being designed to react to un-
predictable demand patterns at the shift scheduling stage. A preliminary version of this model
has been presented in the conference paper [20], where its adherence with managers’ practice
in exploiting flexibility is discussed. Our model belongs to the class of two-stage problems with
right-hand-side uncertainty (RHSU), typically tackled by a Benders-like reformulation. The
continuous version of such problems has been investigated in [23], where the separation problem
associated to the Benders constraints is proved to be strongly NP-hard in general. We identify
three different form of the uncertainty set which are of practical relevance and investigate the
complexity issue accordingly. In particular, we show that the separation problem is solvable is
strongly polynomial time when the SIPP model is considered and in pseudo-polynomial time
when correlation between consecutive time periods is taken into account. A branch-and-cut
algorithm is then devised to manage the integer case and experimented on real-world data from
a large Italian call center. The favorable theoretical complexity has also born out in practice,
as the convergence of the algorithm is remarkably faster than what is typically observed from
formulations of this kind. This allows to exploit the algorithm in addressing relevant manage-
rial issues, such as the trade-off between personnel costs and protection against uncertainty.
Interestingly, high level of protections turns out to be achievable with shift plans whose cost is
comparable to the one computed from deterministic staffing levels. On the contrary, exploiting
flexibility to re-adjust deterministic plans can be remarkably more expensive.

The paper is organized as follows. In §2 we discuss the flexible version of the classic shift
scheduling model. In §3 we illustrate the two-stage robust optimization approach, describe the
uncertainty set and derive the Benders-like reformulation. The complexity of the separation
problem is addressed in §4 and the solution algorithm described in §5.1. The computational
experience is described in §5. Finally, in §6, some conclusions are drawn.

2. Flexible shift scheduling

We consider a discrete planning horizon T = {1, . . . ,m} and denote by bt the staffing level at
period t, t ∈ T , i.e., the (integer) number of agents required on duty in period t. Agents are
assigned with work shifts, each characterized by a starting time and a duration. Work shifts do
not include breaks which are assumed to be managed at real-time level. Let J = {1, . . . , n} be
the set of all possible shifts and cj the cost associated to shift j. The classical shift scheduling
problem consists in determining the number of agents to be assigned to each shift in order to
satisfy the levels at minimum cost. A basic integer programming model for this problem was
introduced in [25]. Let us define the shift matrix A ∈ {0, 1}m×n, with atj = 1 if shift j covers
period t and 0 otherwise, and denote by xj the number of agents assigned to shift j, j ∈ J . The
problem writes:

min
∑

j∈J

cjxj (1)
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∑

j∈J

atjxj ≥ bt t ∈ T

x ∈ Z
n
+

Since shifts do not include breaks, each column has consecutive ones (C1P property), which
allows to reformulate the problem as a minimum cost flow problem [25]. Here we show that
the model can be adapted to include flexibility while preserving the network structure. Recall
that flexibility consists in the possibility to react to (front-end) understaffing and overstaffing
situations by moving personnel between back and front office. Of course, a natural property
holds:

Property 2.1. At any time slot, it is not possible to have overstaffing and understaffing simul-
taneously.

Let us introduce variables ot, ut ∈ Z+ to represent the number of agents in excess (overstaffing)
resp. defect (understaffing) at period t. These situations yield additional costs, induced by
organizational and even behavioral issues, which may become quite relevant. Let wo

t and wu
t

be the overstaffing and understaffing cost at period t and we suppose that for any t ∈ T ,
wo
t + wu

t > 0. The flexible model reads as:

min
∑

j∈J

cjxj +
∑

t∈T

(wo
t ot + wu

t ut) (2)

∑

j∈J

atjxj + ut − ot = bt t ∈ T

x ∈ Z
n
+,o,u ∈ Z

m
+

Variables o, u act as surplus and slack variables, modeling personnel reallocation between front
and back office implemented to (exactly) balance the demand. It is well-known [2], that if a
constraint matrix is in the form [A | − I] with A having C1P by column, the problem can be
reformulated as min-cost flow. The same holds for [A | I | − I].

Theorem 2.1. Consider problem

min cTx+ dT y + gT z

Ax+ Iy − Iz = b

x ∈ Z
n
+, y, z ∈ Z

m
+

If A has the C1P by column then the problem can be reformulated as min-cost flow.

proof. Using a standard technique, first add redundant row 0 = 0 to the constraints matrix.
Then, replace the i-th constraint by the difference of the (i + 1)-th and the i-th, for i = m +
1,m, . . . , 1. The new constraints matrix corresponds to the node-arc incidence matrix of a
directed graph G(V,Ez ∪ Ey ∪ Ex) with |V | = m + 1. Ey (Ez) includes arcs yi = (i, i + 1)
(zi = (i+1, i)) whose cost is gi (di) for 1 ≤ i ≤ m, while Ex has an arc (uj , lj +1) of cost cj for
each j ∈ J , where uj (lj) are first and last row where the coefficient of xj is 1 in A. Each node
i 6= m+1 of G has a supply/demand equal to b′i = bi+1−bi, while b

′
m+1 = −bm. See Figure 1 for

a graphical representation of G. By construction,
∑

i∈V b′i = 0. Solving problem (2) amounts to
compute a minimum cost flow on G.

Applying Theorem 2.1 to our problem, we obtain the following result.
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Corollary 2.2. Model (2) can be solved in O((m+ n)2 logm+m(n+m) log2 m).

proof. Constraint matrix of problem (2) is in the form [A | I | − I] with A having the C1P
property, therefore Lemma 2.1 holds. Since b is integer, b′ is integer and the optimal flow will
be integral. The graph has O(m) nodes and O(n+m) edges. As stated in [24], the complexity
of solving a min-cost flow problem in graph G(V,E) is O(|E|2 log |V |2 + |E||V | log2 |V |), hence
problem (2) can be solved in O((m+ n)2 logm+m(n+m) log2 m).

An optimal solution to model (2) naturally satisfies Property 2.1, that is, for any time period
t ∈ T , the optimal value of at most one between ut and ot will be positive. Moreover, having
such a property is a necessary condition for a solution to be optimal.

Lemma 2.3. A necessary condition for a solution (x,o,u) to be optimal for (2), is that Property
2.1 holds for (o,u).

proof. Observe that for each pair of nodes (i, i + 1) for i = 1, . . . ,m, arcs ui, oi induce a
positive cost cycle. Suppose that (x,o,u) is an optimal solution such that there exists t̄ ∈ T
where ut̄ > 0 and ot̄ > 0. Suppose without loss of generality that ut̄ > ot̄ and consider solution
(x, ū, ō), where: ūt = ut, ōt = ot for any t ∈ T \ {t̄}; ūt̄ = ut − ot, ōt̄ = 0. Solution (x, ō, ū) is
feasible and has a better objective value than (x,o,u), as it is obtained by reducing flow along
a positive cost cycle, then (x,o,u) cannot be optimal. This means that, for any time period
t ∈ T , the optimal value of at most one between ut and ot will be positive.
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Figure 1: Graph G of Theorem 2.1

Model 2 represents our starting point and will be referred to as nominal problem. We now start
investigating the case when uncertainty comes into play.

3. The robust optimization perspective

In the standardWFM process [15], the staffing levels b, are computed in such a way that a desired
Level of Service (LoS) is guaranteed. These represent the input to model (2) which returns a
minimum cost shift schedule. Therefore, errors in estimating the demand (call volumes), as
well as approximations in computing the staffing levels, affect the resulting LoS. The key idea
of our modeling approach is to react to out-of-adherence at the scheduling stage by looking
at the staffing levels as uncertain, that is, bounding into them multiple sources of randomness
and approximations. One major advantage of this approach is that it does not require the
explicit description of the LoS, which is typically complex and hard to manage computationally
[4, 17, 18]. Conversely, we will show that this choice yields computationally tractable models.
This perspective naturally leads to the application of robust optimization to shift scheduling.
Notice that staffing levels correspond to right-hand-sides in model (2). Therefore, considering
them uncertain gives rise to RHSU models.
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In §3.1 and §3.2 we present a two-stage model for flexible shift-scheduling under uncertain staffing
levels; in §3.3 we describe different uncertainty sets which are of interest for our application;
finally in §3.4 we introduce a Benders-like reformulation.

3.1. The two-stage approach

Robust optimization methods can be classified into single-stage and multi-stage methods. In the
former the solution is computed entirely before the realization of the uncertainty and the same
solution is applied to any realization. In multi-stage optimization, the solution is computed in
stages (generally two), that is: a part of the solution is computed before the realization of the
uncertainty and a part is computed after. Both methods have advantages and disadvantages:
single stage solutions are in general easier to compute, but they are often too conservative,
whereas multi-stage solutions are less conservative (the solution can be adapted to the actual
values), but the corresponding problem is harder to solve. RHSU single stage optimization
reduces to solve a nominal problem with suitable right-hand-side values [22]. In our case, a
single stage reformulation cannot even be applied, as the nominal problem is defined by equality
constraints, which cause the robust single stage problem be infeasible citeBGGN04.

Interestingly, not only a two-stage formulation is the only option from the mathematical point
of view, but it is also best-suited for the application. Indeed, it corresponds to a widespread
call center practice, where the decision process is naturally characterized by a two-stage de-
composition. In a first stage, typically at the beginning of the week, a daily shift schedule is
computed. In a second stage (at the operational level), personnel reallocation between front and
back office is implemented, according to the actual period by period needs. In this framework x

are first stage variables, whose value is computed in advance and kept fixed for any realization
of the uncertainty, whereas o and u, which correspond to personnel reallocation, are second
stage variables, whose value depends on the actual values of staffing levels b. According to such
process, we introduce the following two-stage robust version of model (2):

min
x∈X







∑

j∈J

cjxj +Wx(U)







(3)

where X is the of the feasible shift schedules, including the integrality of the x variables; Wx(U)
is the minimum reallocation cost for a fixed schedule x (see §4) over the set of all possible real-
izations of the staffing levels, i.e., the uncertainty set U (see §3.3).

The solution of model (3) provides a double information: the value of first stage variables x

and an upper bound on the amount of personnel reallocation cost Wx(U). However, it neither
provides the real personnel reallocation cost Rxb nor the value of o and u variables, which must
be recomputed ex-post, as they depend on both first stage variables x and the actual realization
of b. We call this problem personnel reallocation problem.

3.2. The second stage decision: personnel reallocation

The personnel reallocation problem corresponds to model (2) with fixed x, that is, the problem:

Rxb = min
∑

t∈T

(wo
t ot + wu

t ut) (4)
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ut − ot = bt −
∑

j∈J

atjxj t ∈ T

o,u ∈ Z
m
+

Model (4) is still a min-cost flow problem. Moreover, the problem can be decomposed by time
period, leading to the following result.

Lemma 3.1. Personnel reallocation problem can be solved in O(m) and the optimal solution is:

ot =

{

∑

j∈J atjxj − bt if bt −
∑

j∈J atjxj < 0

0 otherwise

ut =

{

bt −
∑

j∈J atjxj if bt −
∑

j∈J atjxj ≥ 0

0 otherwise

proof. Since x are fixed, each time slot can be treated separately. The optimal solution must
satisfy the necessary condition given by Lemma 2.3, therefore, for any t ∈ T , at most one
between ut and ot can be positive. Since we have equality constraints, the only feasible solution
having such property is the one above.

If x is the optimal solution of (3), then the optimal value of (4) cannot exceed Wx(U). Since
(4) is always feasible and bounded (for bounded b), it can also be solved in its dual version.

Rxb = max
∑

t∈T

(bt −
∑

j∈J

atjxj)yt (5)

− wt
o ≤ yt ≤ wt

u t ∈ T

where y is the dual vector.

Lemma 3.2. The optimal solution of (5) is

yt =

{

wu
t if bt −

∑

j∈J atjxj ≥ 0

−wo
t otherwise

proof. Let (o,u) be the optimal solution to (4) given in Lemma 3.1 and let y the dual solution
defined above. It is easy to see that y,o,u satisfy the complementarity conditions. In fact,
when ut > 0, that is, bt −

∑

j∈J atjxj > 0 then the corresponding dual constraint is satisfied
with equality, i.e. yt = wu

t . In the same way, when ot > 0, that is bt −
∑

j∈J atjxj < 0, dual
constraint yt ≥ −wo

t is satisfied with equality.

Both Lemmas 3.1 and 3.2 make use of the condition given in Lemma 2.3. Indeed, it is possible to
prove that such property, although only necessary for a solution to be optimal for (2), provides
a necessary and sufficient condition of optimality for the personnel reallocation problem.

Theorem 3.3. A feasible solution (o,u) is optimal for (4) iff, for any t ∈ T , ot and ut are not
simultaneously positive.

proof. The necessity follows from Lemma 2.3. Suppose now that (u,o) is a feasible solution
where for any t ∈ T , either ot = 0 or ut = 0. The only solution having such property is the one
computed in Lemma 3.1. By Lemma 3.2, given such (o,u) there exists a dual solution y with the
property that o,u,y satisfy the complementarity conditions and then (o,u) is optimal.

Being b given, the personnel reallocation problem is easy, independently of the uncertainty set.
However, the uncertainty set plays a fundamental role in solving robust problem (3), therefore
in the next section we present the descriptions of the set U relevant to our application.
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3.3. The uncertainty set

The uncertainty set U consists of all the realizations of the uncertain parameters, and, tradi-
tionally, is expressed by a polyhedron or by a convex set [6, 7]. Here, it includes all staffing
levels that might reasonably occur. Our starting point is that the nominal staffing levels b̃t are
supposed to be affected by some deviations δt ranging in some interval [−Dt,Dt]. Advanced
staffing procedures, besides nominal levels b̃t, provide estimates for the gap between these lev-
els and their worst case realization Dt, i.e. [13]. Two further observations contribute to the
definition of uncertainty sets, summarized in the following property:

Property 3.1. Properties of the uncertainty set:

(i) deviations typically occur only in a limited number Γ of time periods, while in the others
can be considered negligible;

(ii) deviations at consecutive time periods are often not independent (see e.g. [5]).

Condition (i) naturally leads to look at the well-known cardinality constrained approach [7].
Formally, let zt be the percentage deviation in period t and let ζt indicate whether a deviation
occurs in period t or not. The set U is:

UΓ = {b ∈ Z
m : bt = b̃t +Dtzt;

∑

t∈T

ζt ≤ Γ, |zt| ≤ ζt, ζt ∈ [0, 1]; zt ∈ R, t ∈ T}

In order to model condition (ii), we assume that the difference between the deviations of two
consecutive periods is limited by a parameter ∆(t). In this case, we have the following form:

U∆ = {b ∈ Z
m : bt = b̃t +Dtzt; |Dtzt −Dt−1zt−1| ≤ ∆(t); zt ∈ [−1, 1], t ∈ T}

When both conditions are enforced we obtain the set UΓ∆, which is of great practical relevance:

UΓ∆ = { b ∈ Z
m
+ : bt = b̃t +Dtzt;

∑

t∈T

ζt ≤ Γ, |zt| ≤ ζt, ζt ∈ {0, 1};

|Dtzt −Dt−1zt−1| ≤ ∆(t); zt ∈ R, t ∈ T}

Notice that bt is integer, as it represents the number of agents on duty at period t. The integrality
of bt, t ∈ T , has some consequences. First, b̃t is integer in order to guarantee the feasibility of the
nominal scenario, that is, the one with b = b̃. If so, Dtzt has to be integer as well. Therefore,
w.l.o.g., we assume Dt to be integer. This also implies ∆(t) integer. Clearly, UΓ∆ is bounded
and non-empty.

3.4. Benders reformulation

We now illustrate a Benders like reformulation of problem (3) and discuss the related algorithmic
issues. Problem (3) can be rewritten as:

min
∑

j∈J

cjxj + λ (6)
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λ ≥ Wx(U)

x ∈ X

where
∑

j∈J cjxj represents the total cost of work shifts and Wx(U) the worst-case personnel
reallocation cost:

Wx(U) = max
b∈U

{Rxb} (7)

Using the expression (5) for Rxb, Wx(U) is computed as:

Wx(U) = max
∑

t∈T

(bt −
∑

j∈J

atjxj)yt (8)

− wt
o ≤ yt ≤ wt

u t ∈ T

b ∈ U

Therefore, problem (6) becomes:

min
∑

j∈J

cjxj + λ

λ ≥
∑

t∈T

(bt −
∑

j∈J

atjxj)yt b ∈ U,y ∈ Y (9)

x ∈ X

where Y = {y : −wt
o ≤ yt ≤ wt

u, t ∈ T}. This formulation is non-compact, as it may have
an exponential number of constraints. A standard algorithmic framework for such formulations
is the Kelley cutting plane method, originally introduced in [14]. This method starts with a
relaxed formulation including a suitable subset of constraints (9). Then, additional constraints
are dynamically generated by a separation oracle. Let (x̄, λ̄) be a solution to the current prob-
lem. The Separation Problem (SEP) consists of finding a realization b̄ and a vector ȳ ∈ Y such
that λ̄ < (b̄t −

∑

j∈J atj x̄j)ȳt or prove that none exist. In the former case, the corresponding
(violated) inequality (9) is added to the formulation. In general, separation problems arising
from two-stage RHSU models are typically nonconvex and strongly NP-hard, as shown in [23].
In §4 we investigate the theoretical complexity of SEP.

4. The separation problem

Let us discuss the complexity of SEP, starting from UΓ. Similarly to the personnel reallocation
problem, in SEP understaffing and overstaffing situations can be addressed one period at a
time. This has a remarkable consequence when set UΓ is used to model uncertainty. In fact, the
worst-case realization for a given x can be easily identified:

Theorem 4.1. [27] Given x, the corresponding worst case realization b is:

bt =











b̃t +Dt if t ∈ I and (b̃t +Dt −
∑

j∈J atjxj)w
u
t ≥ (

∑

j∈J atjxj − b̃t)w
o
t

b̃t −Dt if t ∈ I and (b̃t +Dt −
∑

j∈J atjxj)w
u
t < (

∑

j∈J atjxj − b̃t)w
o
t

b̃t if t /∈ I
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where set I ⊆ T includes the first Γ time periods according to non decreasing values of τ defined
below.

τt =max







(b̃t +Dt −
∑

j∈J

atjxj)w
u
t , (

∑

j∈J

atjxj − b̃t −Dt)w
o
t







−max







(b̃t −
∑

j∈J

atjxj)w
u
t , (

∑

j∈J

atjxj − b̃t)w
o
t







t ∈ T

Based on the result in [27], the complexity of the second stage problem for UΓ is:

Corollary 4.2. SEP for UΓ can be solved in O(m logm).

proof. Given x, compute worst-case realization b as in Theorem 4.1. Vectors o,u and y can
be obtained solving the personnel reallocation problem for the given x and b, which can be
done in O(m) according to Lemmas 3.1 and 3.2. Therefore, the complexity reduces to the one
of ordering the τ values, that is, O(m logm).

When U∆ or UΓ∆ are considered, it is no longer possible to use such a method, as those sets
include correlation between the deviations of consecutive time periods. However, in this case,
SEP can be solved in pseudo-polynomial time by reducing it to computing paths on a suitable
∆-uncertainty graph G(V,E). Let Kt be the set of integers in [−Dt,Dt], t ∈ T , the graph can
be formally defined as follows (see Figure 2).

Definition 4.3. ∆-uncertainty graph G(V,E) is defined as:

V = {σ, τ} ∪ {vtk, t ∈ T, k ∈ Kt};

E = Eσ ∪ Eτ ∪ E∆, where:

Eσ = {(σ, v1k) for each k ∈ K1};

Eτ = {(vmk, τ) for each k ∈ Km};

E∆ = {(vtp, v(t+1)q), for each p ∈ Kt, q ∈ Kt+1, t ∈ T \ {m} and |p− q| ≤ ∆(q)}.

Note that G(V,E) is acyclic, |V | =
∑

t∈T |Kt| + 2 and |E| =
∑m−1

t=1 |Kt||Kt+1| + |Km| + |K1|.
Furthermore, |Kt| = 2Dt. If we let D̄ = maxt∈T Dt, then |V | = O(D̄m) and |E| = O(D̄2m). We
show that solving the problem with U∆ reduces to computing a longest-path in G(V,E), which
can be done in pseudo-polynomial time. For any t ∈ T and k ∈ Kt, let ctk be the minimum
reallocation cost for time slot t when bt = b̃t + k (see §3.2).

Theorem 4.4. SEP for U∆ can be solved in O(D̄2m) time.

proof. Let us define arc weights as: ce = 0, e ∈ Eσ, ce = cmk for e ∈ Eτ , ce = ctp for e ∈ E∆.
By construction, SEP amounts to computing a longest σ−τ path on G(V,E). Since G is acyclic,
the problem can be solved in O(|E|) = O(D̄2m) time.

The ∆-uncertainty graph also allows us to prove that the separation problem for UΓ∆ can still
be solved in pseudo-polynomial time, as it amounts to solve a resource constrained shortest-path
problem on G. If we let w̄ = maxt∈T max{wo

t , w
u
t } and Ω = maxt∈T max{ot, ut} = maxt∈T (b̃t +

Dt), the problem complexity is given in the theorem below.
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Theorem 4.5. SEP for UΓ∆ can be solved in O(w̄ΩD̄3Γm2).

proof. Let us associate to the arcs edge weights ce defined as: ce = 0, e ∈ Eσ, ce = cmk for
e ∈ Eτ , ce = ctp for e ∈ E∆. Moreover, let us define for each arc a further binary weight re
as: re = 1 for e = (vtk, j) ∈ E∆ ∪ Eτ such that node vtk corresponds to a deviation from the
nominal value, re = 0 otherwise. Hence, re = 0 if e = (σ, j) or e = (vtk, j), with vtk = 0 and
re = 1 otherwise. Since we have a bound Γ on number of possible deviations, any feasible path
must also satisfy the additional requirement

∑

e∈E re ≤ Γ. Therefore, SEP reduces to a (single-
)resource constrained longest path problem. In [21] it is shown that can the resource constrained
shortest path problem with a single resource can be solved by O(log(|V |RC)) shortest path
computations, where C is the maximum arc cost and R the maximum weight. In our case,
|V | = O(D̄m), R = O(Γ), C = O(w̄Ω) and the longest path problem can be solved in O(D̄2m).
The overall complexity is then O(w̄ΩD̄3Γm2).
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Figure 2: The ∆-uncertainty graph

These results have implications on the complexity of the continuous version of problem (3), where
the integrality requirement on variables is relaxed. In detail, the following corollary holds:

Corollary 4.6. The LP relaxation of (3) is solvable in:

1. strongly polynomial time for UΓ;

2. pseudo-polynomial time for U∆ and UΓ∆.

proof. The equivalence between optimization and separation [12] implies that the LP robust
problem has the same worst case complexity as SEP. Therefore, it is solvable in polynomial time
for UΓ thanks to Lemma 4.2 and pseudo-polynomial for U∆ and UΓ∆ thanks to Lemmas 4.4 and
4.5.

Interestingly, similar results do not hold for several well-structured LP-RHSU problems [23],
which turn often out to be NP-hard in the strong sense. The relevance of this result is also
confirmed by the practical evidence that rather standard rounding techniques often allow to
compute good quality feasible solutions [21].
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5. Computational experience

In this section we investigate the application of the robust optimization approach in practical
settings. We first give the details of our implementation and describe the test-bed. Then,
the algorithm performance is discussed. Finally, we analyze from managers’ perspective the
advantage of the robust methodology. The experiments are run on 2 Intel Xeon 5150 processors
clocked at 2.6 GHz with 8 GB of RAM in 4-thread mode. The commercial framework IBM
Cplex 12.6. is used to implement a branch-and-cut algorithm in which we integrated our primal
heuristic and separation routine. Computations are stopped either by 1 hour time limit or 0.05%
optimality tolerance. A preliminary experience showed that the best performance is obtained by
Cplex default settings with cutting plane generation (for all families of cuts) and MIP heuristics
turned off. Separation is performed on all integer solutions, while fractional ones are tested only
at the root node.

5.1. Branch-and-cut details

The primal heuristic consists of rounding the current LP solution and computing the associated
worst case uncertainty cost Wx(U), again by solving SEP. A time limit of 50 seconds is imposed
to the heuristic: if an optimal solution has been obtained, then solution (χ,Wχ(U)) is returned,
otherwise the heuristic fails.

We tested different algorithms for SEP. We first implemented an algorithm based on label-setting
shortest path computations (see theorems 4.4, 4.2, 4.5). We experienced that the performance of
these algorithms suffer, in some cases, from the size of the graph which depends on the deviations
and the number of time periods. However, a more robust behavior has been observed by solving
SEP through the following MIP reformulation.

max
∑

t∈T

(wo
t ot + wu

t ut) (10)

ut − ot = bt −
∑

j∈J

atjxj t ∈ T

ot ≤ Mαt t ∈ T

ut ≤ M(1− αt) t ∈ T

b ∈ U, o,u ≥ 0, α ∈ {0, 1}|T |

This problem is equivalent to computing Wx(U) using expression (4). In fact, variables α impose
that, for any time slot t ∈ T , either ut = 0 or ot = 0, which is, by Theorem 3.3, a necessary and
sufficient condition for (o,u) to be optimal for the personnel reallocation problem. Then, the
results that follow are those obtained using the MIP-based separation procedure.

5.2. Test-bed

The instances are based on real data, gathered during year 2008 from a large, distributed call
center of an Italian Public Agency receiving more than 1800 daily calls. The call center is on
duty on working days from 7:45 a.m. to 8:00 p.m. corresponding to 49 time slots (15 minutes).
Three labor contracts are used, with 4, 6 or 8 hour shifts. The costs ascribed to these shifts are
72, 96 and 112 e respectively. Agents are skilled for both front and back office and job flexibility



14.

is implemented by call center managers, who dynamically allocate agents to different activities
according to operational needs. However, personnel reallocation requires some organizational
set-up and should be limited. Inbound calls are prioritized over back office. Therefore, (front
office) understaffing is considered more critical than overstaffing and cj/sj < wo

t < wu
t , t ∈ T ,

where cj is the cost of the most expensive shift, sj the number of its time periods. Here, we
considered as fair values wu

t = 10 and wo
t = 5 e for every t ∈ T .

Staffing levels of a reference day were provided us by the managers. Starting from this data,
we generated 60 instances (36 for UΓ∆, 18 for UΓ and 6 for U∆) by systematically varying
the percentage deviation dev% of the actual staffing level with respect to the nominal value,
the number Γ of time slots affected by uncertainty and the allowed deviation difference ∆
between two consecutive time periods, supposing it the same for every pair. We consider the
values dev% ∈ {5, 10, 20}, Γ ∈ {5, 10, 15, 20, 25, 30} and ∆ ∈ {0.5θ, θ}, where θ is the average
difference between two consecutive nominal staffing levels. We measured θ = 45, yielding ∆ ∈
{22, 45}. The variation of the dev% parameter models the confidence of the managers in the
nominal values, ranging from reliable estimates (e.g. days with standard demand patterns)
to weak confidence caused by critical situations, such as strikes. Parameter Γ controls the
trade-off between the robustness and the corresponding cost. Again, we sample a wide range of
values. Parameter ∆ captures the correlation between the variations of consecutive time periods,
intrinsic in the call center dynamic.

5.3. Branch-and-cut performance

Traditionally, Benders reformulations may suffer from the weakness of the LP relaxation along
with numerical difficulties due to nasty coefficients. In fact, specialized techniques have been
recently proposed to overcome this drawback [8]. Interestingly, our formulation turns out to be
not significantly affected by such problems. In tables 1, 2 and 3 the branch-and-cut statistics are
reported for UΓ, U∆ and UΓ∆ respectively. Besides the instance parameters, the tables contain:

- the objective value,

- the value found by the primal heuristic at the root node,

- the value of the LP relaxation and the percentage gap before enumeration,

- the number of B&B nodes,

- the total CPU time,

- the CPU time required by the separation algorithm,

- the number of generated cuts and

- the CPU time spent by the rounding heuristic (all times are expressed in seconds).

From the tables, one can observe that all the instances are solved in reasonable CPU time and
limited number of branch-and-bound nodes (only in one case the latter gets over 1, 000 and no
significant differences have been observed among the different uncertainty sets from this point
of view).
Two major evidences explain such a nice behavior. The first deals with the quality of the LP
relaxation. In fact, the gap between the optimal LP value and the value of the solution returned
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by the primal heuristic at the root node turns out to be very often quite small, never exceeding
1%. This is particularly valuable, as the results of §4 show that solving the LP relaxation is
computationally accessible.
The second evidence concerns the cuts. In our case:

- integrality of bt, w
u
t , w

o
t implies that all coefficients involved in inequalities (9) turn out to

be integer (see Lemma 3.2),

- figures arising from real-world instances (m, bt, w
u
t , w

o
t ) always produce cuts with limited

coefficient dynamism [19].

This mitigates known numerical difficulties of Benders reformulation and the number of gen-
erated cuts remains small, guaranteeing a good convergence of the algorithm. Looking at the
effect of instance parameters, we observe that CPU times tend to increase as dev% gets larger,
while it is not significantly affected by Γ. Conversely, times increase as ∆ decreases. Thanks
to this nice computational behavior, the economical impact of robustness can be evaluated in a
real-world setting. This is illustrated in the next subsection.

Γ Obj. Root Root Root B&B Total Sep. # Heur.
value primal LP rel. % gap nodes time time cuts time

dev% = 5

5 80021 80068 80013.33 0.07 73 6 5 111 1
10 80742 80742 80732.33 0.01 0 5 5 126 < 1
15 81393 81575 81389.00 0.23 49 6 6 147 < 1
20 82017 82122 82014.00 0.13 25 7 7 158 < 1
25 82628 82690 82613.00 0.09 73 7 6 142 < 1
30 83174 83251 83173.33 0.09 30 8 5 151 3

dev% = 10

5 80984 80984 80976.00 0.01 0 6 6 126 < 1
10 82419 82511 82406.00 0.13 2 10 9 149 1
15 83709 83771 83702.00 0.08 153 15 14 165 1
20 84962 84994 84950.33 0.05 71 9 9 131 < 1
25 86151 86222 86137.67 0.10 106 19 18 166 1
30 87286 87286 87243.67 0.05 0 9 9 153 < 1

dev% = 20

5 82953 82953 82930.00 0.03 0 10 9 101 1
10 85786 85876 85778.00 0.11 38 18 17 120 1
15 88350 88422 88347.67 0.08 42 21 20 145 1
20 90835 90895 90834.33 0.07 324 22 20 128 2
25 93218 93298 93204.00 0.10 401 23 22 141 1

Table 1: Branch-and-cut statistics for UΓ

5.4. Economical analysis

The trade-off between level of protection and personnel cost is investigated. We consider both
the robust model presented in §3 and the traditional approach. The latter consists in assigning
agents to shifts according to the nominal levels and then adjusting the solution depending on
the actual realization. The personnel cost has two components: the cost of the shifts, associated
with the x variables, and the cost of flexibility, associated with o and u variables. When the
staffing levels are subject to uncertainty, the cost of flexibility depends on the realization and
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Obj. Root Root Root B&B Total Sep. # Heur.
value primal LP rel. % gap nodes time time cuts time

dev% = 5
∆ = 22 83961 84008 83946.00 0.07 1031 10 10 146 < 1
∆ = 45 84438 84487 84427.67 0.07 40 7 7 143 < 1

dev% = 10
∆ = 22 88237 88294 88219.93 0.08 163 60 60 121 < 1
∆ = 45 88924 88924 88901.33 0.03 0 15 15 126 < 1

dev% = 15
∆ = 22 97340 97450 97311.75 0.14 248 29 27 66 2
∆ = 45 98128 98595 98113.30 0.49 97 22 22 73 < 1

Table 2: Branch-and-cut statistics for U∆
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Figure 3: dev% values when ∆ = 22
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Γ Obj. Root Root Root B&B Total Sep. # Heur.
value primal LP rel. % gap nodes time time cuts time

dev% = 5

∆ = 22

5 79909 79967 79902.67 0.08 485 64 63 135 < 1
10 80611 80662 80586.00 0.09 2 27 25 149 2
15 81258 81258 81240.33 0.02 0 31 31 151 < 1
20 81847 81847 81832.33 0.02 0 20 20 126 < 1
25 82456 82456 82416.11 0.05 0 17 15 126 2
30 82995 82995 82960.33 0.04 0 19 18 151 1

∆ = 45

5 80043 80128 80010.67 0.15 770 12 12 139 < 1
10 80751 80751 80714.17 0.05 0 6 5 127 < 1
15 81374 81434 81360.00 0.09 113 16 16 132 < 1
20 81992 82021 81974.67 0.06 137 16 15 144 1
25 82577 82611 82548.00 0.08 390 16 16 116 < 1
30 83129 83129 83087.67 0.05 0 9 9 139 < 1

dev% = 10

∆ = 22

5 80043 80043 80018.83 0.03 0 65 62 125 3
10 81336 81354 81303.83 0.06 2 171 160 199 11
15 82572 82572 82530.96 0.05 0 133 118 151 15
20 83634 83697 83612.36 0.10 129 108 102 114 6
25 84674 84941 84656.64 0.34 109 131 126 121 5
30 85766 85891 85764.67 0.15 63 144 136 140 8

∆ = 45

5 80813 80813 80805.33 0.01 0 10 8 100 2
10 82163 82261 82159.67 0.12 58 29 28 109 1
15 83473 83473 83453.00 0.02 0 40 38 126 2
20 84663 84663 84639.53 0.03 0 41 39 126 2
25 85846 85884 85815.67 0.08 545 220 217 146 1
30 86909 86909 86887.33 0.02 0 54 50 176 4

dev% = 20

∆ = 22

5 80091 80134 80081.33 0.07 231 576 564 119 12
10 82267 82397 82264.67 0.16 39 804 763 150 41
15 84899 85195 84897.64 0.35 39 301 287 105 14
20 87319 87537 87284.82 0.29 813 1420 1409 127 11
25 88730 88779 88692.67 0.10 121 1254 1222 99 32
30 90962 91035 90944.59 0.10 60 271 249 89 22

∆ = 45

5 81137 81364 81127.57 0.29 94 111 108 123 3
10 83780 83844 83754.67 0.11 120 255 248 122 7
15 86399 86435 86387.54 0.05 2 136 125 124 11
20 88584 88772 88567.67 0.23 75 106 101 93 5
25 90765 91242 90727.75 0.57 2 100 94 99 6
30 93052 93261 93010.78 0.27 359 171 165 125 6

Table 3: Branch-and-cut statistics for UΓ∆
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Figure 4: dev% values when ∆ = 45
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Figure 5: Γ values when ∆ = 22
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Figure 6: Γ values when ∆ = 45

its worst case value Wx(U) must be considered in order to be protected against all realizations.
In the robust method, both of the cost components are included in the solution to problem (9),
since Wx∗(U) = λ∗. For the traditional approach, x values along with the associated shifts cost
come from the solution of model (2). The cost of flexibility for the worst case realization is
computed ex-post by solving problem (10) for the given x.

In figures 3 and 4 the overall cost is reported as a function of Γ (Γ = 0 corresponds to nom-
inal problem (2)). Each figure corresponds to one ∆ value and contains six functions: three
representing the robust cost and three representing the cost of the traditional approach for the
different dev% values. In the same way, figures 5 and 6 show the costs as a function of dev%
with lines corresponding to Γ values (dev% = 0 is again the nominal problem). The graphs give
evidence to the fact that the reallocation cost in the traditional approach (dashed lines) grows
significantly with the deviations. This issue is often underestimated as the urgency of covering
understaffing situations at the front office is perceived more critical at real-time level. Here, the
remarkable fact is that a very high level of protection is accomplished by increasing the cost with
respect to the nominal value by less than 10% and a safe protection is achieved even restricting
to a 5% additional budget. This extra budget is considered acceptable or even profitable. In
fact, the figures highlight that the traditional approach can be by far more expensive than the
corresponding robust method (solid lines).

6. Conclusions

We investigated a two-stage robust optimization model for shift scheduling in flexible call cen-
ters. The distinguishing feature of our model is that it conveys all uncertainty sources into
random staffing levels. This gives rise to a two-stage robust model with right-hand-side uncer-
tainty. In contrast to the general case, we showed that the separation problem associated to
the constraints of a Benders-like reformulation can be solved rather efficiently for practically
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relevant uncertainty set formulations. This opens the way to effective algorithms which may
impact on practice.

References

[1] http://www.nextstepwfp.com/2012/01/how-much-is-over-staffing-costing-your-contact-centre.

[2] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms and Applications.
Prentice Hall, 1993.

[3] Z. Aksin, M. Armony, and V. Mehrotra, “The modern call center: A multi-disciplinary
perspective on operations management research,” Production and Operations Management,
vol. 16, no. 6, pp. 665–688, 2007.

[4] J. Atlason, M. Epelman, and S. Henderson, “Optimizing call center staffing using simulation
and analytic center cutting-plane methods,” Management Science, vol. 54, no. 2, pp. 295–
309, 2008.

[5] A. Avramidis, A. Deslauriers, and P. P. L’Ecuyer, “Modeling daily arrivals to a telephone
call center,” Manage. Sci., vol. 50, no. 7, pp. 896–908, 2004.

[6] A. Ben-Tal and A. Nemirowski, “Robust convex optimization,” Math. Oper. Res., vol. 23,
pp. 769–805, 1998.

[7] D. Bertsimas and M. Sim, “The price of robustness,” Oper. Res., vol. 52, no. 1, pp. 35–53,
2004.

[8] M. Bodur and J. Luedtke, “Mixed-integer rounding enhanced benders decomposition for
multiclass service system staffing and scheduling with arrival rate uncertainty,” Optimiza-
tion Online, 2014.

[9] T. Cezik and P. L’Ecuyer, “Staffing multiskill call centers via linear programming and
simulation,” Manage. Sci., vol. 54, no. 2, pp. 310–323, 2008.

[10] N. Gans, G. Koole, and A. Mandelbaum, “Telephone call centers: Tutorial, review and
research prospects,” Manufacturing and Service Operations Management, vol. 5, no. 2,
pp. 79–141, 2003.

[11] L. Green, P. Kolesar, and J. Soares, “Improving the sipp approach for staffing service
systems that have cyclic demands,” Operations Research, vol. 49, no. 4, pp. 549–564, 2001.

[12] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and its consequences in
combinatorial optimization,” Combinatorica, vol. 1, no. 2, pp. 169–197, 1981.

[13] I. Gurvich, J. Luedtke, and T. Tezcan, “Staffing call centers with uncertain demand fore-
casts: A chance-constrained optimization approach,” Management Science, vol. 56, no. 7,
pp. 1093–1115, 2010.

[14] J. Kelley, “The cutting-plane method for solving convex programs,” Journal of the Society
for Industrial and Applied Mathematics, vol. 8, no. 4, pp. 703–712, 1960.

http://www.nextstepwfp.com/2012/01/how-much-is-over-staffing-costing-your-contact-centre


21.

[15] G. Koole, Call center mathematics. A scientific method for understanding and improving
contact centers. MG books, 2013.

[16] G. Koole and E. van der Sluis, “Optimal shift scheduling with a global service level con-
straint,” IIE Transactions (Institute of Industrial Engineers), vol. 35, no. 11, pp. 1049–1055,
2003.

[17] S. Liao, G. Koole, C. van Delft, and O. Jouini, “Staffing a call center with uncertain non-
stationary arrival rate and flexibility,” OR Spectrum, vol. 34, no. 3, pp. 691–721, 2012.

[18] S. Liao, C. van Delft, and J.-P. Vial, “Distributionally robust workforce scheduling in call
centres with uncertain arrival rates,” Optimization Methods and Software, vol. 28, no. 3,
pp. 501–522, 2013.

[19] F. Margot, “Testing cut generators for mixed-integer linear programming,” Math. Prog.
Comp., vol. 1, no. 1, pp. 69–95, 2009.

[20] S. Mattia, F. Rossi, M. Servilio, and S. Smriglio, “Robust shift scheduling in call centers,”
in Combinatorial Optimization - Third International Symposium, ISCO 2014, Lisbon, Por-
tugal, March 5-7, 2014, pp. 336–346, 2014.

[21] K. Mehlhorn and M. Ziegelmann, “Resource constrained shortest paths,” in Algorithms -
ESA 2000 (M. Paterson, ed.), vol. 1879 of LNCS, pp. 326–337, 2000.

[22] M. Minoux, “Robust linear programming with right-hand-side uncertainty, duality and
applications,” in Encyclopedia of Optimization (C. Floudas and P. Pardalos, eds.), pp. 3317–
3327, Springer US, 2009.

[23] M. Minoux, “On 2-stage robust lp with rhs uncertainty: complexity results and applica-
tions,” J. Global Optim., vol. 49, no. 3, pp. 521–537, 2011.

[24] J. Orlin, “A faster strongly polynomial algorithm for the minimum cost flow problem,”
Oper. Res., vol. 41, pp. 338–350, 1993.

[25] M. Segal, “The operator-scheduling problem: A network-flow approach,” Operations Re-
search, vol. 22, no. 4, pp. 808–823, 1974.

[26] S. Steckley, S. Henderson, and V. Mehrotra, “Forecast errors in service systems,” Probability
in the Engineering and Informational Sciences, vol. 23, no. 2, pp. 305–332, 2009.

[27] A. Thiele, T. Terry, and M. Epelman, “Robust linear optimization with recourse,” Rapport
technique, pp. 4–37, 2009.

[28] R. Thomas and T. Harrison, “A stochastic programming model for scheduling call centers
with global service level agreements,” European Journal of Operational Research, vol. 207,
no. 3, pp. 1608–1619, 2010.

[29] W. Whitt, “Staffing a call center with uncertain arrival rate and absenteeism,” Production
and Operations Management, vol. 15, no. 1, pp. 88–102, 2006.


	Introduction
	Flexible shift scheduling
	The robust optimization perspective
	The two-stage approach
	The second stage decision: personnel reallocation
	The uncertainty set
	Benders reformulation

	The separation problem
	Computational experience
	Branch-and-cut details
	Test-bed
	Branch-and-cut performance
	Economical analysis

	Conclusions

